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Modeling an Individual’s Weekly Change
In RG-Score via Novometric
Single-Case Analysis

Paul R. Yarnold, Ph.D.
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Research Gate (RG) weekly summary statistics—including RG-score (the
class or “dependent variable”), and number of citations, recommendations,
and article views and downloads (the attributes or “independent variables”),
were obtained for a single user. Single-case novometric classification tree
analysis (CTA) was used to predict RG-score as a function of the number of
citations, recommendations, and article views and downloads. Two analyses
were conducted: one forced the model to have stable classification in leave-
one-out (LOO) jackknife analysis; the second permitted jackknife instability
so long as the LOO Type I error rate was p<0.05. A single-attribute model
which achieved relatively strong LOO accuracy was identified.

Numerous researchers have asked questions
concerning computational aspects of the RG-
score—an undefined measure described by RG
as being based upon a researcher’s publications,
questions asked by a researcher on RG, answers
given by a researcher to questions which other
researchers ask on RG, and one’s followers on
RG. The computational constitution of the RG-
score isn’t divulged, therefore it is unclear how
a researcher’s publications, questions, answers,
and followers are weighted and then combined
to obtain a RG-score. Accordingly, the present
single-case (also known as an “N-0f-1") study
was conducted in an effort to better understand
the nitty-gritties of the RG-score.
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RG informs its members regarding the
weekly change in their RG-score. It is unclear
how it is possible for number of publications,
questions, answers and followers to predict a
change in a researcher’s RG-score—for weeks
in which the number of publications, questions,
answers, and followers for the researcher does
not change. However, RG also gives statistics
regarding the weekly total numbers of citations,
recommendations, article views, and full-text
downloads for the researcher—which possibly
may predict change in RG-score. Accordingly,
the latter summary statistics were selected as
attributes to use in an attempt to better under-
stand weekly fluctuations in RG-score.
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Weekly changes in RG-Score for a the
researcher are presented in Figure 1; the weekly
changes in number of citations (blue) and in
number of recommendations (red) are presented

in Figure 2; and the weekly changes in the
number of article views (blue) and in the
number of full-text downloads (red) are
presented in Figure 3.

Figure 1: Weekly Change in RG-Score
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Figure 2: Weekly Change in Citations (Blue) and in Recommendations (Red)
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Figure 3: Weekly Change in Views (Blue) and Full Text Downloads (Red)
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The auto-reflex of legacy statisticians
contemplating how to go about predicting the
change in RG-score as a function of change in
the four attributes (citations, recommendations,
reads, downloads) is to conduct a main effects
linear multiple regression analysis treating RG-
score as the class (dependent) variable and the
attributes as independent variables.* Arguably
the most obvious problem with this approach is
that the path of RG-score over weeks in Figure
1isclearly NOT linear, rather it is curvilinear.
This implies that polynomial regression is the
legacy method of choice in this application.?
Less obvious yet comparably misleading is the
ubiquitous error of failing to include interactions
between attributes as potential predictors in the
model—as is the practice in factorial analysis of
variance.? Failure to include crucial interactions
in the model is known as the problem of model
misspecification.* A comparably difficult issue
for regression methods stems from required but
rarely met distributional assumptions which
underlie the validity of estimated Type | error
rates (p values).!
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However, judged by the perspective of
an analyst pursuing accurate prediction of the
class variable, these theoretical issues are not
the primary shortcoming of regression analysis.
Rather, it is the immitigably poor performance
of regression methodology which represents the
final “nail in the coffin” of this simplistic two-
century-old methodology.>® Poor accuracy of
regression models is intrinsic due to regression
toward the mean: that is, regression models are
primarily accurate in predicting scores at or near
the sample mean.” This is explicitly minimized
using univariate optimal discriminant analysis
or UniODA (also called optimal data analysis or
ODA®®) to “refine” (i.e., to adjust) the decision
thresholds otherwise inflexibly used in regres-
sion analysis to make classifications.”™

While ODA may be used to maximize
the performance of suboptimal regression (and
other legacy) models, the end result remains a
suboptimal solution.® That is, by definition,
only models which have been developed vis-a-
vis an explicitly optimal methodology are able to
achieve maximally-accurate solutions.*”?
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Two novometric CTA®? analyses were

conducted. The first analysis required the CTA
model to have stable (identical) classification
accuracy in training and leave-one-out (LOO)
jackknife analysis. The second analysis allowed
instability: LOO classification performance was
permitted to fall beneath training classification
performance®*®! if the LOO Type | error rate
was Sidak 3*° p<0.05. The identical perfectly
accurate two-attribute (number of citations and
of recommendations) model emerged in both of
these analyses, but one endpoint had only two
observations—insufficient for analysis of Type |
error rates*** or confidence intervals.***

Next, two novometric ODA®*" analyses
were conducted, the first requiring jackknife sta-
bility, the next allowing jackknife instability if
LOO p<0.05. The LOO-stable model illustrated
in Figure 4 had greatest ESS***! and therefore
was identified as the optimal (i.e., maximum-
accuracy) model in this analysis.

Figure 4: Novometric ODA Model Predicting
Weekly Change in RG-Score

Recommen-
dations

>7
p <0.001

RG-Score
<203

RG-Score
>20.3

33/34 (97.06%) 10/18 (55.56%)

Table 1 presents the confusion matrix for
this model, for which the sensitivity is 90.91%,
specificity is 80.49%, negative predictive value
is 97.06%, and the positive predictive value is
55.56%. For this model the ESS (i.e., accuracy
corrected for chance) is 71.40%—reflecting a
relatively strong effect, and the corresponding D
statistic (i.e., ESS corrected for complexity*) is
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0.80—indicating that 0.80 additional effects of
comparable strength are needed to attain a
perfect (100% accurate) model.

Table 1: ODA Model LOO Confusion Matrix:
Predicting Weekly Change in RG-Score

Predicted Change

Actual Change <20.3 >20.3
<20.3 33 8 80.49%
>20.3 1 10 90.91%
97.06% 55.56%

The model identified using novometric
analysis explained most of the weekly variation
observed within the single-case time series on
the basis of “recommendations.” It is unclear
which recommendations—those occurring in
response to one’s replies to questions asked by
others, or to questions which one asks, or to
articles which one posts—influences the RG-
score. The absence of specific definitions of the
purported influences upon RG-score—the types
and time-frames of publications, questions, an-
swers and followers—fails to satisfy academic
standards.®

In a similar manner, the absence of
specific information concerning types and time-
frames of citations, recommendations, article
views and downloads limits apparent validity of
the RG-score. For example, consider the data in
Table 2, obtained for two weeks in the analyzed
series. Note that the RG-score is greater for the
second entry than for the first, even though all
of the recorded performance criteria are greater
for the first entry than for the second. This sug-
gests that weighting of RG-score components
may vary across time.

Table 2: Two Weeks of Data in Analyzed Series

RG- Recom Down-
Score  Cites mends Reads loads

35.4 59 30 707 96

41.1 11 1 581 83
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It is also possible that present findings
are affected by the failure to employ ipsative
standardization in the analyzed series.** While
prior research noted confounding attributable to
the analysis of raw data in single-case series
contrasting different attributes assessed over
time, the model identified presently examined a
single attribute measured across time.** Never-
theless, ipsative standardization is clearly neces-
sary in research designs using multiple subjects
tracked over time.***® However, use of ipsative
transformation is seemingly unnecessary for
designs employing maximum-accuracy Markov
analysis to study sequential series involving one
or two attributes.**>
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