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Optimal discriminant analysis (ODA) is a new paradigm in the
general statistical analysis of data, which explicitly maximizes the
accuracy achieved by a model for every statistical analysis, in the
context of exact distribution theory. This paper reviews optimal
analogues of traditional statistical methods, as well as new special-
purpose models for which no conventional alternatives exist.

Rarely does a technical report concerning an
apparently focused and arcane classification
methodology, such as optimal discriminant
(data) analysis—ODA, stand a realistic chance
of appealing to a diverse scientific community.
Even more rarely, however, does one have the
opportunity to report the emergence of a new
paradigm in the statistical analysis of data.!
ODA is a highly intuitive, powerful, and exact
methodology for the general statistical analysis
of data, and this paper reports on the emergence
of this paradigm.

ODA is the methodology that explicitly
maximizes the accuracy of any type of statistical
model for the training sample—that is, for the
data upon which statistical analysis is per-
formed and upon which the statistical model is
based. An increasing awareness of the intuitive
appeal of maximizing accuracy (and minimizing
errors), and commercial availability of dedicated
software, are fueling increasingly widespread
application of ODA.® Nevertheless, because
ODA is relatively new, and therefore relatively
few introductory and review resources covering
the paradigm are yet widely available, this paper
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introduces many major concepts and methods of
the ODA paradigm.

This paper discusses initial emergence of
the paradigm—the beginning. The paradigm has
grown enormously, as discussed in this review:
https://odajournal.com/2017/04/18/what-is-
optimal-data-analysis/

Initial Assumptions

An ODA model explicitly maximizes the
number of correctly classified observations for a
specific application. Observations are consider-
ed correctly classified when the model assigns
them to the class of which they are, in reality, a
member, and are misclassified otherwise. The
number of misclassifications arising in a given
analysis is referred to as the "optimal value." It
is clear that derivation of a distribution theory
for ODA requires investigation of distributions
underlying optimal values. Using the simplest
possible data structure to illustrate derivation of
exact distribution theory, imagine a hypothetical
application having the following three features.

First, assume one binary class variable.
In ODA, a class variable is what one is trying to
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predict, discriminate, or classify. Examples of
binary class variables might include gender
(male, female), therapy (drug, placebo), or out-
come (success, failure). Class variables may of
course consist of more than two levels, but two
levels is the simplest case.

Second, assume one random continuous
attribute. In ODA, an attribute is a variable that
will be employed in an effort to predict the class
variable. The continuity assumption implies that
every observation will achieve a unique score
on the attribute (no ties). Nothing is assumed
about the shape of the distribution underlying
scores on the attribute, but only that the scores
are random—for example, uniform or normal.
Single-attribute ODA analyses are referred to as
univariable ODA, or UniODA. Because the
present case involves a continuous attribute, we
are discussing a “continuous UniODA design”.

Finally, assume three observations: two
from one class, and one from the other class
(three observations are required because with
two the problem is trivial: the mean of two
observations’ scores on a continuous attribute is
a perfect discriminant classifier for those two
observations). Though it is arbitrary, refer to
these as classes “1” and “0”, respectively.
Hereafter, the total number of observations is
referred to as n, and the number of observations
in class c as nc.

Note that only the continuity assumption
is capable of being violated by “real-world” data
(we return to this point later). The first (binary
class variable) and third (n in each class)
assumptions can never be violated because they
exactly define the structure of the design. That
is, we are considering a UniODA design with a
binary class variable, and with n;=2 and ny=1:
any deviation from this structure, such as more
than two class levels or different sample sizes,
simply defines another specific UniODA design.

The UniODA Model

For clarity we give an example of a two-
category continuous UniODA model. Imagine
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that a cardiologist wished to determine if heart
rate variability (HRV)—the standard deviation
of one's heart rate over a 24-hour period (the
continuous attribute), can discriminate patients
who die (class 0) versus live (class 1). For a
given sample UniODA would provide at least
one optimal model, consisting of a cutpoint and
a direction, which when used together explicitly
maximize forecasting accuracy: percent accurate
classification, or PAC. For example, a UniODA
model could be: "if HRV score is greater than
(direction) 12.2 (cutpoint), assign that person to
class 0; otherwise, assign that person to class 1."

