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Consider an optimal
1,2

 survival analysis
3,4

 for a 

sample of subjects observed for a finite number 

of consecutive time periods: 1, 2, 3 … X. 

 If observations are weighted by Xi then 

the non-censored surviving observations which 

avoided the outcome for X periods are weighted 

more heavily than observations that achieved 

the outcome in fewer than X periods, all other 

things being equal (e.g., this does not assume a 

complex weight, such as the value Xi multiplied 

by a propensity score
5
). That is, in this scheme 

observations that did NOT achieve the outcome 

are weighted most heavily. For example, if the 

outcome is death, then observations that lived 

the entire X periods are weighted more heavily 

than observations that perished in fewer than X 

periods. This weighting scheme favors accurate 

classification of surviving observations. 

In contrast, if observations are weighted 

by 1/Xi then non-censored observations that did 

not survive (i.e., achieved the outcome in fewer 

than X periods) are weighted more heavily than 

observations that failed to achieve the outcome 

in X periods, all other things being equal. That 

is, in this scheme observations that did achieve 

the outcome are weighted the most heavily. For 

example, if the outcome is death, then observa-

tions that perished in fewer than X periods are 

weighted more heavily than observations that 

perished (or failed to perish) in X periods. This 

weighting scheme favors accurate classification 

of non-surviving observations. 

Finally, consider analysis that observes a 

sample of subjects over a fixed time period of 

exactly X time periods, which does not weight 

observations by time-to-event, but rather instead 

weights all observations equally by unity (or by 

prior odds
1,2

, by a propensity score
6,7

, and/or by 

a measure of value
8-11

). The objective of such an 

analysis is to contrast observations who live vs. 
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perish over X or fewer units of time. This 

weighting scheme does not favor the accurate 

classification of surviving vs. non-surviving 

observations, but instead provides a means of 

ensuring that the treatment groups are 

comparable.
12-14

 

Most classification models seek 

balanced sensitivity and specificity so as to 

maximize ROC area.
15-20 

As always, the crucial 

question is—is the model fit for purpose? Thus, 

the decision to weight outcomes more heavily 

vs. non-outcomes, to do the opposite, or to 

weight observations equally is entirely a 

question of whether the goal is to predict the 

outcomes or the non-outcomes most accurately. 

A related caveat is the problem familiar to data 

scientists—the rare event case caused by base 

rates of <10% of the sample: in this scenario the 

event rate is low and often the “best guess” for 

an empirical model is to guess “non-event”.
21

 

There are many alternative ways that this prob-

lem may be addressed—ranging from complex 

simulation based approaches (e.g., SMOTE) to 

the random under- and over-sampling of train-

ing datasets.
22

 However, we believe that simpler 

weighting schemes (e.g., at risk time, propen-

sity, value) are highly intuitive and thus offer 

translational clarity for end-users. That is, rather 

than presenting “black box” solutions for class 

imbalance, the model offers insight into the 

factors that end-users should consider as being 

more influential over the final outcome classifi-

cation. Finally, it is important to consider the 

“bias” of predictions: is a model with significant 

bias acceptable for use? To answer this, an end-

user must consider the consequences of false 

positives and false negatives.
23

 The impact of 

false signals is clearly relevant to the clinical or 

use case scenario. For example, consequences of 

a false positive prediction for invasive breast 

cancers based on mammogram, antibiotic 

resistance in pneumonia based on prior hospi-

talization history, bridge stability according to 

electrical conductance from wire supports, or 

hostile inbound aircraft using radar signals are 

all very different from a false positive prediction 

for a tooth cavity based on dental X-ray imaging 

data. 

Weighting strategies discussed presently 

do different things, for different purposes. The 

propensity score and similar types of weights, 

for example prior odds, are used to ensure that 

treatment groups (or exposure groups in epide-

miology) are comparable and are therefore 

exchangeable. Weighting by value is used to 

ensure that differences between observations are 

accounted for in the hopes of maximizing the 

omnibus positive gain (return) or minimizing 

the omnibus negative gain (loss) for a group. 

