

Initial Research Using ODA in Markov Process Modelling

Paul R. Yarnold, Ph.D.

Optimal Data Analysis, LLC

This note compiles initial research exploring the use of ODA in Markov process modelling.

Used to study individual and group temporal (sequential) behavior in many areas¹, Markov analysis employs a t_i (rows) by t_{i+1} (columns) contingency table to tabulate the number of events occurring per row-column combination: a coach might record the team's win vs. loss record over successive games, or a supervisor may tabulate the on-time delivery record of a pizza delivery driver across successive days, for example (Table 1).

Table 1: Markov Transition Matrix
Modelling State A vs. State B

		Time t_{i+1}	
		State A	State B
Time t_i	State A	$n_{AtiAti+1}$	$n_{AtiBti+1}$
	State B	$n_{BtiAti+1}$	$n_{BtiBti+1}$

When it is sufficiently-iterated a process is called a first order Markovian change process if its transition matrix reveals a steady state: this is assessed by comparing consecutive transition matrices using ODA.^{2,3} If the process is not first order, ODA is used to evaluate the hypothesis that the process is second order.⁴ ODA is also used to ascertain if stratifying the sample with

respect to another variable produces different transition matrices.^{5,6} And, for mult categorial designs with three or more States, the structure underlying transition matrix data is identified using ODA.^{1,7}

References

¹Yarnold PR, Soltysik RC (2005). *Optimal data analysis: A guidebook with software for Windows*. Washington, DC, APA Books.

²Yarnold PR (2017). Novometric analysis of transition matrices to ascertain Markovian order. *Optimal Data Analysis*, 6, 5-8.

³Yarnold PR (2018). Using ODA to confirm a first order Markov steady state process. *Optimal Data Analysis*, 7, 72-73.

⁴Yarnold PR (2018). Using ODA to determine if a Markov transition process is second order. *Optimal Data Analysis*, 7, 74-75.

⁵Yarnold PR (2017). Novometric comparison of Markov transition matrices for heterogeneous populations. *Optimal Data Analysis*, 6, 9-12.

⁶Yarnold PR (2018). Using ODA to ascertain if stratification yielded different transition matrices. *Optimal Data Analysis*, 7, 76-77.

⁷Yarnold PR (2016). GenODA structural decomposition vs. log-linear model of one-step Markov transition data: Stability and change in male geographic mobility in 1944-1951 and 1951-1953. *Optimal Data Analysis*, 5, 213-215.

Author Notes

No conflict of interest was reported.