A UniODA model is said to be optimal
because the total number of misclassifications
resulting from application of the model to the
data is minimized, and the number of correct
classifications is maximized. In the example, no
alternative combination of HRV cutpoint and
direction would yield fewer misclassifications
than the model which UniODA identified.

Multiple optimal models which all yield
the same maximum PAC may occur for a given
data set. For example, two different HRV cut-
points might result in the same overall number
of misclassifications, yet one model may have
greater sensitivity (ability to accurately classify
members of class 1) and lower specificity
(ability to accurately classify members of class
0) than the other model. In such cases, it is
necessary to select one optimal model, prefer-
ably before conducting the analysis, using an
appropriate decision heuristic.! Examples of
such selection heuristics include the sensitivity
or specificity heuristic (select the model having
greatest sensitivity or specificity, respectively),
or the balanced performance heuristic (select the
model with the smallest difference between
sensitivity and specificity).*

Exact Distribution Theory

We are now ready to derive the theoreti-
cal distribution of optimal values for a two-
category continuous UniODA design with n;=2
and no=1. First, it is necessary to determine the
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set of all possible outcomes that could occur if
the attribute were continuous and random. In
order to differentiate the two observations from
class 1, they will be called “1A” and “1B.”

There are six possible outcomes: one is
that the value of the attribute for observation 1A
is greater than that for observation 1B, which in
turn is greater than that for the observation from
class 0. Symbolically, {1A > 1B > 0}. The five
other possible outcomes are: {1A > 0 > 1B};
{1B > 1A >0}; {1B>0>1A}; {0 > 1A > 1B},
and {0 > 1B > 1A}. Because the attribute was
random, each of these six possible outcomes is
equally likely, with a probability of 1/6.

Next, it is necessary to determine the
optimal value for each of the six possible
outcomes. This, of course, means that UniODA
must be performed for each of the six possible
data configurations." Two of the six possible
outcomes (those in which the attribute of the
class 0 observation lies between the attributes of
the two class 1 observations) have an associated
optimal value of 1 misclassification, because at
least one observation will be misclassified
regardless of where the cutpoint is placed). The
other four possible outcomes (in which the two
class 1 observations can be perfectly separated
via a cutpoint from the class 0 observation) have
an optimal value of 0 misclassifications. Cumu-
lating optimal values over the set of possible
outcomes gives the theoretical distribution of
optimal values for this UniODA design: the
probability of an optimal value of 0 is 4/6, and
the probability of an optimal value of 1 is 2/6.

Enumerating in this manner the theor-
etical distribution of optimal values for balanced
(equal number of class 0 and 1 observations),
continuous, two-tailed (no a priori hypothesis
was specified) UniODA designs required a
CRAY-2 supercomputer—which only achieved
results for n<30 due to exponential increases in
the number of combinations.” Examination of
the resulting table of optimal values for post hoc
UniODA revealed organization which motivated
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discovery® and proof* of a closed-form solution
for one-tailed confirmatory UniODA.

Inexact Measures

What if data aren’t continuous, and there
are ties—violating the continuity assumption?
Discontinuity in empirical data is thought to
reflect imprecise measurement, and not as com-
promising of theoretical probabilities®, but this
begged the question of exactly how imprecise
can measurement become before the theoretical
probabilities become compromised? This line of
thinking naturally led to the question of what
would occur for a binary attribute—and it was
then that we understood that the binary attribute
problem was the optimal analogue to chi-square
analysis, and the continuous attribute problem
was the optimal analogue to t-test. Proceeding
with binary enumeration we found the binary
and continuous distributions differ. This finding
motivated two important insights.

First, there is a theoretical dimension—
which we call precision—which may be used to
describe the metric underlying the attribute for
any specific UniODA problem. The precision
dimension is bounded at the extremes by binary
data (least precise) versus continuous data (most
precise). Just as specific distribution theory can
be derived for the extreme poles of the precision
dimension, so too can exact distribution theory
be derived for every specific attribute measure
metric: for example, if the attribute is measured
using a 7-point Likert scale, then derive distri-
bution theory by assuming a 7-point Likert scale
was used. As it is possible to derive distribution
theory that assumes that the specific measure
metric actually used in a given application was
in fact used, distribution theory for ODA can be
based strictly on structural features of a prob-
lem, and such distribution theory will never be
violated by data for a given application.

