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Data from the National Supported Work (NSW) randomized experiment
have been used frequently over the past 30 years to demonstrate imple-
mentation of various non-experimental methods for drawing causal
inferences about treatment effects. In this paper we reanalyze these data
using the new Stata package for implementing ODA.

Studies in which participants are randomized to
treatment are considered the gold standard for
assessing causal inference because randomiza-
tion putatively ensures that the study groups do
not differ systematically in their characteristics,
and consequently, treatment effects are assumed
to be unbiased. If randomization is infeasible,
investigators rely on statistical techniques which
model treatment assignment in order to control
for threats to validity which may compromise
causal interpretation of the results.?®

In this paper we reanalyze data from the
National Supported Work (NSW) experiment
which was originally discussed by LaLonde’ in
the context of economic evaluation approaches,
but has since then been utilized frequently to
demonstrate the implementation of various non-
experimental techniques, such as propensity
scoring methods, for assessing causal inference.

Herein we apply the new Stata package
called oda,? that implements ODA from within
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the Stata environment, to these data to assess
whether results are consistent with findings
reported by Dehejia and Wahba.’

The oda package is a wrapper for the
MegaODA software™, and the megaODA .exe
file must be loaded on the computer for the oda
package to work (ODA software is available at
https://odajournal.com/resources/). To download
the oda package, at the Stata command line
type: “ssc install oda” without quotation marks.

Methods
Data

The NSW was a US federally- and privately
funded program that aimed to provide work
experience for individuals who had faced eco-
nomic and social problems prior to enrollment
in the program. Candidates for the experiment
were selected on the basis of eligibility criteria,
and then were either randomly assigned to, or
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excluded from, the training program. We use the
same subset of NSW data used by Dehejia and
Wahba®, joining the 185 treated units from the
NSW experiment to comparison units from the
15,992 individuals in the Current Population
Survey (CPS). Data were retrieved from:
http://users.nber.org/~rdehejia/nswdata2.html.

Available variables included were age,
education, black, hispanic, no degree, married,
real earnings in 1974, 1975 and 1978 (all
adjusted to 1982 US dollars), and indicators for
unemployed status in 1974 and 1975. The out-
come (primary model attribute) was real earn-
ings in 1978, and the treatment (class) variable
indicates whether individuals participated in the
NSW intervention or were untreated from the
CPS data.

Analysis

Dehejia and Wahba® estimated a propensity
score in which the binary treatment indicator
was regressed on age, age?, age®, education,
education?, married, no degree, black, Hispanic,
earnings in 1974 and 1975, unemployed in 1974
and 1975, and an interaction of education and
earnings in 1974. They then used various
matching algorithms and compared the out-
comes across the methods. Here we replicate
their propensity score estimation and the 1:1
matching without replacement method.

* Estimate the propensity score
logit treat age c.age#c.age
c.age#tc.age#c.age educ c.educ#c.educ
married nodegree black hispan re74 re75
u74 u75 c.eductc.re74

* save predictions
predict pscore

* use psmatch2 to perform 1:1 matching
psmatch?2 treat, outcome(re78)
pscore(pscore) neighbor(1) noreplace
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* Evaluate treatment effects using regression
with robust standard errors and frequency
weights from the psmatch2 output

regress re78 treat [fw =_weight],
vce(robust)

The regression produced a non-statistically
significant estimated treatment effect of $1282
(95% ClI: -204, 2768, P = 0.091).

We now evaluate these data using oda
with the following syntax (see the help file for
oda for a complete description of the syntax
options):

oda treat re78 if _weight !=. , pathoda("C:\
ODA\") store("C:\ODA\ output™) iter(10000)
loo, seed(1234)

The above syntax is explained as fol-
lows: The variable “treat” is the class variable;
the outcome variable “re78” (earnings in 1987)
is the attribute; the [if] statement indicates that
the sample should be limited to observations
with a non-missing weight (i.e., matched treated
and control observations), the directory path
where the megaODA .exe file is located on my
computer is "C:\ODA\"; the directory path
where the output and other files generated
during the analysis should be stored is
"C:\ODA\output"; the number of iterations
(repetitions) for computing a permutation P-
value is 10,000; leave-one-out (LOO) analysis
should be performed, and the seed should be set
to 1234 to ensure replication of the permutation
results.

The oda package produces an extract of
the total output produced by the ODA software
(the complete output is stored in the specified
directory with the extension “.out”).

As shown in the oda output below, the
ODA model can be interpreted as follows: “if
real earnings in 1978 <= $1237.291, then pre-
dict that the treatment group is O (controls). If
the earnings are > $1237.291, then predict that
the treatment group is 1 (treatment).”
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The effect strength for sensitivity (ESS)
is labelled in the output as “Effect Strength
PAC”. In the training data the ESS is 16.76%
and in the LOO analysis it is 15.68% (a very
weak effect).™ The permutation P-value for the
training sample was 0.010 and for the LOO
analysis was 0.005. In contrast to the regression
which found no statistical difference between
treatment groups (i.e., no treatment effect),
ODA found a statistically significant treatment
effect in these data, although the model found
by ODA had a difficult time in discriminating
between treatment groups.

ODA model:

IF RE78 <= 1237.291 THEN TREAT = 0
IF 1237.291 < RE78 THEN TREAT =1

summary for Class TREAT Attribute RE78

overall Accuracy 58.38% 57.84%
PAC TREAT=0 49.19% 49.19%
PAC TREAT=1 67.57% 66.49%
effect Strength PAC 16.76% 15.68%
PV TREAT=0 60.26% 59.48%
PV TREAT=1 57.08% 56.68%
Effect Strength pPv 17.34% 16.16%
Effect Strength Total 17.05% 15.92%

Monte Carlo summary (Fisher randomization):

Iterations: 10000
Estimated p: 0.010400

Results of leave-one-out analysis

370 observations

Fisher's exact test (directional) classification table

Discussion

In this paper, we demonstrated how the new
Stata package oda can be used in conjunction
with a matching algorithm to evaluate treatment
effects in observational data. ODA should be
considered the preferred approach over
commonly-used parametric models because
ODA avoids the assumptions required of
parametric models, is insensitive to skewed data
or outliers, and has the ability to handle any
variable metric including categorical, Likert-
type integer, and real number measurement
scales.®® Moreover, in contrast to regression

p = .001530
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models, ODA also has the distinct ability to
ascertain where the optimal (maximum-
accuracy) cutpoints are on the outcome variable,
which in turn, facilitates the use of measures of
predictive accuracy. Moreover, ODA can
perform cross-validation using LOO which
allows for assessing the cross-generalizability of
the model to potentially new study participants
or non-participants.

Finally, the findings continue to support
our recommendation to employ the ODA and
CTA frameworks to evaluate the efficacy of
health-improvement interventions and policy
initiatives.'?*°
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