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Research Gate (RG) weekly summary statistics—including RG-score (the 

class or “dependent variable”), and number of citations, recommendations, 

and article views and downloads (the attributes or “independent variables”), 

were obtained for a single user. Single-case novometric classification tree 

analysis (CTA) was used to predict RG-score as a function of the number of 

citations, recommendations, and article views and downloads. Two analyses 

were conducted: one forced the model to have stable classification in leave-

one-out (LOO) jackknife analysis; the second permitted jackknife instability 

so long as the LOO Type I error rate was p<0.05. A single-attribute model 

which achieved relatively strong LOO accuracy was identified.  

 

Numerous researchers have asked questions 

concerning computational aspects of the RG-

score—an undefined measure described by RG 

as being based upon a researcher’s publications, 

questions asked by a researcher on RG, answers 

given by a researcher to questions which other 

researchers ask on RG, and one’s followers on 

RG. The computational constitution of the RG-

score isn’t divulged, therefore it is unclear how 

a researcher’s publications, questions, answers, 

and followers are weighted and then combined 

to obtain a RG-score. Accordingly, the present 

single-case (also known as an “N-of-1”) study 

was conducted in an effort to better understand 

the nitty-gritties of the RG-score. 

 RG informs its members regarding the 

weekly change in their RG-score. It is unclear 

how it is possible for number of publications, 

questions, answers and followers to predict a 

change in a researcher’s RG-score—for weeks 

in which the number of publications, questions, 

answers, and followers for the researcher does 

not change. However, RG also gives statistics 

regarding the weekly total numbers of citations, 

recommendations, article views, and full-text 

downloads for the researcher—which possibly 

may predict change in RG-score. Accordingly, 

the latter summary statistics were selected as 

attributes to use in an attempt to better under-

stand weekly fluctuations in RG-score. 
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Weekly changes in RG-Score for a the 

researcher are presented in Figure 1; the weekly 

changes in number of citations (blue) and in 

number of recommendations (red) are presented 

in Figure 2; and the weekly changes in the 

number of article views (blue) and in the 

number of full-text downloads (red) are 

presented in Figure 3. 

 

Figure 1: Weekly Change in RG-Score 

 
 

Figure 2: Weekly Change in Citations (Blue) and in Recommendations (Red) 

 
 

 

0

5

10

15

20

25

30

35

40

45

50

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51

0

20

40

60

80

100

120

140

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51



Optimal Data Analysis     Copyright 2020 by Optimal Data Analysis, LLC 

Vol. 9 (April 20, 2020), 114-121  2155-0182/10/$3.00 

 

 

 

116 
 

Figure 3: Weekly Change in Views (Blue) and Full Text Downloads (Red) 

 

 

 The auto-reflex of legacy statisticians 

contemplating how to go about predicting the 

change in RG-score as a function of change in 

the four attributes (citations, recommendations, 

reads, downloads) is to conduct a main effects 

linear multiple regression analysis treating RG-

score as the class (dependent) variable and the 

attributes as independent variables.
1
 Arguably 

the most obvious problem with this approach is 

that the path of RG-score over weeks in Figure 

1 is clearly NOT linear, rather it is curvilinear. 

This implies that polynomial regression is the 

legacy method of choice in this application.
2
 

Less obvious yet comparably misleading is the 

ubiquitous error of failing to include interactions 

between attributes as potential predictors in the 

model—as is the practice in factorial analysis of 

variance.
3
 Failure to include crucial interactions 

in the model is known as the problem of model 

misspecification.
4
 A comparably difficult issue 

for regression methods stems from required but 

rarely met distributional assumptions which 

underlie the validity of estimated Type I error 

rates (p values).
1
  

However, judged by the perspective of 

an analyst pursuing accurate prediction of the 

class variable, these theoretical issues are not 

the primary shortcoming of regression analysis. 

