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This paper describes how to evaluate an exploratory (nondirectional)
hypothesis for a design involving a multicategorical class (“dependent”)
variable and a multicategorical attribute (“independent variable”) using the
new Stata package for implementing ODA.

Recent papers™™’ introduce the new Stata pack-
age called oda'® for implementing ODA from
within the Stata environment. Because this
package is a wrapper for the MegaODA soft-
ware system'®?, the MegaODA .exe file must
be loaded on the computer for the oda package
to work (MegaODA software is available at
https://odajournal.com/resources/). To download
the oda package, at the Stata command line
type: “ssc install oda” (without the quotation
marks). This paper demonstrates use of the oda
package to evaluate a nondirectional hypothesis
for a square design involving a three-category
class variable and attribute.

Methods

Data

Table 1 is the cross-classification of the class
variable vote having three mutually-exclusive
and exhaustive response options (yes, abstain,
nay), and the attribute region also having three
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mutually-exclusive and exhaustive response
options (north, border, and south).?

Vote
Region Yea Abstain Nay
North 61 12 60
Border 17 6 1
South 39 22 7

Analytic Process

The nondirectional (“two-sided”) a priori hy-
pothesis is voting on the 1836 Pinckney Gag
rule is related to region of residence. Exact p is
estimated by a 25,000-iteration permutation test,
and cross-generalizability of findings expected
using the ODA model to classify independent
random samples is estimated via leave-one-out
(LOO) jackknife analysis. For the entire sample,
oda is implemented with the following syntax
(see the help file for oda for a complete descrip-
tion of syntax options):


https://odajournal.com/resources/
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oda vote region, pathoda(“C:\ODA\”)
store(“C:\ODA) iter(25000) loo cat

This syntax is explained as follows:
“vote” is the class variable and “region” is the
attribute; “C:\ODA\” is the directory path where
the MegaODA .exe file exists on the computer,
and where all other files generated in analysis
are stored; the number of iterations (repetitions)
that are used to compute a permutation p-value
is 25,000; LOO analysis is conducted; and the
attribute (region) is categorical. Data for each
observation was entered in free format on a
separate line using space-delimited text (ASCII)
characters.?®2*

The oda package produces an extract of
the total output produced by the ODA software
(the complete output is stored in the specified
directory with the extension “.out”).

ODA model:
IF REGION
IF REGION
IF REGION

1 THEN VOTE
2 THEN VOTE

3
1
3 THEN VOTE 2

summary for Class VOTE Attribute REGION

overall Accuracy 44.00% 44.00%
PAC VOTE=1 14.53% 14.53%
PAC VOTE=2 55.00% 55.00%
PAC VOTE=3 88.24% 88.24%
Effect Strength PAC 28.88% 28.88%
PV VOTE=1 70.83% 70.83%
PV VOTE=2 32.35% 32.35%
PV VOTE=3 45.11% 45.11%
Effect Strength PV 24.15% 24.15%
Effect Strength Total 26.52% 26.52%

Monte Carlo summary (Fisher randomization):

Iterations: 25000
Estimated p: 0.000000

Results of leave-one-out analysis

225 observations
(P-values are computed for binary class variables only)

As seen in the oda output, the ODA
model is interpreted as follows: “if region is
north then predict vote=nay; if region is border
then predict vote=yea; and if region is south
then predict vote=abstain. The effect strength
for sensitivity (ESS) is labelled in the output as
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the “Effect Strength PAC” (Percentage Accurate
Classification). In training and LOO analysis,
ESS=28.88% (a moderate effect).?® Permutation
p-values for training and stable LOO analyses
were <0.0001.

ODA software gives Type | error rates
for LOO analyses involving 2 x 2 tables. For
applications using multicategorical variables a
directional ODA analysis must be conducted.
Presently, for the entire sample, oda is imple-
mented with the following syntax (here the dir
command specifies the order of the three class
categories as listed in the ODA model given in
the first oda output):

oda vote region, pathoda(“C:\ODA\”)
store(“C:\ODA) iter(25000) cat dir(< 3 1 2)

ODA model:

IF REGION = 1 THEN VOTE = 3
IF REGION = 2 THEN VOTE = 1
IF REGION = 3 THEN VOTE = 2

Summary for Class VOTE Attribute REGION

performance Index Train

overall Accuracy 44.00%
PAC VOTE=3 88.24%
PAC VOTE=1 14.53%
PAC VOTE=2 55.00%
Effect Strength PAC 28.88%
PV VOTE=3 45.11%
PV VOTE=1 70.83%
PV VOTE=2 32.35%
Effect Strength pPv 24.15%
Effect Strength Total 26.52%

Monte Carlo summary (Fisher randomization):

Iterations: 25000
Estimated p: 0.000000

In summary, ODA was able to find a
statistically significant model which dis-
criminated moderately well between regions
associated with voting behavior, and was stable
in LOO jackknife analysis.

We believe ODA should be considered
the preferred statistical approach over other
methods because it avoids statistical assump-
tions required of conventional models, is insen-
sitive to skewed data or outliers, and has the
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ability to handle any variable metric including
categorical, Likert-type integer, and real number
measurement scales.> In contrast to alternative
methods, only ODA can identify the optimal
(maximum-accuracy) assignments (categorical
attributes) or cutpoints (ordered attributes) that
exist for the attribute, which in turn facilitates
the use of measures of predictive accuracy.

Furthermore, ODA can evaluate model
reproducibility by multiple methods, allowing
assessment of potential cross-generalizability of
the model applied to classify an independent
random sample.?

For these reasons we recommend that
researchers employ ODA and CTA frameworks
to evaluate the statistical hypotheses which are
explored in their laboratory and field research
endeavors.>*
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