The second insight is that UniODA is an
optimal alternative to common conventional
statistical methods: Student's t-test is often used
to analyze data involving a binary class variable
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and a continuous attribute, and chi-square is
often used to analyze data involving a binary
class variable and a binary attribute. UniODA
may also be used, and exact distributions may
be determined for, designs that lie anywhere on
the precision dimension—anywhere between the
binary and continuous polar extremes. This is
not true for conventional statistical procedures.

ODA as an Alternative to Conventional
Statistical Methodologies

Encouraged by early success, we began
programmatic research to assess the domain of
experimental designs and data configurations
that may be addressed using UniODA. We next
investigated multicategory problems involving
class variables with more than two levels. For a
continuous attribute, multicategory UniODA is
analogous to oneway analysis of variance, and
for a binary attribute it is analogous to log-linear
analysis.®’

UniODA, and other models within the
ODA paradigm, clearly can be used to analyze
different data configurations that are evaluated
using a host of different conventional statistical
methods. Why should ODA be used rather than
a host of conventional methods?

First, only ODA explicitly maximizes
(weighted) classification accuracy and provides
a forecasting model for every application. Not
only do conventional methods fail to explicitly
maximize PAC, but many, such as t-test or chi-
square, also fail to provide a forecasting model.

Second, no matter what the nature of a
particular data configuration might be—for
example, the number of class levels, attribute
metrics, or class sample-size imbalances, the
classification performance of every ODA model
is summarized using a normed measure of effect
strength, called effect strength for sensitivity, or
ESS.' On this index O represents the level of
classification performance that is expected by
chance, and 100 represents perfect, errorless
classification. No such intuitive, universal index
can be used to compare the effect strength of
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different conventional methods such as analysis
of variance, logistic regression, and tau.

Third, conventional methods require
assumptions regarding the nature of the data.
Unlike ODA—for which distribution theory is
exact for every design, conventional methods
are inappropriate when the data violate their
assumptions. Whereas the assumptions of ODA
must conform to the data, data must conform to
the assumptions of conventional methods.

Finally, with ODA a single methodology
may be optimally applied to analyze a host of
problems, while with the conventional approach
a host of methods may be suboptimally applied
to analyze a single problem. ODA is therefore
simultaneously more unique and parsimonious
than conventional methods.

To illustrate the flexibility and power of
ODA as a general statistics paradigm, below we
describe different common data configurations
and conventional methods often used in their
analysis, and the corresponding ODA model.

Binary Class Variable
and BinaryAttribute

The most common conventional method
for analyzing data of this type is chi-square
analysis: the ODA analogue is two-category
binary UniODA. Chi-square is an approximate
statistic that should not be used when the
expected value for a given cell (cells are formed
by cross-tabulating the class variable with the
attribute) is less than five.® In contrast, binary
UniODA is an exact statistic with no such
restriction: one- and two-tailed estimated p by
UniODA and Fisher’s exact test are isomorphic
except in a hypothetical degenerate condition.’

It is easy to show that UniODA may be
particularly useful in small sample designs. For
example, imagine a problem with n = 6, three
observations from class 0 all scoring 0 on the
attribute, and three observations from class 1 all
scoring 1. Chi-square can’t be used to analyze
this problem, as the expected value is less than
five in all four cells. When analyzed using two-
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tailed binary UniODA, a single optimal model
(if attribute < 0.5 then class = 0; else class = 1)
emerged that achieved 100% PAC, p<0.032.
No systematic review/comparison of chi-square
versus binary UniODA has yet been reported.

Binary Class Variable
and Multiple Binary Attributes

The most common linear methods for
analyzing data of this type include log-linear or
logistic regression analysis. Completely binary
problems are easiest for ODA to solve, but can
be problematic for conventional methods, with
aspects including marginal imbalance, sparse
cells, singularities, and structural zeros (some
design cells don’t exist), for example, rendering
binary data difficult or impossible to analyze.
The optimal linear analogue is binary Multi-
ODA—a linear model which uses two or more
attributes to explicitly maximize classification
accuracy (discussed ahead).

