Novometric vs. Logit Analysis: Abortion Attitude by Religion and Time

Paul R. Yarnold, Ph.D.

Optimal Data Analysis, LLC

Prior research¹ using logit analysis to model abortion attitude (oppose=0; favor=2) as a function of religion (Protestant=1; Catholic=2; Jewish=3; Other=4) and time (1972=72; 1978=78) found: "The best fitting model...has separate effects for being Catholic or non-Catholic and for being Protestant or non-Protestant. The categories of Jewish and Other have no separate effects and are implicitly grouped or collapsed together. The result is a religious trichotomy. ...The odds on a favorable response are identical in both years: .89 for Protestants, .64 for Catholics, and 3.44 for Jews and Others" (pp. 70-72). For these data exploratory novometric analysis²⁻²⁸ predicting abortion attitude (class variable) as a function of religion (multicategorical attribute) and time (ordered attribute) identified a parsimonious, relatively weak model with stable classification training and LOO performance.

SASTM code used to construct the data analyzed herein¹ is given in the Appendix. Novometric analysis identified a single two-strata model that had stable classification performance in LOO analysis: if religion=Protestant or Catholic predict attitude=oppose; otherwise predict attitude=favor. Table 1 is the confusion matrix for this model: relatively weak ESS=11.39, D=15.56, p<0.001).

Table 1: Optimal Model Confusion Matrix

		<u>Predicted</u> Attitude		
		Oppose	Favor	
<u>Actual</u>	Oppose	1464	63	95.9%
Attitude	Favor	1182	217	15.1%

As seen, the model accurately classified 19 in 20 people who oppose abortion, but only 1 in 7 people who favor abortion (50% sensitivity is expected by chance for each class category in two-category designs that do not use analytic weights^{2,30-35}). The deficient performance of the model for predicting favorable ratings is likely attributable to the category "other", notorious for riddling the literature with paradoxically-confounded results.^{2,36-38}

References

¹Knoke D, Burke PJ (1980). *Log-linear models*. Beverly Hills, CA: Sage (pp. 47-48).

²Yarnold PR, Soltysik RC (2016). *Maximizing predictive accuracy*. Chicago, IL: ODA Books. DOI: 10.13140/RG.2.1.1368.3286

³Yarnold PR, Linden A (2016). Novometric analysis with ordered class variables: The optimal alternative to linear regression analysis, *Optimal Data Analysis*, *5*, 65-73.

⁴Yarnold PR, Bennett CL (2016). Novometrics *vs.* correlation: Age and clinical measures of PCP survivors, *Optimal Data Analysis*, 5, 74-78.

⁵Yarnold PR, Bennett CL (2016). Novometrics *vs.* multiple regression analysis: Age and clinical measures of PCP survivors, *Optimal Data Analysis*, *5*, 79-82.

⁶Yarnold PR (2016). Novometrics *vs.* regression analysis: Literacy, and age and income, of ambulatory geriatric patients. *Optimal Data Analysis*, *5*, 83-85.

⁷Yarnold PR (2016). Novometrics *vs.* regression analysis: Modeling patient satisfaction in the Emergency Room. *Optimal Data Analysis*, *5*, 86-93.

⁸Yarnold PR (2016). Matrix display of pairwise novometric associations for ordered variables. *Optimal Data Analysis*, *5*, 94-101.

⁹Yarnold PR, Batra M (2016). Matrix display of pairwise novometric associations for mixed-metric variables. *Optimal Data Analysis*, *5*, 104-107.

¹⁰Yarnold PR (2016). Novometrics *vs.* ODA *vs.* One-Way ANOVA: Evaluating comparative effectiveness of sales training programs, and the importance of conducting LOO with small samples. *Optimal Data Analysis*, *5*, 131-132.

¹¹Yarnold PR (2016). Parental smoking behavior, ethnicity, gender, and the cigarette smoking behavior of high school students. *Optimal Data Analysis*, *5*, 136-140.

¹²Yarnold PR (2016). Using gender of an imaginary rated smoker, and subject's gender, ethnic-

ity, and smoking behavior to identify perceived differences in peer-group smoking standards of American high school students. *Optimal Data Analysis*, *5*, 141-143.

¹³Yarnold PR (2016). Novometric models of smoking habits of male and female friends of American college undergraduates: Gender, smoking, and ethnicity. *Optimal Data Analysis*, *5*, 146-150.

¹⁴Yarnold PR (2016). Predicting daily television viewing of senior citizens using education, age and marital status. *Optimal Data Analysis*, *5*, 151-152.

¹⁵Yarnold PR (2016). Novometric statistical analysis and the Pearson-Yule debate. *Optimal Data Analysis*, *5*, 162-165.

¹⁶Yarnold PR (2016). Comparing WAIS-R qualitative information for people 75 years and older, with *vs.* without brain damage. *Optimal Data Analysis*, *5*, 166-170.

¹⁷Yarnold PR (2016). Using novometrics to disentangle complete sets of sign-test-based multiple-comparison findings. *Optimal Data Analysis*, *5*, 175-176.

¹⁸Yarnold PR (2016). Novometric analysis *vs*. MANOVA: MMPI codetype, gender, setting, and the MacAndrew Alcoholism scale. *Optimal Data Analysis*, *5*, 177-178.

