

Implementing ODA from Within Stata: Assessing Split-Half Reliability Using a Polychotomous Attribute

Paul R. Yarnold, Ph.D. and Ariel Linden, Dr.P.H.
Optimal Data Analysis, LLC and Linden Consulting Group, LLC

This paper illustrates testing a directional (i.e., confirmatory) hypotheses for a split-half reliability study using a polychotomous attribute having four categories, via the Stata package for implementing ODA.

Recent papers¹⁻²⁵ introduce the new Stata package called **oda**²⁶ for implementing ODA from within the Stata environment. This package is a wrapper for the MegaODA software system²⁷⁻²⁹, so the MegaODA.exe file must be loaded on the computer for the **oda** package to work.³⁰ To download the **oda** package, at the Stata command line type: “ssc install oda” (without the quotation marks).

Using the split-half method to estimate reliability requires only one test administration. Items on the test are separated into two groups called “split-halves” and the agreement between the split-halves is corrected for attenuation and called the split-half reliability for the total test. Every person completing a pair of split-halves is hypothesized to receive identical scores on both split-halves.³¹

This paper demonstrates use of the **oda** package to evaluate a directional hypothesis for a design in which two split-halves are separately used to categorize a sample of undergraduates into one of four mutually exclusive categorical

typologies: androgynous (dummy-coded as 1), instrumentally-typed (2), expressively-typed (3), or undifferentiated (4).³¹⁻³⁹

Methods

Data

Yarnold obtained data assessing instrumentality and expressiveness (each using 20 items) for 68 undergraduates.³² The 20 “I” items were randomly split into two halves (I_1 and I_2), as were the 20 “E” items (E_1 and E_2). Separately using each pair of split-halves (I_1, E_1) and (I_2, E_2), each undergraduate was classified into one of the four dummy-coded categorical typologies. Finally, separately for every undergraduate, the categorical typology (1-4) was determined for the first and second split-half.

Analytic Process

We test the directional (“confirmatory”) alternative hypothesis that subjects classified as type t

($t = 1, 2, 3$, or 4) by split-half 1 (four-category class variable) are similarly classified by split-half 2 (four-category “polychotomous” attribute). The null hypothesis is this is not true.^{30,40} Analysis was accomplished using the following **oda** syntax (see the help file for **oda** for a complete description of syntax options):

```
oda sh1 sh2, pathoda("C:\ODA\")
store("C:\ODA\") iter(25000)
direction(< 1 2 3 4) cat
```

This syntax is explained as follows. Here “sh1” is the polychotomous *class* variable and “sh2” is the polychotomous *attribute*; the directory path where MegaODA.exe and other files generated in analysis are stored is “C:\ODA\”; 25,000 iterations (repetitions) are used to obtain a permutation *p*-value; and the directional hypothesis is that polychotomous codes of the class variable and attribute are identical.²⁶ The **oda** package produces an extract of the total output produced by ODA software seen below (the complete output is stored in the specified directory with the extension “.out”).

```
ODA model:
-----
IF SH2 = 1 THEN SH1 = 1
IF SH2 = 2 THEN SH1 = 2
IF SH2 = 3 THEN SH1 = 3
IF SH2 = 4 THEN SH1 = 4

Summary for Class SH1 Attribute SH2
-----
Performance Index          Train
-----
Overall Accuracy           64.71%
PAC SH1=1                  73.33%
PAC SH1=2                  61.11%
PAC SH1=3                  68.42%
PAC SH1=4                  56.25%
Effect Strength PAC        53.04%
PV SH1=1                   64.71%
PV SH1=2                   61.11%
PV SH1=3                   81.25%
PV SH1=4                   52.94%
Effect Strength PV         53.34%
Effect Strength Total1     53.19%

Monte Carlo summary (Fisher randomization):
-----
Iterations: 25000
Estimated p: 0.000000
```

As seen, the classification performance of the ODA model corresponds to a statistically significant (conventionally reported as per-comparison $p < 0.0001$) effect. Effect strength for sensitivity (ESS) is labelled in the output as “Effect Strength PAC” (Percentage Accurate Classification). For the confirmatory hypothesis ESS is 53.04%, which barely exceeds the minimum criterion ($ESS \geq 50$) for classification as a relatively strong effect.³¹ But, an exact discrete confidence interval for this result would overlap the region reflecting a moderate effect.^{41,42}

Classification performance of the ODA model is summarized in a cross-classification table, illustrated for this example below.

