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Different weighting schemes in optimal survival analysis are considered.

Consider an optimal™? survival analysis>* for a
sample of subjects observed for a finite number
of consecutive time periods: 1, 2, 3 ... X.

If observations are weighted by X; then
the non-censored surviving observations which
avoided the outcome for X periods are weighted
more heavily than observations that achieved
the outcome in fewer than X periods, all other
things being equal (e.g., this does not assume a
complex weight, such as the value X; multiplied
by a propensity score®). That is, in this scheme
observations that did NOT achieve the outcome
are weighted most heavily. For example, if the
outcome is death, then observations that lived
the entire X periods are weighted more heavily
than observations that perished in fewer than X
periods. This weighting scheme favors accurate
classification of surviving observations.

In contrast, if observations are weighted
by 1/X; then non-censored observations that did

not survive (i.e., achieved the outcome in fewer
than X periods) are weighted more heavily than
observations that failed to achieve the outcome
in X periods, all other things being equal. That
is, in this scheme observations that did achieve
the outcome are weighted the most heavily. For
example, if the outcome is death, then observa-
tions that perished in fewer than X periods are
weighted more heavily than observations that
perished (or failed to perish) in X periods. This
weighting scheme favors accurate classification
of non-surviving observations.

Finally, consider analysis that observes a
sample of subjects over a fixed time period of
exactly X time periods, which does not weight
observations by time-to-event, but rather instead
weights all observations equally by unity (or by
prior odds™?, by a propensity score®’, and/or by
a measure of value®™"). The objective of such an
analysis is to contrast observations who live vs.
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perish over X or fewer units of time. This
weighting scheme does not favor the accurate
classification of surviving vs. non-surviving
observations, but instead provides a means of
ensuring that the treatment groups are
comparable.}#**

Most classification models seek
balanced sensitivity and specificity so as to
maximize ROC area.”™? As always, the crucial
question is—is the model fit for purpose? Thus,
the decision to weight outcomes more heavily
VS. non-outcomes, to do the opposite, or to
weight observations equally is entirely a
question of whether the goal is to predict the
outcomes or the non-outcomes most accurately.
A related caveat is the problem familiar to data
scientists—the rare event case caused by base
rates of <10% of the sample: in this scenario the
event rate is low and often the “best guess” for
an empirical model is to guess “non-event”.”*
There are many alternative ways that this prob-
lem may be addressed—ranging from complex
simulation based approaches (e.g., SMOTE) to
the random under- and over-sampling of train-
ing datasets.”? However, we believe that simpler
weighting schemes (e.g., at risk time, propen-
sity, value) are highly intuitive and thus offer
translational clarity for end-users. That is, rather
than presenting “black box” solutions for class
imbalance, the model offers insight into the
factors that end-users should consider as being
more influential over the final outcome classifi-
cation. Finally, it is important to consider the
“bias” of predictions: is a model with significant
bias acceptable for use? To answer this, an end-
user must consider the consequences of false
positives and false negatives.*® The impact of
false signals is clearly relevant to the clinical or
use case scenario. For example, consequences of
a false positive prediction for invasive breast
cancers based on mammogram, antibiotic
resistance in pneumonia based on prior hospi-
talization history, bridge stability according to
electrical conductance from wire supports, or
hostile inbound aircraft using radar signals are

all very different from a false positive prediction
for a tooth cavity based on dental X-ray imaging
data.

Weighting strategies discussed presently
do different things, for different purposes. The
propensity score and similar types of weights,
for example prior odds, are used to ensure that
treatment groups (or exposure groups in epide-
miology) are comparable and are therefore
exchangeable. Weighting by value is used to
ensure that differences between observations are
accounted for in the hopes of maximizing the
omnibus positive gain (return) or minimizing
the omnibus negative gain (loss) for a group.
And, weighting by time is used to understand
the etiology of an outcome: for example, in
some cases the longer subjects are monitored
the more likely they are to contract an illness or
die, whereas in other cases subjects may be
more likely to contract the illness or die rela-
tively quickly—and thus the longer that they are
monitored, the more likely it is that they have
passed through the period of risk. These types of
adjustments may be made using parametric
survival models whereby a researcher chooses
the distribution model believed to best represent
the trajectory of acquiring the outcome. In
contrast, maximum-accuracy methods require
no distributional assumptions, and instead
simply identify the model(s) which explicitly
maximize model accuracy in predicting the
outcome being investigated.

An empirical demonstration of these
alternative weighting schemes is welcomed.
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