And, weighting by time is used to understand 

the etiology of an outcome: for example, in 

some cases the longer subjects are monitored 

the more likely they are to contract an illness or 

die, whereas in other cases subjects may be 

more likely to contract the illness or die rela-

tively quickly—and thus the longer that they are 

monitored, the more likely it is that they have 

passed through the period of risk. These types of 

adjustments may be made using parametric 

survival models whereby a researcher chooses 

the distribution model believed to best represent 

the trajectory of acquiring the outcome. In 

contrast, maximum-accuracy methods require 

no distributional assumptions, and instead 

simply identify the model(s) which explicitly 

maximize model accuracy in predicting the 

outcome being investigated. 

An empirical demonstration of these 

alternative weighting schemes is welcomed. 

References 

1
Yarnold PR (2017). What is optimal data 

analysis? Optimal Data Analysis, 6, 26-42. 

2
Yarnold PR, Soltysik RC (2016). Maximizing 

Predictive Accuracy. Chicago, IL: ODA Books. 

DOI: 10.13140/RG.2.1.1368.3286 

 

 



Optimal Data Analysis     Copyright 2020 by Optimal Data Analysis, LLC 

Vol. 9 (January 13, 2020), 3-6  2155-0182/10/$3.00 

 

 

 

5 
 

3
Linden A, Yarnold PR (2017). Modeling time-

to-event (survival) data using classification tree 

analysis. Journal of Evaluation in Clinical 

Practice, 23, 1299-1308. DOI: 

10.1111/jep.12779 

4
Linden A, Yarnold PR (2018). Using ODA in 

the evaluation of randomized controlled studies: 

Application to survival outcomes. Optimal Data 

Analysis, 7, 50-53. 

5
Linden A, Yarnold PR (2018). Estimating 

causal effects for survival (time-to-event) 

outcomes by combining classification tree 

analysis and propensity score weighting. 

Journal of Evaluation in Clinical Practice, 24, 

380-387. DOI: 10.1111/jep.12859 

6
Linden A, Yarnold PR (2017). Using 

classification tree analysis to generate 

propensity score weights. Journal of Evaluation 

in Clinical Practice, 23, 703-712. DOI: 

10.1111/jep.12744 

7
Yarnold PR, Linden A (2017). Computing 

propensity score weights for CTA models 

involving perfectly predicted endpoints. 

Optimal Data Analysis, 6, 43-46. 

8
Yarnold PR (2019). Maximum-precision 

Markov transition table: Successive daily 

change in closing price of a utility stock. 

Optimal Data Analysis, 8, 3-10. 

9
Yarnold PR, Soltysik RC (2019). Confirming 

the efficacy of weighting in optimal Markov 

analysis: Modeling serial symptom ratings. 

Optimal Data Analysis, 8, 53-55. 

10
Yarnold PR (2019). Weighted optimal Markov 

model of a single outcome: Ipsative 

standardization of ordinal ratings is 

unnecessary. Optimal Data Analysis, 8, 60. 

11
Yarnold PR (2019). Optimal Markov model 

relating two time-lagged outcomes. Optimal 

Data Analysis, 8, 61-63. 

12
Linden A, Yarnold PR (2016). Using machine 

learning to assess covariate balance in matching 

studies. Journal of Evaluation in Clinical 

Practice, 22, 848-854.
 

13
Linden A, Yarnold PR (2016). Combining 

machine learning and matching techniques to 

improve causal inference in program evaluation. 

Journal of Evaluation in Clinical Practice, 22, 

868-874. 

14
Linden A, Yarnold PR (2016). Combining 

machine learning and propensity score 

weighting to estimate causal effects in 

multivalued treatments. Journal of Evaluation in 

Clinical Practice, 22, 875-885. 

 
15

Rhodes NJ, Kuti JL, Nicolau DP, Van Wart 

S, Nicasio AM, Liu J, Lee BJ, Neely 

MN, Scheetz MH (2015). Defining clinical 

exposures of cefepime for gram-negative 

bloodstream infections that are associated with 

improved survival. Antimicrobial Agents and 

Chemotherapy, 60, 1401-1410. 