Actual Class	Predicted Class				<u>PAC (%)</u>
	<u>1</u>	<u>2</u>	<u>3</u>	<u>4</u>	
1	11	2	2	0	73.33
2	3	11	0	4	61.11
3	2	0	13	4	68.42
4	1	5	1	9	56.25

Here, PAC is “percentage accuracy in classification,” also called model sensitivity.³¹ Since there are four class categories, sensitivity of $100\%/4 = 25\%$ is expected by chance for each of the four categories. Best performance was achieved for class 1 (androgynous), and worst performance was achieved for class 4 (undifferentiated). Exact discrete confidence intervals for sensitivity could be obtained for each class category.^{41,42}

We believe ODA should be considered the preferred statistical approach *vs.* alternative methods since it avoids statistical assumptions required of conventional models, is insensitive to skewed data or outliers, and has the ability to handle any variable metric including categorical, Likert-type integer, and real number measurement scales.³¹ Compared to other methods, only ODA can identify the optimal (maximum-accuracy) assignments (categorical attributes) or cutpoints (ordered attributes) which exist for the attribute, that in turn facilitates use of measures

of predictive accuracy. ODA can evaluate model reproducibility using multiple methods, allowing assessment of potential cross-generalizability of the model when applied to classify independent random samples.³¹ We therefore recommend that researchers employ the ODA framework to evaluate the statistical hypotheses which are explored in their laboratory and field research endeavors.⁴³⁻⁶¹

References

¹Linden A (2020). Implementing ODA from within Stata: An application to data from a randomized controlled trial (Invited). *Optimal Data Analysis*, 9, 9-13.

²Linden A (2020). Implementing ODA from within Stata: Implementing ODA from within Stata: An application to estimating treatment effects using observational data (Invited). *Optimal Data Analysis*, 9, 14-20.

³Linden A (2020). Implementing ODA from within Stata: An application to dose-response relationships (Invited). *Optimal Data Analysis*, 9, 26-32.

⁴Linden A (2020). Implementing ODA from within Stata: assessing covariate balance in observational studies (Invited). *Optimal Data Analysis*, 9, 33-38.

⁵Linden A (2020). Implementing ODA from within Stata: Evaluating treatment effects for survival (time-to-event) outcomes (Invited). *Optimal Data Analysis*, 9, 39-44.

⁶Linden A (2020). Implementing ODA from within Stata: Evaluating treatment effects in multiple-group interrupted time series analysis (Invited). *Optimal Data Analysis*, 9, 45-50.

⁷Linden A (2020). Implementing ODA from within Stata: identifying structural breaks in single-group interrupted time series designs (Invited). *Optimal Data Analysis*, 9, 51-56.

⁸Linden A (2020). Implementing ODA from within Stata: Finding the optimal cut-point of a diagnostic test or index (Invited). *Optimal Data Analysis*, 9, 74-78.

⁹Yarnold PR, Linden A (2020). Implementing ODA from within Stata: Exploratory hypothesis, binary class variable, and binary attribute. *Optimal Data Analysis*, 9, 94-98.

¹⁰Yarnold PR, Linden A (2020). Implementing ODA from within Stata: Confirmatory hypothesis, binary class variable, and binary attribute. *Optimal Data Analysis*, 9, 99-103.

¹¹Yarnold PR, Linden A (2020). Implementing ODA from within Stata: Exploratory hypothesis, binary class variable, and binary attribute. *Optimal Data Analysis*, 9, 104-108.

¹²Yarnold PR, Linden A (2020). Implementing ODA from within Stata: Exploratory hypothesis, binary class variable, and ordinal (rank) attribute. *Optimal Data Analysis*, 9, 109-113.

¹³Yarnold PR, Linden A (2020). Implementing ODA from within Stata: confirmatory hypothesis, binary class variable, and ordinal attribute. *Optimal Data Analysis*, 9, 128-132.

¹⁴Yarnold PR, Linden A (2020). Implementing ODA from within Stata: Exploratory hypothesis, binary class variable, categorical ordinal attribute. *Optimal Data Analysis*, 9, 133-136.

¹⁵Yarnold PR, Linden A (2020). Implementing ODA from within Stata: Nondirectional hypothesis, binary class variable, categorical ordinal attribute. *Optimal Data Analysis*, 9, 137-140.

¹⁶Yarnold PR, Linden A (2020). Implementing ODA from within Stata: Directional hypothesis, binary class variable, ordinal attribute. *Optimal Data Analysis*, 9, 141-145.

