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This paper illustrates testing a directional (i.e., confirmatory) hypotheses for
a split-half reliability study using a polychotomous attribute having four
categories, via the Stata package for implementing ODA.

Recent papers'? introduce the new Stata pack-
age called oda® for implementing ODA from
within the Stata environment. This package is a
wrapper for the MegaODA software system?’%,
so the MegaODA .exe file must be loaded on the
computer for the oda package to work.*® To
download the oda package, at the Stata com-
mand line type: “ssc install oda” (without the
quotation marks).

Using the split-half method to estimate
reliability requires only one test administration.
Items on the test are separated into two groups
called “split-halves” and the agreement between
the split-halves is corrected for attenuation and
called the split-half reliability for the total test.
Every person completing a pair of split-halves is
hypothesized to receive identical scores on both
split-halves.®

This paper demonstrates use of the oda
package to evaluate a directional hypothesis for
a design in which two split-halves are separately
used to categorize a sample of undergraduates
into one of four mutually exclusive categorical
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typologies: androgynous (dummy-coded as 1),
instrumentally-typed (2), expressively-typed (3),
or undifferentiated (4).32°

Methods

Data

Yarnold obtained data assessing instrumentality
and expressiveness (each using 20 items) for 68
undergraduates.® The 20 “I” items were ran-
domly split into two halves (I1 and I,), as were
the 20 “E” items (Ez1 and E>). Separately using
each pair of split-halves (l1, E1) and (l2, E>),
each undergraduate was classified into one of
the four dummy-coded categorical typologies.
Finally, separately for every undergraduate, the
categorical typology (1-4) was determined for
the first and second split-half.

Analytic Process

We test the directional (“confirmatory”) alterna-
tive hypothesis that subjects classified as type t



Optimal Data Analysis
Vol. 10 (March 22, 2021), 30-35

Copyright 2021 by Optimal Data Analysis, LLC
2155-0182/10/$3.00

(t=1, 2, 3, or 4) by split-half 1 (four-category
class variable) are similarly classified by split-
half 2 (four-category “polychotomous” attrib-
ute). The null hypothesis is this is not true.3%4
Analysis was accomplished using the following
oda syntax (see the help file for oda for a com-
plete description of syntax options):

oda sh1 sh2, pathoda("C:\ODA\")
store("C:\ODA\") iter(25000)
direction(< 1 2 3 4) cat

This syntax is explained as follows. Here
“sh1” is the polychotomous class variable and
“sh2” is the polychotomous attribute; the direc-
tory path where MegaODA.exe and other files
generated in analysis are stored is “C:\ODA\”;
25,000 iterations (repetitions) are used to obtain
a permutation p-value; and the directional hy-
pothesis is that polychotomous codes of the
class variable and attribute are identical.?® The
oda package produces an extract of the total
output produced by ODA software seen below
(the complete output is stored in the specified
directory with the extension “.out”).

ODA model:

IF SH2 = 1 THEN SH1 =1
IF SH2 = 2 THEN SH1 = 2
IF SH2 = 3 THEN SH1 = 3
IF SH2 = 4 THEN SH1 = 4

overall Accuracy 64.71%

PAC SH1=1 73.33%
PAC SH1=2 61.11%
PAC SH1=3 68.42%
PAC SH1=4 56.25%
Effect Strength PAC 53.04%
PV SH1=1 64.71%
PV SH1=2 61.11%
PV SH1=3 81.25%
PV SH1=4 52.94%
Effect Strength PV 53.34%
Effect Strength Total 53.19%

Monte Carlo summary (Fisher randomization):

Iterations: 25000
Estimated p: 0.000000
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As seen, the classification performance
of the ODA model corresponds to a statistically
significant (conventionally reported as per-
comparison p<0.0001) effect. Effect strength for
sensitivity (ESS) is labelled in the output as
“Effect Strength PAC” (Percentage Accurate
Classification). For the confirmatory hypothesis
ESS is 53.04%, which barely exceeds the mini-
mum criterion (ESS>50) for classification as a
relatively strong effect.3! But, an exact discrete
confidence interval for this result would overlap
the region reflecting a moderate effect.142

Classification performance of the ODA
model is summarized in a cross-classification
table, illustrated for this example below.

Actual Predicted Class
Class 1 2 3 4 PAC (%)
1 11 2 2 0 7333
2 3 11 0 4 6111
3 2 0 13 4  68.42
4 1 5 1 9 56.25

Here, PAC is “percentage accuracy in
classification,” also called model sensitivity.3!
Since there are four class categories, sensitivity
of 100%/4 = 25% is expected by chance for
each of the four categories. Best performance
was achieved for class 1 (androgynous), and
worst performance was achieved for class 4
(undifferentiated). Exact discrete confidence
intervals for sensitivity could be obtained for
each class category.*142

We believe ODA should be considered
the preferred statistical approach vs. alternative
methods since it avoids statistical assumptions
required of conventional models, is insensitive
to skewed data or outliers, and has the ability to
handle any variable metric including categori-
cal, Likert-type integer, and real number meas-
urement scales.3! Compared to other methods,
only ODA can identify the optimal (maximum-
accuracy) assignments (categorical attributes) or
cutpoints (ordered attributes) which exist for the
attribute, that in turn facilitates use of measures
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of predictive accuracy. ODA can evaluate
model reproducibility using multiple methods,
allowing assessment of potential cross-general-
izability of the model when applied to classify
independent random samples.3! We therefore
recommend that researchers employ the ODA
framework to evaluate the statistical hypotheses
which are explored in their laboratory and field
research endeavors.*3%!
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