The Novometric Descendant Family as a Maximum-Accuracy Cluster Analysis

Paul R. Yarnold, Ph.D.

Optimal Data Analysis, LLC

This note interprets a novometric *descendant family* (DF) as an optimal "cluster" analysis indicating number of discriminable groups and strength of their differences at every differentiable point identified for the sample.

Axiom three¹ of novometric theory discusses employing the minimum denominator selection algorithm (MDSA) to identify the DF—the set of all models existing in the sample that satisfy sequential Sidak *p*-value criteria² and that have a monotonically increasing minimum strata N (model endpoint sample size).³ For exposition, Table 1 is the DF obtained when parsing SEER-reported eye and orbit cancer-incidence data for national samples of black *vs.* white patients.⁴

Table 1: MDSA Parsing of Eye and Orbit Cancer Incidence by Race: Blacks vs. Whites⁴

MinD	ESS	Efficiency	D
27	71.1	10.2	2.85
	64.3-77.6	9.19-11.1	2.02-3.89
	0-7.89	0-1.13	Division by 0
47	68.1	11.3	2.81
	61.3-74.6	10.2-12.4	2.04-3.79
	0.33-7.57	0.06-1.26	1812-73.3
51	62.8	12.6	2.96
	55.6-70.1	11.1-14.0	2.13-3.99
	0.33-7.57	0.07-1.51	1510-61.1
202	62.5	31.2	1.20
	55.8-69.0	27.9-34.5	0.90-1.58
	0-7.24	0-3.62	Division by 0
	27 47 51	27 71.1 64.3-77.6 0-7.89 47 68.1 61.3-74.6 0.33-7.57 51 62.8 55.6-70.1 0.33-7.57 202 62.5 55.8-69.0	27 71.1 10.2 64.3-77.6 9.19-11.1 0-7.89 0-1.13 47 68.1 11.3 61.3-74.6 10.2-12.4 0.33-7.57 0.06-1.26 51 62.8 12.6 55.6-70.1 11.1-14.0 0.33-7.57 0.07-1.51 202 62.5 31.2 55.8-69.0 27.9-34.5

Novometric analysis found four different patient groupings indicated by number of strata. Point estimates and 95% exact CIs of 2-6-strata models were relatively strong effects (50<ESS ≤75), and the 7-strata 95% CI upper bound met criterion for a strong effect (ESS≤90).² Chance was always very weak. Results justify further evaluation of 2-, 5-, 6- and 7-strata solutions, for example examining magnitude and pattern of overlap of subjects over the different solutions.

References

¹Yarnold PR (2020). What is novometric data analysis? *Optimal Data Analysis*, *9*, 195-206.

²Yarnold PR, Soltysik RC (2005). *Optimal data* analysis: Guidebook with software for Windows. Washington, D.C.: APA Books.

³Yarnold PR (2016). How many EO-CTA models exist in my sample and which is the best model? *Optimal Data Analysis*, *5*, 62-64.

⁴Yarnold PR, Soltysik RC (2014). Globally optimal statistical classification models, I: Binary class variable, one ordered attribute. *Optimal Data Analysis*, *3*, 55-77.