¹⁷Yarnold PR, Linden A (2020). Implementing ODA from within Stata: Confirmatory hypothesis, binary class variable, continuous attribute. *Optimal Data Analysis*, 9, 146-151.

¹⁸Yarnold PR, Linden A (2020). Implementing ODA from within Stata: Nondirectional, multicategorical class variable, mult categori cal attribute. *Optimal Data Analysis*, 9, 152-156.

¹⁹Yarnold PR, Linden A (2020). Implementing ODA from within Stata: Directional hypothesis, mult categori cal class variable and attribute. *Optimal Data Analysis*, 9, 157-161.

²⁰Yarnold PR, Linden A (2020). Implementing ODA from within Stata: Directional hypothesis, mult categori cal class variable, ordinal attribute. *Optimal Data Analysis*, 9, 162-166.

²¹Yarnold PR, Linden A (2020). Implementing ODA from within Stata: *A Priori* hypothesis, three-category class variable, four-level (integer) attribute. *Optimal Data Analysis*, 9, 167-171.

²²Linden A, Yarnold PR (2020). Implementing ODA from within Stata: A reanalysis of the National Supported Work Experiment. *Optimal Data Analysis*, 9, 178-182.

²³Yarnold PR, Linden A (2021). Implementing ODA from within Stata: Exploratory hypothesis, three-category class variable, continuous attribute. *Optimal Data Analysis*, 10, 3-9.

²⁴Yarnold PR, Linden A (2021). Implementing ODA from within Stata: Confirmatory and exploratory inter-rater reliability hypothesis with a three-category ordinal rating. *Optimal Data Analysis*, 10, 12-17

²⁵Yarnold PR, Linden A (2021). Implementing ODA from within Stata: Assessing parallel-forms reliability using a binary and an ordered attribute. *Optimal Data Analysis*, 10, 24-29.

²⁶Linden A (2020). ODA: Stata module for conducting Optimal Discriminant Analysis. *Statistical Software Components S458728*, Boston College Department of Economics.

²⁷Soltysik RC, Yarnold PR (2013). MegaODA large sample and BIG DATA time trials: Separating the chaff. *Optimal Data Analysis*, 2, 194-197.

²⁸Soltysik RC, Yarnold PR (2013). MegaODA large sample and BIG DATA time trials: Harvesting the Wheat. *Optimal Data Analysis*, 2, 202-205.

²⁹Yarnold PR, Soltysik RC (2013). MegaODA large sample and BIG DATA time trials: Maximum velocity analysis. *Optimal Data Analysis*, 2, 220-221.

³⁰Rhodes NJ, Yarnold PR. 2020. ODA: a package and R-interface for the MegaODA software suite. R package version 1.0.1.3. Available: <https://github.com/njrhodes/ODA>

³¹Yarnold PR, Soltysik RC (2005). *Optimal data analysis: Guidebook with software for Windows*. Washington, D.C.: APA Books.

³²Yarnold PR (1994). Comparing the split-half reliability of androgyny and sex-typing measures. *Australian Journal of Psychology*, 46, 164-169.

³³Yarnold PR, Nightingale SD, Curry RH, Martin GJ (1991). Psychological androgyny and preference in loss-framed gambles of medical students: Possible implications for resource utilization. *Medical Decision Making*, 11, 176-179

³⁴Yarnold PR (1993). A brief measure of psychological androgyny for use in predicting physicians' decision making. *Academic Medicine*, 68, 312.

³⁵Yarnold PR, Martin GJ, Soltysik RC, Nightingale SD (1993). Androgyny predicts empathy for trainees in medicine. *Perceptual and Motor Skills*, 77, 576-578.

³⁶Yarnold PR, Nightingale SD, Curry RH, Martin GJ (1990). Psychological androgyny and preference for intubation in a hypothetical case of end-stage lung disease. *Medical Decision Making*, 10, 215-222.

³⁷Yarnold PR (1990). Androgyny and sex-typing as continuous independent factors, and a glimpse of the future. *Multivariate Behavioral Research*, 25, 407-419.

³⁸Yarnold PR, Bryant FB, Litsas F. (1989). Type A behavior and psychological androgyny among Greek college students. *European Journal of Personality*, 3, 249-268.

³⁹Yarnold PR (1984). Note on the multidisciplinary scope of psychological androgyny theory. *Psychological Reports*, 55, 936-938.

