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This paper describes how to test a directional (confirmatory) hypothesis for 

a design relating a three-category class (“dependent”) variable and a four-

level categorical ordinal attribute (“Likert-type independent variable”) vis-

à-vis the new Stata package for implementing ODA. 

 

Recent papers
1-20 

introduce the new Stata pack-

age called oda
21 

for implementing ODA from 

within the Stata environment. Because this 

package is a wrapper for the MegaODA soft-

ware system
22-24

, the MegaODA.exe file must 

be loaded on the computer for the oda package 

to work (MegaODA software is available at 

https://odajournal.com/resources/). To download 

the oda package, at the Stata command line 

type: “ssc install oda” (without the quotation 

marks). This paper demonstrates use of the oda 

package to evaluate a one-tailed hypothesis for a 

design involving a three-category class variable 

and a four-category ordinal (integer) attribute. 

Methods 

Data 

Consider Thompson and Yarnold’s data
25

 on the 

relationship of categorized ratings of a patient’s 

perceived waiting time to see a doctor (1=longer 

than expected; 2=as long as expected; 3=shorter 

than expected)—called time and treated as a 

class variable, and satisfaction (1=poor; 2=fair; 

3=good; 4=excellent)—called satis and treated 

as an ordered attribute. 

Analytic Process 

The directional (“confirmatory”) alternative 

hypothesis is that longer perceived waiting 

times (lower time scores) can be discriminated 

by greater patient dissatisfaction with care 

received (lower satis scores), and the null 

hypothesis is that this is not true. The exact p is 

estimated by a 25,000-iteration permutation test. 

For the entire sample, oda is implemented with 

the following syntax (see the help file for oda 

for a complete description of syntax options): 

 

     oda time satis , pathoda(“C:\ ODA\”) 

     store(“C:\ ODA”) iter(25000) dir(< 1 2 3) 

 This syntax is explained as follows: 

“time” is the class variable and “satis” is the 

https://odajournal.com/resources/
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attribute; “C:\ODA\” is the directory path where 

the MegaODA.exe file exists on the computer, 

and where other files generated in analysis are 

stored; and 25,000 iterations (repetitions) are 

used to obtain a permutation p-value. The direc-

tional hypothesis is lower wait ratings predict 

lower satis ratings, and the null hypothesis is 

this is not true. Data for each observation was 

entered in free format on a separate line in 

space-delimited text (ASCII) characters.
26,27 

 The oda package produces an extract of 

the total output produced by the ODA software 

(the complete output is stored in the specified 

directory with the extension “.out”). 
  

 
  

 The effect strength for sensitivity (ESS) 

is labelled in the output as the “Effect Strength 

PAC” (Percentage Accurate Classification). As 

seen, ESS for the a priori hypothesis is 25.79%, 

which barely exceeds the minimal criterion 

(ESS<0.25) to be classified as a moderate 

effect
26

 and has permutation p<0.0001. 

In summary, ODA identified a model 

having moderate strength which supported the a 

priori hypothesis that longer perceived patient 

waiting times predicted decreasing patient 

satisfaction ratings. 

We believe ODA should be considered 

the preferred statistical approach over other 

methods because it avoids statistical assump-

tions required of conventional models, is insen-

sitive to skewed data or outliers, and has the 

ability to handle any variable metric including 

categorical, Likert-type integer, and real number 

measurement scales.
26

 In contrast to alternative 

methods, only ODA can identify the optimal 

(maximum-accuracy) assignments (categorical 

attributes) or cutpoints (ordered attributes) that 

exist for the attribute, which in turn facilitates 

the use of measures of predictive accuracy. 

Furthermore, ODA can evaluate model 

reproducibility by multiple methods, allowing 

assessment of potential cross-generalizability of 

the model applied to classify an independent 

random sample.
26

  

For these reasons we recommend that 

researchers employ ODA and CTA frameworks 

to evaluate the statistical hypotheses which are 

explored in their laboratory and field research 

endeavors.
28-46
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    Estimated p: 0.000000                        
    Iterations:  25000                           
    -------------------------------------------  
    Monte Carlo summary (Fisher randomization):  

    Effect Strength Total       28.99%       
    Effect Strength PV          32.18%       
    PV TIME=3                   49.14%       
    PV TIME=2                   46.94%       
    PV TIME=1                   68.28%       
    Effect Strength PAC         25.79%       
    PAC TIME=3                  70.78%       
    PAC TIME=2                  44.59%       
    PAC TIME=1                  36.21%       
    Overall Accuracy            51.08%       
    -----------------          ------        
    Performance Index           Train        
                                             
    ---------------------------------------  
    Summary for Class TIME  Attribute SATIS  

    IF 3.5 < SATIS THEN TIME = 3         
    IF 2.5 < SATIS <= 3.5 THEN TIME = 2  
    IF SATIS <= 2.5 THEN TIME = 1        
    ----------  
    ODA model:  
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