¹⁹Yarnold PR (2016). Novometric *vs.* ODA reliability analysis *vs.* polychoric correlation with relaxed distributional assumptions: Inter-rater reliability of independent ratings of plant health. *Optimal Data Analysis*, *5*, 179-183.

²⁰Yarnold PR (2016). Novometrics *vs.* polychoric correlation: Number of lambs born over two years. *Optimal Data Analysis*, *5*, 184-185.

²¹Yarnold PR (2016). Comparing MMPI-2 *F-K* Index normative data among male and female

psychiatric and head-injured patients, individuals seeking disability benefits, police and priest job applicants, and substance abusers. *Optimal Data Analysis*, *5*, 186-193.

- ²²Yarnold PR, Linden A (2016). Theoretical aspects of the D statistic. *Optimal Data Analysis*, *5*, 171-174.
- ²³Yarnold PR (2016). Novometric analysis predicting voter turnout: Race, education, and organizational membership status. *Optimal Data Analysis*, *5*, 194-197.
- ²⁴Yarnold PR (2016). Novometrics *vs.* Yule's Q: Voter turnout and organizational membership. *Optimal Data Analysis*, *5*, 198-199.
- ²⁵Yarnold PR (2016). Novometric *vs.* recursive causal analysis: The effect of age, education, and region on support of civil liberties. *Optimal Data Analysis*, *5*, 200-203.
- ²⁶Yarnold PR (2016). Novometric analysis *vs*. GenODA *vs*. log-linear model: Temporal stability of the association of presidential vote choice and party identification. *Optimal Data Analysis*, *5*, 204-207.
- ²⁷Yarnold PR (2016). Novometric analysis *vs*. ODA *vs*. log-linear model in analysis of a two-wave panel design: Assessing temporal stability of Catholic party identification in the 1956-1960 SRC panels. *Optimal Data Analysis*, *5*, 208-212.
- ²⁸Yarnold PR (2016). Novometric *vs.* logit *vs.* probit analysis: Using gender and race to predict if adolescents ever had sexual intercourse. *Optimal Data Analysis*, *5*, 218-222.
- ²⁹Bryant FB, Harrison PR (2013). How to create an ASCII input data file for UniODA and CTA software. *Optimal Data Analysis*, 2, 2-6.
- ³⁰Yarnold PR, Soltysik RC (2005). *Optimal data analysis: A guidebook with software for Windows*. Washington, DC, APA Books.

- ³¹Linden A, Yarnold PR (In Press). Combining machine learning and propensity score weighting to estimate causal effects in multivalued treatments. *Journal of Evaluation in Clinical Practice*.
- ³²Linden A, Yarnold PR (In Press). Combining machine learning and matching techniques to improve causal inference in program evaluation. *Journal of Evaluation in Clinical Practice*.
- ³³Linden A, Yarnold PR (In Press). Using machine learning to assess covariate balance in matching studies. *Journal of Evaluation in Clinical Practice*. DOI: 10.1111/jep.12538
- ³⁴Linden A, Yarnold PR (In Press). Using data mining techniques to characterize participation in observational studies. *Journal of Evaluation in Clinical Practice*.
- ³⁵Yarnold PR, Soltysik RC (1991). Theoretical distributions of optima for univariate discrimination of random data. *Decision Sciences*, 22, 739-752.
- ³⁶Yarnold PR (1996). Characterizing and circumventing Simpson's paradox for ordered bivariate data. *Educational and Psychological Measurement*, *56*, 430-442.
- ³⁷Soltysik RC, Yarnold PR (2010). The use of unconfounded climatic data improves atmospheric prediction. *Optimal Data Analysis*, *1*, 67-100.
- ³⁸Yarnold PR (2015). Estimating inter-rater reliability using pooled data induces paradoxical confounding: An example involving Emergency Severity Index triage ratings. *Optimal Data Analysis*, *4*, 21-23.

Author Notes

This study analyzed publically available data. No conflict of interest was reported.

Appendix

SASTM Code used to Construct (Reproduce¹) the Data File for Analysis by ODA Software^{2,29}

data reinfile input column; cards; 1 1 1	dat grou	calines;
;		
Data ex	amp	ole;
Do n=1	to	460;
put '1	72	1';
end;		
Do n=1	to	498;
put '1	72	0';
end;		
Do n=1	to	424;
put '1	78	1';
end;		
Do n=1	to	501;
put '1	78	0';
end;		

```
Do n=1 to 147;
put '2 72 1';
end;
Do n=1 to 240;
put '2 72 0';
end;
Do n=1 to 151;
put '2 78 1';
end;
Do n=1 to 225;
put '2 78 0';
end;
Do n=1 to 41;
put '3 72 1';
end;
Do n=1 to 10;
put '3 72 0';
end;
Do n=1 to 23;
put '3 78 1';
```

end; Do n=1 to 6; put '3 78 0'; end; Do n=1 to 65; put '4 72 1'; end; Do n=1 to 17; put '4 72 0'; end; Do n=1 to 88; put '4 78 1'; end; Do n=1 to 30; put '4 78 0'; end; Output; Run;