⁴⁰Bryant FB, Harrison PR (2013). How to create an ASCII input data file for UniODA and CTA software (Invited). *Optimal Data Analysis*, 2, 2-6.

⁴¹Yarnold PR (2018). Comparing exact discrete 95% CIs for model vs. chance ESS to evaluate statistical significance. *Optimal Data Analysis*, 7, 82-84.

⁴²Rhodes JN, Yarnold PR (2020). Generating novometric confidence intervals in R: Bootstrap analyses to compare model and chance ESS. *Optimal Data Analysis*, 9, 172-177.

⁴³Linden A, Yarnold PR, Nallomothu BK (2016). Using machine learning to model dose-response relationships. *Journal of Evaluation in Clinical Practice*, 22, 860-867.

⁴⁴Yarnold PR, Linden A. (2016). Novometric analysis with ordered class variables: The optimal alternative to linear regression analysis, *Optimal Data Analysis*, 5, 65-73.

⁴⁵Yarnold PR, Linden A (2016). Theoretical aspects of the D statistic. *Optimal Data Analysis*, 22, 171-174.

⁴⁶Linden A, Yarnold PR (2017). Using classification tree analysis to generate propensity score weights. *Journal of Evaluation in Clinical Practice*, 23, 703-712.

⁴⁷Linden A, Yarnold PR (2017). Modeling time-to-event (survival) data using classification tree analysis. *Journal of Evaluation in Clinical Practice*, 23, 1299-1308.

⁴⁸Linden A, Yarnold PR (2018). Identifying causal mechanisms in health care interventions using classification tree analysis. *Journal of Evaluation in Clinical Practice*, 24, 353-361.

⁴⁹Linden A, Yarnold PR (2017). Minimizing imbalances on patient characteristics between treatment groups in randomized trials using classification tree analysis. *Journal of Evaluation in Clinical Practice*, 23, 1309-1315.

⁵⁰Linden A, Yarnold PR (2018). Estimating causal effects for survival (time-to-event) outcomes by combining classification tree analysis and propensity score weighting. *Journal of Evaluation in Clinical Practice*, 24, 380-387.

⁵¹Linden A, Yarnold PR (2016). Using machine learning to assess covariate balance in matching studies. *Journal of Evaluation in Clinical Practice*, 22, 848-854.

⁵²Linden A, Yarnold PR (2016). Using machine learning to identify structural breaks in single-group interrupted time series designs. *Journal of Evaluation in Clinical Practice*, 22, 855-859.

⁵³Linden A, Yarnold PR (2016). Combining machine learning and matching techniques to improve causal inference in program evaluation. *Journal of Evaluation in Clinical Practice*, 22, 868-874.

⁵⁴Linden A, Yarnold PR (2016). Combining machine learning and propensity score weighting to estimate causal effects in multivalued treatments. *Journal of Evaluation in Clinical Practice*, 22, 875-885.

⁵⁵Linden A, Yarnold PR (2018). Using machine learning to evaluate treatment effects in multiple-group interrupted time series analysis. *Journal of Evaluation in Clinical Practice*, 24, 740-744.

⁵⁶Rhodes NJ (2020). Statistical power analysis in ODA, CTA and Novometrics (Invited). *Optimal Data Analysis*, 9, 21-25.

⁵⁷Yarnold PR, Brofft GC (2013). ODA range test vs. one-way analysis of variance: Comparing strength of alternative line connections. *Optimal Data Analysis*, 2, 198-201.

⁵⁸Yarnold PR (2013). ODA range test vs. one-way analysis of variance: Patient race and lab results. *Optimal Data Analysis*, 2, 206-210.

⁵⁹Yarnold PR (2014). How to assess the inter-method (parallel-forms) reliability of ratings made on ordinal scales: Evaluating and comparing the Emergency Severity Index (Version 3) and Canadian Triage Acuity Scale. *Optimal Data Analysis*, 3, 50-54

⁶⁰Yarnold PR (2016) Causality of adverse drug reactions: The upper-bound of arbitrated expert agreement for ratings obtained by WHO and Naranjo algorithms. *Optimal Data Analysis*, 5, 37-40.

⁶¹Yarnold PR (2016). Novometric vs. ODA reliability analysis vs. polychoric correlation with relaxed distributional assumptions: Inter-rater reliability of independent ratings of plant health. *Optimal Data Analysis*, 5, 179-183.

Author Notes

No conflicts of interest were reported.