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This paper describes how to test a directional (confirmatory) hypothesis for
a design relating a three-category class (“dependent”) variable and a four-
level categorical ordinal attribute (“Likert-type independent variable™) vis-
a-vis the new Stata package for implementing ODA.

Recent papers™ introduce the new Stata pack-
age called oda?! for implementing ODA from
within the Stata environment. Because this
package is a wrapper for the MegaODA soft-
ware system®>?*, the MegaODA .exe file must
be loaded on the computer for the oda package
to work (MegaODA software is available at
https://odajournal.com/resources/). To download
the oda package, at the Stata command line
type: “ssc install oda” (without the quotation
marks). This paper demonstrates use of the oda
package to evaluate a one-tailed hypothesis for a
design involving a three-category class variable
and a four-category ordinal (integer) attribute.

Methods

Data

Consider Thompson and Yarnold’s data® on the
relationship of categorized ratings of a patient’s
perceived waiting time to see a doctor (1=longer
than expected; 2=as long as expected; 3=shorter
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than expected)—called time and treated as a
class variable, and satisfaction (1=poor; 2=fair;
3=good; 4=excellent)—called satis and treated
as an ordered attribute.

Analytic Process

The directional (“confirmatory”) alternative
hypothesis is that longer perceived waiting
times (lower time scores) can be discriminated
by greater patient dissatisfaction with care
received (lower satis scores), and the null
hypothesis is that this is not true. The exact p is
estimated by a 25,000-iteration permutation test.
For the entire sample, oda is implemented with
the following syntax (see the help file for oda
for a complete description of syntax options):

oda time satis , pathoda(“C:\ ODA\”)
store(“C:\ ODA”) iter(25000) dir(< 1 2 3)

This syntax is explained as follows:
“time” is the class variable and “satis” is the
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attribute; “C:\ODA\” is the directory path where
the MegaODA .exe file exists on the computer,
and where other files generated in analysis are
stored; and 25,000 iterations (repetitions) are
used to obtain a permutation p-value. The direc-
tional hypothesis is lower wait ratings predict
lower satis ratings, and the null hypothesis is
this is not true. Data for each observation was
entered in free format on a separate line in
space-delimited text (ASCII) characters.?®?’

The oda package produces an extract of
the total output produced by the ODA software
(the complete output is stored in the specified
directory with the extension “.out”).

ODA model:

IF SATIS <= 2.5 THEN TIME =1
IF 2.5 < SATIS <= 3.5 THEN TIME = 2
IF 3.5 < SATIS THEN TIME = 3

Summary for Class TIME Attribute SATIS

overall Accuracy 51.08%
PAC TIME=1 36.21%
PAC TIME=2 44 .59%
PAC TIME=3 70.78%
Effect Strength PAC 25.79%
PV TIME=1 68.28%
PV TIME=2 46.94%
PV TIME=3 49.14%
Effect Strength pv 32.18%
Effect Strength Total 28.99%

Monte Carlo summary (Fisher randomization):

Iterations: 25000
Estimated p: 0.000000

The effect strength for sensitivity (ESS)
is labelled in the output as the “Effect Strength
PAC” (Percentage Accurate Classification). As
seen, ESS for the a priori hypothesis is 25.79%,
which barely exceeds the minimal criterion
(ESS<0.25) to be classified as a moderate
effect® and has permutation p<0.0001.

In summary, ODA identified a model
having moderate strength which supported the a
priori hypothesis that longer perceived patient
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waiting times predicted decreasing patient
satisfaction ratings.

We believe ODA should be considered
the preferred statistical approach over other
methods because it avoids statistical assump-
tions required of conventional models, is insen-
sitive to skewed data or outliers, and has the
ability to handle any variable metric including
categorical, Likert-type integer, and real number
measurement scales.”® In contrast to alternative
methods, only ODA can identify the optimal
(maximume-accuracy) assignments (categorical
attributes) or cutpoints (ordered attributes) that
exist for the attribute, which in turn facilitates
the use of measures of predictive accuracy.

Furthermore, ODA can evaluate model
reproducibility by multiple methods, allowing
assessment of potential cross-generalizability of
the model applied to classify an independent
random sample.?

For these reasons we recommend that
researchers employ ODA and CTA frameworks
to evaluate the statistical hypotheses which are
explored in their laboratory and field research
endeavors.?®*°
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