For example, we reanalyzed data from a
study designed to predict if 120 persons with
AIDS would require home care or structured
long-term care (the class variable) on the basis
of three binary attributes which assessed the
attitudes of patient and physician towards long-
term care, and whether the patient had mental
impairment.’  The data were “ill-condiioned”
and thus could not be analyzed by log-linear or
logistic regression methods. MultiODA, how-
ever, found a two-attribute model that achieved
93.3% PAC in <1/20 CPU second on a 33MHz
386 microcomputer running a special-purpose
ODA search algorithm (discussed ahead).

Binary Class Variable
and Continuous Attribute

Among the most frequently reported of
statistical tests, Student’s t-test is a common
conventional procedure for analyzing data of
this type. The ODA analogue is two-category
continuous UniODA.
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It is easy to construct a hypothetical
problem for which t-test fails to find a signifi-
cant intergroup mean difference on the attribute,
while UniODA detects nearly perfect intergroup
discriminability. Imagine that ten class A obser-
vations each score a value of 0 on the attribute;
nine class B observations all score 1, and a tenth
class B observation scores -9. Because the mean
difference on the attribute between groups is
zero, t-test would conclude that the groups can’t
be discriminated whatsoever by the attribute.
But, with UniODA, 95% of the observations are
correctly classified—nearly perfect intergroup
discriminability. Systematic research contrasting
UniODA and t-test is not yet available.

Binary Class Variable
and Multiple Continuous Attributes

Common linear methods for analyzing
data in this configuration are linear discriminant
analysis, logistic regression analysis, and one-
way multivariate analysis of variance.®’ The
linear ODA analogue is continuous MultiODA,
but UniODA has been used with great success
to maximize accuracy achieved by suboptimal
models.*0*

Monte Carlo research is often used to
contrast continuous MultiODA versus conven-
tional statistical methods.***® A difficulty with
such simulation research is that the experimental
data are generated using idealized routines that
meet criteria—such as normally distributed data
and coincident covariance, which are important
for conventional statistical methodologies but
which are no substitute for “real-world” data
collected by naturalistic empirical observation.
Our strategy has been to analyze a variety of
different applications using MultiODA, and then
compare the performance against suboptimal
methods such as Fisher's discriminant or logistic
regression analysis, using training and validity
data. Early results are encouraging, but more
research is needed to compare “in the field”
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classification performance of MultiODA versus
conventional procedures.®***®

Binary or Multicategory Class Variable
and Continuous and Binary Attributes

Multinomial logistic regression analysis
is a commonly employed conventional analysis
for problems of this type. The linear optimal
analogue is MultiODA, with weights used to
reduce problem size by eliminating redundant
data profiles (discussed ahead). Little research
using either approach is available, and to our
knowledge no prior research comparing these
approaches has yet been published (until now).

Analyzing credit screening data for a
British bank, our objective was to develop a
model to predict credit worthiness (the class
variable) for a sample of 325 credit applicants.
Attributes were two binary variables and a third
4-point ordinal attribute. A nonparametric class-
ification methodology that performed sample
stratification based on a recursive chi-square
procedure identified four interaction terms used
as attributes in follow-up analysis. With these
data logistic regression analysis and MultiODA
both achieved 90.5% PAC in training analysis,
but the latter model used one less term (and thus
was more efficient and parsimonious) than the
former model. Comparing the two models using
jackknife validity analysis revealed that PAC for
the MultiODA model was stable, but regressed
to 83.1% for the obviously over-determined
logistic regression model.

Multicategory Class Variable
and Polychotomous Attribute

Common conventional methodologies
for analyzing these designs include chi-square,
log-linear, or multinomial logistic regression
analysis. The optimal analogue is multicategory
UniODA. As was true for designs that involved
one binary class variable and multiple binary
attributes, issues such as structural zeros, sparse

15

cells, imbalanced marginal distributions, small
samples, and multicollinearity may spell disaster
for conventional designs. As discussed earlier,
these are not problems for ODA.

It is easy to construct an example for
which conventional analyses are inappropriate,
but for which multicategory UniODA is ideal.
For example, imagine a problem with a three-
category (A, B, C) class variable, with each
category having three observations. Further
imagine all three class A observations scored a
value of 1 on the attribute; all three class B
observations scored a 2, and all three class C
observations scored a 3. Although the small
sample renders conventional methods inappro-
priate, a multicategory UniODA achieved 100%
PAC, two-tailed p<0.01.