16
DiPippo AJ, Tverdek FP, Tarrand JJ, Munita 

JM, Tran TT, Arias CA, Shelburne SA, Aitken 

SL (2017). Daptomycin non-susceptible 

Enterococcus faecium in leukemia patients: 

Role of prior daptomycin exposure. The Journal 

of infection, 74(3), 243–247. doi:10.1016/ 

j.jinf.2016.11.004 

17
Yarnold PR, Hart LA, Soltysik RC (1994).  

Optimizing the classification performance of 

logistic regression and Fisher’s discriminant 

analyses. Educational and Psychological 

Measurement, 54, 73-85. 

18
Yarnold PR, Linden A (2019). Optimizing 

suboptimal classification trees: Matlab®
 
CART 

model predicting probability of lower limb 

prosthesis user’s functional potential. Optimal 

Data Analysis, 8, 84-93. 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Rhodes%20NJ%5BAuthor%5D&cauthor=true&cauthor_uid=26666929
https://www.ncbi.nlm.nih.gov/pubmed/?term=Kuti%20JL%5BAuthor%5D&cauthor=true&cauthor_uid=26666929
https://www.ncbi.nlm.nih.gov/pubmed/?term=Nicolau%20DP%5BAuthor%5D&cauthor=true&cauthor_uid=26666929
https://www.ncbi.nlm.nih.gov/pubmed/?term=Van%20Wart%20S%5BAuthor%5D&cauthor=true&cauthor_uid=26666929
https://www.ncbi.nlm.nih.gov/pubmed/?term=Van%20Wart%20S%5BAuthor%5D&cauthor=true&cauthor_uid=26666929
https://www.ncbi.nlm.nih.gov/pubmed/?term=Nicasio%20AM%5BAuthor%5D&cauthor=true&cauthor_uid=26666929
https://www.ncbi.nlm.nih.gov/pubmed/?term=Liu%20J%5BAuthor%5D&cauthor=true&cauthor_uid=26666929
https://www.ncbi.nlm.nih.gov/pubmed/?term=Lee%20BJ%5BAuthor%5D&cauthor=true&cauthor_uid=26666929
https://www.ncbi.nlm.nih.gov/pubmed/?term=Neely%20MN%5BAuthor%5D&cauthor=true&cauthor_uid=26666929
https://www.ncbi.nlm.nih.gov/pubmed/?term=Neely%20MN%5BAuthor%5D&cauthor=true&cauthor_uid=26666929
https://www.ncbi.nlm.nih.gov/pubmed/?term=Scheetz%20MH%5BAuthor%5D&cauthor=true&cauthor_uid=26666929


Optimal Data Analysis     Copyright 2020 by Optimal Data Analysis, LLC 

Vol. 9 (January 13, 2020), 3-6  2155-0182/10/$3.00 

 

 

 

6 
 

19
Yarnold PR (2019). Optimizing suboptimal 

classification trees: S-PLUS
® 

propensity score 

model for adjusted comparison of hospitalized 

vs. ambulatory patients with community-

acquired pneumonia. Optimal Data Analysis, 8, 

38-47. 

20
Yarnold PR (2019). More on: “Optimizing 

suboptimal classification trees: S-PLUS
® 

propensity score model for adjusted comparison 

of hospitalized vs. ambulatory patients with 

community-acquired pneumonia”. Optimal Data 

Analysis, 8, 56-59. 

21
Prati RC, Batista GEAPA, Silva DF (2015). 

Class imbalance revisited: A new experimental 

setup to assess the performance of treatment 

methods. Knowledge and Information Systems, 

45, 247-270. 

22
Chawla NV, Bowyer KW, Hall LO, 

Kegelmeyer WP (2002). SMOTE: Synthetic 

minority over-sampling technique. Journal of 

Artificial Intelligence Research, 16, 321-357. 

DOI:https://doi.org/10.1613/jair.953 

23
Yarnold PR (2014). UniODA vs. ROC 

analysis: Computing the “optimal” cut-point. 

Optimal Data Analysis, 3, 117-120. 

Author Notes 

No conflict of interest was reported. 

 

 

 

https://doi.org/10.1613/jair.953

