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This paper describes how a confirmatory (a priori, directional, one-tailed)
hypothesis involving a binary (dichotomous) class variable and a five-level
ordinal attribute is evaluated using MegaODA software via the new Stata
package implementing ODA analysis.

Recent papers™ ™ introduce the new Stata pack-
age called oda™® for implementing ODA from
within the Stata environment. Because this
package is a wrapper for the MegaODA soft-
ware system®’™°, the MegaODA .exe file must
be loaded on the computer for the oda package
to work (MegaODA software is available at
https://odajournal.com/resources/). To download
the oda package, at the Stata command line
type: “ssc install oda” (without the quotation
marks). This paper demonstrates use of the oda
package to evaluate a confirmatory hypothesis
involving a binary class variable, and a five-
level ordinal attribute.

Methods
Data

We consider data from Hyde and Plant (1995)
comparing the relative strength of gender vs.
other effects in psychology.® Arbitrary dummy-
codes identified two types of study: gender=1,
other=2 (use of this latter category can induce
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paradoxical confounding?'). Strength of study
outcome was rated using a five-category ordinal
scale created by a statistically unmotivated®
parse of Cohen’s d statistic: 1=0-0.10; 2=0.11-
0.35; 3=0.36-0.65; 4=0.66-1.0; and 5=over 1.0.
Data for every study was entered in free format
on a separate line as space-delimited text
(ASCII) characters.?®

Analytic Process

We repeat the ODA analysis previously con-
ducted on these data (see example 5.8, Optimal
Data Analysis: A Guidebook with Software for
Windows?*). The directional or “one-tailed”
alternative hypothesis is that the binary class
(“dependent”) variable study can be discrimi-
nated on the basis of strength (ordinal attribute
or “independent variable”): it is hypothesized
that gender studies will have weaker effects.
The null hypothesis is that this is not true.
Weighting by prior odds (the default setting)
identifies the model which maximizes ESS (i.e.,
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classification accuracy normed vs. chance), and
a total of 25,000 Monte Carlo iterations are used
to estimate Type I error (i.e., p value).?

For these data, oda is implemented using
the following syntax to test the a priori hypothe-
sis (see the oda help file for a complete descrip-
tion of syntax options):

oda study strength, pathoda(“C:\ODA\”)
store(“C:\ ODA\output™) iter(25000)
dir(<12)

The above syntax is explained as fol-
lows: The variable “study” is the class variable;
the variable “strength” is the attribute; the
directory path where the MegaODA .exe file is
located on the computer is “C:\ODA\”; the
directory path where the output and other files
generated during the analysis are stored is
“C:\ODA\output”; 25,000 iterations (repetitions)
are used to compute the permutation p-value;
and it is hypothesized that class 1 studies should
have lower strength scores than class 2 studies.

The oda package produces an extract of
the total output produced by the ODA software
(the complete output is stored in the specified
directory with the extension “.out”).

As seen in the oda output, the ODA
model is interpreted as follows: “if strength <
2.5 then predict study = 1; otherwise, predict
study = 2.” Studies of gender differences were
accurately predicted to have lower Cohen’s d
scores than studies of other differences: the
model correctly classified 60.23% of studies of
gender differences, and 64.90% of other studies.

Effect strength for sensitivity (ESS) is
labelled in the output as “Effect Strength PAC”
(Percentage Accurate Classification). The ESS
of 25.13% is marginally above the minimal cri-
terion for an effect of moderate strength? and it
has an associated permutation p<0.0001. In
summary, ODA identified a model which dis-
criminated between gender vs. other studies
with moderate strength, and this finding was
statistically significant.
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ODA model:

IF STRENGTH <= 2.5 THEN STUDY =1
IF 2.5 < STRENGTH THEN STUDY = 2

Ssummary for Class STUDY Attribute STRENGTH

overall Accuracy

PAC STUDY=1 60.23%
PAC STUDY=2 64.90%
Effect Strength PAC 25.13%
PV STUDY=1 49.28%
PV STUDY=2 74.24%
Effect Strength pv 23.52%

Effect Strength Total

Monte Carlo summary (Fisher randomization):

Iterations: 25000
Estimated p: 0.000000

Discussion

This paper shows how to use ODA to identify
the model that maximally discriminates between
any two categories of a class variable using a
categorical ordinal attribute.

ODA should be considered the preferred
approach over other methods because it avoids
statistical assumptions required of conventional
models, is insensitive to skewed data or outliers,
and has the ability to handle any variable metric
including categorical, Likert-type integer, and
real number measurement scales.** Moreover, in
contrast to other methods, ODA also has the
unique ability to ascertain optimal (maximum-
accuracy) assignments (categorical attributes) or
cutpoints (ordered attributes) on the attribute,
which facilitates the use of measures of predic-
tive accuracy. Furthermore, ODA can perform
cross-validation using LOO (and many other
methods®*) which allows for assessment of
potential cross-generalizability of the model to
independent random samples.

For these reasons we recommend that
researchers employ ODA and CTA frameworks
to evaluate the statistical hypotheses which are
explored in their laboratory and field research
endeavors.>>*
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