Rather, it is the immitigably poor performance 

of regression methodology which represents the 

final “nail in the coffin” of this simplistic two-

century-old methodology.
5,6

 Poor accuracy of 

regression models is intrinsic due to regression 

toward the mean: that is, regression models are 

primarily accurate in predicting scores at or near 

the sample mean.
7
 This is explicitly minimized 

using univariate optimal discriminant analysis 

or UniODA (also called optimal data analysis or 

ODA
8,9

) to “refine” (i.e., to adjust) the decision 

thresholds otherwise inflexibly used in regres-

sion analysis to make classifications.
7-15 

While ODA may be used to maximize 

the performance of suboptimal regression (and 

other legacy) models, the end result remains a 

suboptimal solution.
16

 That is, by definition, 

only models which have been developed vis-à-

vis an explicitly optimal methodology are able to 

achieve maximally-accurate solutions.
17-28
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Two novometric CTA
18,29

 analyses were 

conducted. The first analysis required the CTA 

model to have stable (identical) classification 

accuracy in training and leave-one-out (LOO) 

jackknife analysis. The second analysis allowed 

instability: LOO classification performance was 

permitted to fall beneath training classification 

performance
30,31

 if the LOO Type I error rate 

was Sidak
 8,19

 p<0.05. The identical perfectly 

accurate two-attribute (number of citations and 

of recommendations) model emerged in both of 

these analyses, but one endpoint had only two 

observations—insufficient for analysis of Type I 

error rates
32-35

 or confidence intervals.
36-38

 

Next, two novometric ODA
8,17

 analyses 

were conducted, the first requiring jackknife sta-

bility, the next allowing jackknife instability if 

LOO p<0.05. The LOO-stable model illustrated 

in Figure 4 had greatest ESS
39-41

 and therefore 

was identified as the optimal (i.e., maximum-

accuracy) model in this analysis. 

Figure 4: Novometric ODA Model Predicting 

Weekly Change in RG-Score  

 
Table 1 presents the confusion matrix for 

this model, for which the sensitivity is 90.91%, 

specificity is 80.49%, negative predictive value 

is 97.06%, and the positive predictive value is 

55.56%. For this model the ESS (i.e., accuracy 

corrected for chance) is 71.40%—reflecting a 

relatively strong effect, and the corresponding D 

statistic (i.e., ESS corrected for complexity
42

) is 

0.80—indicating that 0.80 additional effects of 

comparable strength are needed to attain a 

perfect (100% accurate) model. 

 

Table 1: ODA Model LOO Confusion Matrix: 

Predicting Weekly Change in RG-Score 

                             Predicted Change 

  Actual Change     < 20.3    > 20.3 

       < 20.3                  33            8       80.49% 

       > 20.3                    1          10       90.91% 

                  -------------------- 

                    97.06%   55.56% 

 The model identified using novometric 

analysis explained most of the weekly variation 

observed within the single-case time series on 

the basis of “recommendations.” It is unclear 

which recommendations—those occurring in 

response to one’s replies to questions asked by 

others, or to questions which one asks, or to 

articles which one posts—influences the RG-

score. The absence of specific definitions of the 

purported influences upon RG-score—the types 

and time-frames of publications, questions, an-

swers and followers—fails to satisfy academic 

standards.
43

  

In a similar manner, the absence of 

specific information concerning types and time-

frames of citations, recommendations, article 

views and downloads limits apparent validity of 

the RG-score. For example, consider the data in 

Table 2, obtained for two weeks in the analyzed 

series. Note that the RG-score is greater for the 

second entry than for the first, even though all 

of the recorded performance criteria are greater 

for the first entry than for the second. This sug-

gests that weighting of RG-score components 

may vary across time. 

Table 2: Two Weeks of Data in Analyzed Series 

  RG-

Score 

    

Cites 

Recom

mends 

  

Reads 

Down-

loads 

35.4   59 30   707   96 

41.1   11   1   581   83 
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 It is also possible that present findings 

are affected by the failure to employ ipsative 

standardization in the analyzed series.
44

 While 

prior research noted confounding attributable to 

the analysis of raw data in single-case series 

contrasting different attributes assessed over 

time, the model identified presently examined a 

single attribute measured across time.
45

 Never-

theless, ipsative standardization is clearly neces-

sary in research designs using multiple subjects 

tracked over time.
46-48

 However, use of ipsative 

transformation is seemingly unnecessary for 

designs employing maximum-accuracy Markov 

analysis to study sequential series involving one 

or two attributes.
49-55
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