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Health researchers frequently generate predictive models of time-to-

event outcomes (e.g., death, onset of disease, hospital readmission) to 

assist clinicians to better understand the disease process and manage 

their patients. In this paper, I describe how the new Stata package for 

implementing CTA can be used to generate predictive models with time-

to-event outcomes. 

 

 

Prior papers
1-3

 introduced the new Stata package 

called cta
4
 for implementing CTA from within 

the Stata environment. This package is a wrap-

per for the CTA software
5
, thus the CTA64.exe 

file must be loaded on the computer for the cta 

package to work (CTA software is available at 

https://odajournal.com/resources/). To download 

the cta package, at the Stata command line type: 

“ssc install cta” (without the quotation marks). 

 This paper demonstrates how the cta 

package can be used to generate predictive 

models with a time-to-event outcome such as 

death, onset of disease, or hospital readmis-

sion.
6,7 

Time‐to‐event outcomes require special-

ized models designed to assess the influence of 

covariates on the outcome in the presence of 

censoring.
6
 Survival times are called censored 

to indicate that the study terminated before the 

event occurred, or that the individual was lost to 

follow‐up at some point during the study. Such 

models are an integral component of disease 

management.
8-12

 

 Generating a predictive model with a 

time-to-event outcome in cta is performed by 

specifying the outcome indicator (e.g., dead or 

alive at the end of follow-up) as the class varia-

ble, and all the covariates as attributes. To 

account for censoring, follow-up times are 

specified as a weight using the wt() option. 

 

Methods 

Data 

I demonstrate the use of cta for survival analysis 

using a subset of data from the Framingham 

Heart Study, which has been collecting longi-

tudinal data on residents of Framingham, 

Massachusetts since 1948, to gain insight into 

the epidemiology of coronary heart disease  

https://odajournal.com/resources/
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(CHD) and its risk factors. The data comprise 

4,658 individuals free of CHD at their baseline 

exam and followed for up to 11,688 days (32 

years). The variables include systolic and 

diastolic blood pressure (mmHg), age (years), 

serum cholesterol (mg/100 mL), body mass 

index (kg/m2), gender, follow‐up time (days), 

and an indicator of whether the individual 

developed CHD or was otherwise censored. The 

original dataset had 4,699 observations, but for 

demonstrative purposes, only individuals with 

complete data were retained. 

Analytic process 

Splitting the sample 

 

While it is not uncommon to see predictive 

models generated using the full available 

sample, in fact, the resultant models are not 

guaranteed to generalize to patients outside of 

that sample.
13

  A well-accepted approach to test 

the generalizability of a predictive model is to 

first split the pooled data into two or more 

random sub-samples, generate a model using 

one sub-sample (called the “training” sample), 

and then test the accuracy of that model on the 

other sample[s] (called “testing” sample[s]). A 

generalizable model is one in which accuracy 

achieved in the testing sample is close to the 

accuracy achieved in the training sample. 

 For demonstrative purposes the pooled 

sample is split into two sub-samples using the 

Stata command splitsample using the following 

syntax: 

splitsample, generate(sample) nsplit(2) 

balance(chdfate) 

 

 The above syntax splits the data into two 

subsamples, generating a new variable called 

“sample” (with two values: 1 and 2), ensuring 

that the two sub-samples are balanced on the 

outcome “chdfate”.  

 

 

Generating a CTA model 

 

The following syntax is used to generate a 

predictive model using cta (see the help file for 

cta for a complete description of the syntax 

options): 

 

cta chdfate male sbp dbp scl age bmi  

if sample==1, pathcta("C:\CTA\") 

store("C:\CTA\output") cat(male)  

iter(10000) prune(0.05) enumerate 

wt(followup)  

 

 The above syntax is explained as fol-

lows: The outcome variable is “chdfate” (dead 

or censored by day 11,688); the six variables 

listed until the comma are covariates specified 

as the attributes; the [if] statement limits the 

sample to the “training” sub-sample; the 

directory path where the CTA64.exe file is 

located on my computer is “C:\CTA\”; the 

directory path where the output and other files 

generated during the analysis should be stored is 

"C:\CTA\output"; the cat() option indicates 

which attributes are categorical; the number of 

iterations (repetitions) for computing a permuta-

tion P-value is 10,000; the tree is pruned with a 

P-value of 0.05 used as the cutpoint for 

inclusion; an enumerated model (which 

enumerates the first three nodes) is conducted; 

and follow-up time is specified as the weight 

(Yarnold and Soltysik
5
 provide a complete 

description of the CTA modeling process and 

interpretation of results).  

 The cta package produces an extract of 

the total output produced by CTA software (the 

complete output is stored in the specified direc-

tory with the extension “.out”). Here I include a 

diagram of the pruned model, which achieved 

overall weighted ESS of 24.54 (on the cusp of 

being a moderate effect)—which is slightly 

lower than achieved by the enumerated model 

(ESS=25.55), but is more parsimonious. 



Optimal Data Analysis     Copyright 2020 by Optimal Data Analysis, LLC 

Vol. 9 (April 5, 2020), 79-83  2155-0182/10/$3.00 

 

 

 

81 
 

 

 

 Reviewing this diagram of the “training” 

sample, it is evident that patients predicted to 

develop CHD follow a different pathway than 

patients predicted to be either disease-free or 

censored at the end of follow-up. That is, the 

patients are predicted to develop CHD if: (1) 

they are male; (2) they are female with SBP > 

147.5; or (3) they are female with SBP ≤ 147.5, 

SCL > 277.5, and BMI > 27.19. As seen, these 

pathways were all statistically significant with 

the largest P value < 0.003.   

 When applying the classification rules 

from this model to the “testing” sub-sample, the 

ESS = 22.98% indicating good generalizability 

to patients not included in the modeling process 

(the accuracy measures were computed using 

the package classtabi).
14

 

Discussion 

This paper demonstrates how to generate a 

predictive CTA model using the new Stata 

package cta. CTA provides accurate, parsi-

monious classification rules which are easy to 

visually display and interpret, while reporting P 

values derived via permutation tests at every 

node, in addition to corresponding partial ESS 

statistics. CTA is also insensitive to skewed data 

or outliers, and has the ability to handle any 

variable metric including categorical, Likert-

type integer, and real number measurement 

scales. Moreover, CTA also has the distinct 

ability to ascertain where optimal (maximum-

accuracy) cutpoints exist on each variable, 

which in turn, facilitates the use of measures of 

predictive accuracy. Moreover, CTA can 

perform cross-validation using a variety of 

methodologies—in the present case using split-

samples, which allows for assessing the cross-

generalizability of the model to potentially new 

study participants or non-participants.
13

 

 Finally, the findings continue to support 

the recommendation to employ the ODA and 

CTA frameworks to evaluate the efficacy of 

health-improvement interventions and policy 

initiatives.
15-31
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