Multicategory Class Variable
and Continuous Attribute

The most common conventional analysis
used for such designs is oneway analysis of
variance, and the optimal analogue is multicate-
gory UniODA. As for t-test, distribution theory
for analysis of variance is highly sensitive to
assumption violations.> Such data can present
insurmountable problems for multinomial logis-
tic regression, because of small samples, sparse
cells, and marginal imbalance, particularly when
polychotomous attributes are thrown in the mix:
for example the analysis will fail if a degenerate
attribute—which has fewer response categories
than the class variable has levels—is included in
the analysis.

As an example of a three-category Uni-
ODA, imagine the following hypothetical data
set, problematic for conventional methods due
to the small sample, the presence of outliers,
heterogeneity, the presence of zero variance for
one group, and non-normality (in Table 1, X is
the attribute).
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TABLE 1: Hypothetical data set for three-category UniODA

Class X Class
A 29 B
A 30 B
A 31 B
A 50 B

In this example the mean X of classes A,
B, and C is exactly equal, so F=0. However, the
UniODA model (if X < 33 then class = A; if X
> 38.5 then class = C; else class = B) correctly
classified 10 of the 12 data points: overall and
mean PAC over all three groups is 83.3%, two-
tailed p<0.05.

Ordered Class Variable
and Continuous and/or Binary Attributes

Among the many types of nonparametric
methods in use, Kendall's tau is arguably the
least problematic procedure conventionally used
to evaluate associations among ordinal (ranked)
data.’® Tau is a computed index for evaluating
the relationship between two ordered variables:
collect data, compute tau, and “it is what it is.”
Ahead we show that multicategory MultiODA
can be used to determine criterion weights for
two or more attributes to generate a summary
score which explicitly maximizes tau.

Receiver Operator Curve
(Signal Detection) Analysis

Bayesian classification methods are
commonly used to evaluate the discriminating
power of attributes.’” Such procedures typically
aim to maximize the sensitivity, specificity, or
some combination of sensitivity and specificity
achieved using an attribute. Since ODA models
may be derived which explictly maximize sensi-
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X Class X
35 C 5
35 C 42
35 C 43
35 C 50

tivity, specificity, or any weighted composite of
sensitivity and specificity, either for individual
attributes or for sets of attributes, we call this
application “optimal signal detection analysis.”

In summary, it is a common practice to
employ multiple different statistical methods,
each requiring data to satisfy different essential
assumptions, to analyze a given sample of data
in numerous “different” (actually related) ways.
We recommend using a single statistical method
to analyze data with one objective function in
mind: maximizing accuracy. The utility of this
approach will undoubtedly receive increased
attention as researchers learn more about the
unrivaled generalizability and power of ODA
across different data configurations.

Fast MultiODA Solutions

Early research was highly productive,
and new applications for UniODA models were
discovered routinely as new data structures were
considered.®  As data configurations became
increasingly complex, so did ODA models, and
researchers began formulating and investigating
optimal linear models for designs with a binary
class variable and two or more ordinal and/or
binary attributes: an optimal analogue of logis-
tic regression or Fisher’s discriminant analysis.
These multivariable ODA models are called
“MultiODA,” for short.

Although UniODA problems can easily
be solved for enormous samples, MultiODA
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problems may be computationally intractable
for tiny samples, even on the fastest computers.
Several procedures affording reductions of an
order of magnitude or more in solution time for
MultiODA problems were recently developed,
and analysis is feasible for enormous samples in
favorable circumstances. Review of MultiODA
here will be brief: so much work has focused on
MultiODA models that a review is warranted.
Below we review two fast new methods to solve
MultiODA problems: MIP45 is a mixed integer
formulation, and WARMACK a special-purpose
search algorithm. These methods are extended
for nonlinear and multicategory MultiODA.

