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Conceptualization of the D statistic in novometric theory
1
 is advanced.

 
 

 

In novometric theory the minimum denominator 

selection algorithm identifies the descendant 

family (DF), consisting of one or more optimal 

models, within which the globally optimal (GO) 

model for an application resides. In applications 

with a DF consisting of multiple models, the set 

of optimal models differ with respect to their 

predictive accuracy normed vs. chance by the 

ESS statistic (0=predictive accuracy expected 

by chance; 100=errorless prediction), and their 

complexity defined as the number of sample 

strata (endpoints) in the model. Observations are 

homogeneous with respect to the attributes that 

define the endpoint within a given endpoint, and 

are heterogeneous with respect to the defining 

attributes between model endpoints.
1,2

 

Novometric analysis identifies the GO 

model in the DF representing the “best” combi-

nation of predictive accuracy and parsimony 

(the antithesis of complexity), defined as ESS 

divided by the number of model strata (i.e., the 

mean ESS-per-endpoint obtained by the model). 

This assessment requires creating a square 

Cartesian space, crossing ESS by efficiency as 

abscissa and ordinate, respectively. In Figure 1, 

for example, for a two-strata model the effi-

ciency axis ranges from 0 to 100/2=50; for a 

three-strata model the efficiency axis ranges 

from 0 to 100/3=33.3; and for a model with s 

strata the efficiency axis ranges from 0 to 100/s. 

The distance of an empirical model from 

a theoretically ideal model
1
 is computed as: D= 

100/(ESS/s)-s. For example, for a model with 

s=3 and ESS=60, D=100/(60/3)-3=2: two more 

effects of equivalent efficiency are needed to 

achieve an ideal statistical solution. As seen, the 

distance D of an empirical model (asterisk) from 

a theoretically ideal model (upper right-hand 

corner) for an application is a function of both 

accuracy and parsimony of the empirical model. 

Normed over accuracy and parsimony, D may 

thus be used to directly compare the quality of 

competing models regardless of their underlying 

architecture—each model considered relative to 

its corresponding theoretically ideal model. 

Figure 1: ESS by Complexity Space, the 

Theoretically Ideal Statistical Model, and D 
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Theoretically Ideal Model: 

An Attainable Upper Bound of D 

 The accuracy-by-parsimony space in 

Figure 1 is theoretically bounded by the inter-

section of the corresponding maximum values 

(100 and 100/s, respectively) of these indexes. 

Several such ideal models have been identified 

in applied studies involving small samples, and 

several studies yielded models with D statistics 

less than one. Unfortunately the small samples 

for which ESS=100 lacked sufficient statistical 

power (violating the first axiom of novometric 

theory) to determine if continued application of 

the minimum denominator selection algorithm
1
 

would identify even more parsimonious perfect 

models. However, in such a circumstance the 

most parsimonious perfect model that emerges 

is selected as the GO model for the application. 

Conceptually related investigator-determined a 

priori selection heuristics are available in ODA 

software for selecting among multiple optimal 

statistical models, if they occur.
1-3

 Additional 

study in this area is warranted. 

Theoretically Least-Ideal Model: 

A Non-Attainable Lower Bound of D 

 As model ESS and efficiency approach 

zero, D approaches infinity in the limit since the 

denominator term, ESS/s, is zero when ESS=0 

(the first axiom of novometric theory requiring 

sufficient statistical power inhibits overfitting—

manifest in terms of an untenably large s). In 

practice this limit is ordinarily not an issue: in 

typical samples small values of ESS are not 

statistically reliable, and D statistics are only 

computed for statistically reliable models that 

are identified in the DF. That is, statistical 

unreliability implies that the existence of the 

model is unproven. Numerous empirical studies 

have reported negative ESS values for models 

evaluated using “leave-one-out” one-sample 

jackknife cross-generalizability analysis (the 

fifth axiom of novometric theory mandates 

successful replication), indicating predictive 

accuracy worse than expected by chance. How-

ever, D statistics are not computed because such 

models are not statistically reliable. 

 However, in some applications the 

desired effect size is ESS=0. For example, in 

causal inference research “propensity scores” 

are used in an effort to identify a matching or 

weighting scheme that equates two or more 

groups with respect to a set of covariates.
4-8

 In 

this perspective, identification of one or more 

statistically reliable models indicates “bias” 

compared to a finding of no statistically reliable 

model. The level of bias associated with each 

model in the DF can be assessed using the D 

statistic. The model with the largest D is least 

similar to a theoretically ideal model, and is thus 

used to construct propensity scores for matching 

or weighting purposes. Comparison of test sta-

tistic magnitude to select a model is conceptu-

ally similar to Akaike’s and Schwarz’s Bayesian 

information criteria (AIC and BIC) statistics for 

which one compares relative, rather than abso-

lute values among a set of models for model-

selection purposes.
9,10

 However, if instead no 

statistically reliable model is identified, this is 

considered to be statistical evidence that pro-

pensity-score-based matching or weighting re-

turned groups that, as desired, could not be dis-

criminated with respect to the observed covari-

ates. Additional study in this area is warranted. 

D-Statistic Penalty Adjustment for 

Increasing Model Complexity 

Table 2 lists, and Figure 2 illustrates the 

value of the D statistic for models having two, 

four, six or eight strata, for ESS values ranging 

between perfect (100) and relatively weak (10). 

Regardless of their underlying complex-

ity, all models converge to D=0 in the limit as 

ESS=100. As stated earlier, application of the 

minimum denominator search algorithm to a 

perfect model identified in the DF may reveal 

additional perfect models with fewer endpoints, 

and/or additional perfect models with the same 

number of endpoints but a greater minimum 
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endpoint denominator—thus providing greater 

statistical power for subsequent analyses.
1
 

As clearly seen in Figure 2 the D statistic 

assigns an increasingly stiffer penalty for model 

complexity as predictive accuracy diminishes, 

particularly for effects classified by rule-of-

thumb
1,3

 as reflecting an effect of moderate or 

weaker strength (i.e., ESS<50). However, even 

for very strong models having ESS=90, Table 2 

reveals a 400% difference in the corresponding 

D statistics of the 2- and 8-strata models. To 

compare the training and validity performance 

of competing models, exact discrete 95% confi-

dence intervals (CIs) are computed for D vis-à-

vis bootstrap analysis, and then the CIs for D are 

examined for overlap between groups.
1
  

 

Table 2: ESS, Strata, and D 

                                      D Statistic 

ESS 2-Strata 4-Strata 6-Strata 8-Strata 

100 0.00 0.00 0.00 0.00 

 90 0.22 0.44 0.67 0.88 

 80 0.50 1.00 1.50 2.00 

 70 0.86 1.71 2.57 3.43 

 60 1.33 2.67 4.00 5.33 

 50 2.00 4.00 6.00 8.00 

 40 3.00 6.00 9.00 12.00 

 30 4.67 9.33 14.00 18.67 

 20 8.00 16.00 24.00 32.00 

 10 18.00 36.00 54.00 72.00 

 

Figure 2: Model Accuracy (ESS), Complexity (Strata), and D 
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