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This paper illustrates testing a directional (i.e., confirmatory) hypotheses for 

a split-half reliability study using a polychotomous attribute having four 

categories, via the Stata package for implementing ODA. 

 

Recent papers1-25 introduce the new Stata pack-

age called oda26 for implementing ODA from 

within the Stata environment. This package is a 

wrapper for the MegaODA software system27-29, 

so the MegaODA.exe file must be loaded on the 

computer for the oda package to work.30 To 

download the oda package, at the Stata com-

mand line type: “ssc install oda” (without the 

quotation marks). 

Using the split-half method to estimate 

reliability requires only one test administration. 

Items on the test are separated into two groups 

called “split-halves” and the agreement between 

the split-halves is corrected for attenuation and 

called the split-half reliability for the total test. 

Every person completing a pair of split-halves is 

hypothesized to receive identical scores on both 

split-halves.31 

This paper demonstrates use of the oda 

package to evaluate a directional hypothesis for 

a design in which two split-halves are separately 

used to categorize a sample of undergraduates 

into one of four mutually exclusive categorical 

typologies: androgynous (dummy-coded as 1), 

instrumentally-typed (2), expressively-typed (3), 

or undifferentiated (4).31-39  

Methods 

Data 

Yarnold obtained data assessing instrumentality 

and expressiveness (each using 20 items) for 68 

undergraduates.32 The 20 “I” items were ran-

domly split into two halves (I1 and I2), as were 

the 20 “E” items (E1 and E2). Separately using 

each pair of split-halves (I1, E1) and (I2, E2), 

each undergraduate was classified into one of 

the four dummy-coded categorical typologies. 

Finally, separately for every undergraduate, the 

categorical typology (1-4) was determined for 

the first and second split-half. 

Analytic Process 

We test the directional (“confirmatory”) alterna-

tive hypothesis that subjects classified as type t 
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(t = 1, 2, 3, or 4) by split-half 1 (four-category 

class variable) are similarly classified by split-

half 2 (four-category “polychotomous” attrib-

ute). The null hypothesis is this is not true.30,40 

Analysis was accomplished using the following 

oda syntax (see the help file for oda for a com-

plete description of syntax options): 

 

   oda sh1 sh2, pathoda("C:\ODA\") 

   store("C:\ODA\") iter(25000) 

   direction(< 1 2 3 4) cat    

 

 This syntax is explained as follows. Here 

“sh1” is the polychotomous class variable and 

“sh2” is the polychotomous attribute; the direc-

tory path where MegaODA.exe and other files 

generated in analysis are stored is “C:\ODA\”; 

25,000 iterations (repetitions) are used to obtain 

a permutation p-value; and the directional hy-

pothesis is that polychotomous codes of the 

class variable and attribute are identical.26 The 

oda package produces an extract of the total 

output produced by ODA software seen below 

(the complete output is stored in the specified 

directory with the extension “.out”). 

 

  

 
 

 As seen, the classification performance 

of the ODA model corresponds to a statistically 

significant (conventionally reported as per-

comparison p<0.0001) effect. Effect strength for 

sensitivity (ESS) is labelled in the output as 

“Effect Strength PAC” (Percentage Accurate 

Classification). For the confirmatory hypothesis 

ESS is 53.04%, which barely exceeds the mini-

mum criterion (ESS50) for classification as a 

relatively strong effect.31 But, an exact discrete 

confidence interval for this result would overlap 

the region reflecting a moderate effect.41,42  

Classification performance of the ODA 

model is summarized in a cross-classification 

table, illustrated for this example below. 

 

 Actual               Predicted Class 

  Class         1          2          3          4     PAC (%) 

      1          11          2          2          0       73.33 

      2            3        11          0          4       61.11 

      3            2          0        13          4       68.42 

      4            1          5          1          9       56.25 

 

Here, PAC is “percentage accuracy in 

classification,” also called model sensitivity.31 

Since there are four class categories, sensitivity 

of 100%/4 = 25% is expected by chance for 

each of the four categories. Best performance 

was achieved for class 1 (androgynous), and 

worst performance was achieved for class 4 

(undifferentiated). Exact discrete confidence 

intervals for sensitivity could be obtained for 

each class category.41,42 

We believe ODA should be considered 

the preferred statistical approach vs. alternative 

methods since it avoids statistical assumptions 

required of conventional models, is insensitive 

to skewed data or outliers, and has the ability to 

handle any variable metric including categori-

cal, Likert-type integer, and real number meas-

urement scales.31 Compared to other methods, 

only ODA can identify the optimal (maximum-

accuracy) assignments (categorical attributes) or 

cutpoints (ordered attributes) which exist for the 

attribute, that in turn facilitates use of measures 

    Estimated p: 0.000000                        
    Iterations:  25000                           
    -------------------------------------------  
    Monte Carlo summary (Fisher randomization):  

    Effect Strength Total       53.19%    
    Effect Strength PV          53.34%    
    PV SH1=4                    52.94%    
    PV SH1=3                    81.25%    
    PV SH1=2                    61.11%    
    PV SH1=1                    64.71%    
    Effect Strength PAC         53.04%    
    PAC SH1=4                   56.25%    
    PAC SH1=3                   68.42%    
    PAC SH1=2                   61.11%    
    PAC SH1=1                   73.33%    
    Overall Accuracy            64.71%    
    -----------------          ------     
    Performance Index           Train     
                                          
    ------------------------------------  
    Summary for Class SH1  Attribute SH2  

    IF SH2 = 4 THEN SH1 = 4  
    IF SH2 = 3 THEN SH1 = 3  
    IF SH2 = 2 THEN SH1 = 2  
    IF SH2 = 1 THEN SH1 = 1  
    ----------  
    ODA model:  
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of predictive accuracy. ODA can evaluate 

model reproducibility using multiple methods, 

allowing assessment of potential cross-general-

izability of the model when applied to classify 

independent random samples.31 We therefore 

recommend that researchers employ the ODA 

framework to evaluate the statistical hypotheses 

which are explored in their laboratory and field 

research endeavors.43-61 
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