MIP45

The first approach to computing a Multi-
ODA solution that we shall discuss is a mixed
integer linear programming formulation called
MIP45, in which the discriminant function is
normalized so the sum of the absolute values of
the coefficients adds to one.'® This enables one
to determine, for each constraint, a lower bound
for the value of the problem parameter, M. This
is in distinction to previous formulations of this
problem, where M is defined as “a very large
number.” Since the value of M can be kept low
for each constraint, the branch-and-bound
procedure can fathom branches more quickly
than other formulations. Also, fewer branches
need to be stored in memory, and computation
time is reduced.

We compared computational resources
needed to solve a problem in classification of
medical residency applicants using MIP45 and a
recent formulation that did not limit M. The
problem had 3 attributes and 49 observations.
Running the SAS/OR optimization package on
an IBM 3090/600 mainframe computer, MIP45
solved the problem in 48 CPU seconds, versus
268 CPU seconds using the other formulation:
MIP45 analyzed 2,896 branches, versus 14,549
branches using the other formulation.

MIP45 can be extended to obtain Multi-
ODA solutions which maximize the weighted
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number of satisfied inequalities. As for Uni-
ODA, this is useful in two different contexts.

First, the weights may represent the
return obtained in the correct classification of an
observation. For example, consider the problem
of predicting whether the price of a stock will
rise or fall over a given time horizon, given a
series of market indicators and price measure-
ments. If the prediction is for a rise in the stock
price, the stock will be purchased. Conversely,
if a fall in the price is predicted, the stock will
be sold short. The weighted MultiODA solution
of this problem would maximize the trading
return over the set of observations.

The other context in which the weighted
criterion is useful occurs when the number of
observations in each class differs. In this case,
the weighted MultiODA solution balances the
number in each class by maximizing the mean
PAC over the two classes.

A useful extension of MIP45 involves
fixing the sign of the discriminant coefficients
(e.g., in a confirmatory design). In fact, bounds
or any linear constraints on the coefficients may
be imposed. Yet another type of constraint
which can be modeled is any Boolean function
of actual or predicted class membership among
the observations. One example of this would be
forcing certain observations to be classified
correctly in the MultiODA solution (if this is
feasible). Another example would be forcing
observation A to be assigned to a certain class
only if observation B is similarly classified.

Finally, a method for reducing the prob-
lem size can be applied when multiple observa-
tions share identical values for all attributes. In
this case, these observations may be aggregated
into a single observation, with a weight applied
to the objective function. This procedure is
especially useful with binary attributes: we
solved binary MultiODA problems having five
attributes and one million observations in less
than ten CPU seconds on an IBM 3090/600.
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WARMACK

A second approach to obtaining fast
solutions to MultiODA problems involves our
adaptation of a fast search algorithm initially
developed by Warmack and Gonzalez (hence
the origin of the name we use to refer to the
method).”® With this method we obtained a
reduction of an order of magnitude or more in
computation time versus the MIP45 approach.

We conducted Monte Carlo research to
investigate the computer resources required by
this algorithm as a function of n, the number of
attributes, and the relative discriminability of
the data. Problems having 2 attributes and 700
observations can be solved in less than one CPU
minute on an IBM 3090/600. This is also true
for problems with 3 attributes and 200 observa-
tions, or 4 attributes and 100 observations. Our
findings show that the number of attributes
exerts greater influence on computation time
than n or relative discriminability of the data.

Extension of MultiODA to Nonlinear and
Multicategory Problems

MultiODA may be extended to a large
class of nonlinear separating surfaces. This is
accomplished by defining attributes which are
polynomial functions of the original attributes.
Any nonlinear function which is linear in the
parameters of the original attributes may be
modeled in this manner.

It is also possible to solve multicategory
problems involving more than two class levels
using either MIP45 or WARMACK. There are
two ways to accomplish this. If there are k class
categories, the first method is to determine the
ODA solution obtained with k-1 separating
surfaces in parallel with each other. From a
computational standpoint, this is equivalent to
adding an extra attribute for each additional
class.

The second method involves the deter-
mination of k different discriminant functions:
an observation is assigned to the class for which
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the maximum value is obtained over these func-
tions. If there are p original attributes, this is
equivalent to a MultiODA problem with p times
k attributes.

In conclusion, MIP45 and WARMACK
make feasible the solution of much larger Multi-
ODA problems than have been possible to solve
previously, particularly for binary problems.
Optimal analogues to conventional statistical
methods are now available to researchers. How-
ever, ODA is far more than simply an optimal
analogue to conventional statistics.

Special-Purpose ODA Models

The flexibility of the ODA methodology
lends itself to special-purpose classification
applications for which there are no alternative
conventional statistical procedures. Indeed, the
number of different ODA models that may be
created is limitless, due to the inherently infinite
number of possible unique classification appli-
cations. Nevertheless, below we describe some
specialized ODA models that should be of great
utility across a variety of applications.

Minimizing the Number of Terms in a
MultiODA Solution

When performing an analysis, it is des-
irable to obtain a solution with as few terms as
possible, in light of the principle of parsimony.
This can be achieved in the context of the
MIP45 formulation: an upper bound is set on the
number of misclassifications, and the number of
attributes used in the solution is minimized.
This results in a more parsimonious model, with
a corresponding increase in statistical power.

Optimal Attribute Subsets

A related problem is the determination
of an optimal subset of attributes with exactly k
members. This also is an extension of MIP45.
This procedure is useful when the ratio of
number of attributes to number of observations
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is too high to yield a meaningful model, or when
redundant (multicollinear) attributes are present.

For example, we used this procedure to
discriminate 15 Type A from 15 Type B (class
variable) undergraduates using a subset of 20
items (attributes) from the Bem Sex-Role Inven-
tory. With k specified at 2 attributes, MultiODA
identified a single solution that achieved 93.3%
PAC; with k specified at 3 attributes MultiODA
identified a single solution with 100% PAC.
These problems required 91.9 and 73.9 CPU
seconds to solve on an IBM 3090/600 computer
running SAS/OR. When the attributes selected
by MultiODA were evaluated using logistic
regression analysis, 90% PAC was achieved for
both the 2- and 3-attribute models. The best 2-
attribute model identified using stepwise logistic
regression achieved 90% PAC, and the best 3-
attribute model achieved 93.3% PAC.

Integer-Valued Coefficients

UniODA may be used to solve Multi-
ODA problems in which the model weights for
the attributes (the discriminant coefficients) are
constrained to take on a small set of values. For
example, in a problem having p attributes, the
discriminant coefficients restricted to the values
0, 1, or -1, and the threshold coefficient uncon-
strained, all optimal solutions may be found by
solving 3°/2 UniODAs. In general, for k pos-
sible coefficient values and p attributes, k"/2
UniODAs are solved. If k and p are relatively
small, then few computational problems arise
due to the fast speed of UniODA. An additional
benefit of this analysis is that optimal attribute
subsets of every size are evaluated. We solved a
problem with 3 coefficient values, 8 attributes,
and 900 observations in 716 CPU seconds on a
33Mhz 386 microcomputer.™

Optimal Selection of Observation Subsets
with Unknown Class Membership

In some problems, observations are
available for which their class membership is
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unknown. Typically, exactly k of these observa-
tions are to be acted upon in some manner. The
initial phase of the MultiODA approach to this
problem involves partitioning observations into
two sets: the decision set, consisting of observa-
tions with unknown class membership, and the
evaluation set, consisting of observations with
known class membership.

To illustrate this, consider the problem
of selecting k job applicants from a pool of
applicants. The attributes may reflect measures
of previous employment experience and skills
required to perform the job task. The evaluation
set is comprised of previously hired individuals
who have been measured on these attributes.
Each individual in the evaluation set is weighted
by a performance index, in this case a measure
of job performance. The decision set is compri-
sed of the pool of job applicants, k of whom are
to be selected for employment, and all of whom
have been measured on the attributes. Multi-
ODA identifies a solution which maximizes the
weighted number of inequalities in the eval-
uation set, such that exactly k inequalities in the
decision set are satisfied.

Or, consider the problem of selecting
prisoners to be released under a court mandate
which requires that exactly k must be released,
due to overcrowding. Here the decision set is
the current population of prisoners, and the eval-
uation set are those prisoners who previously
were released. The performance index, which is
to be minimized, is a measure of mayhem pro-
duced by the previously released prisoners.

Other interesting applications of this
method lie in the areas of market research,
investment selection, and pattern recognition.

Ordered Class Variables

Another fruitful area of investigation
relates to the use of MultiODA in analysis of
data which have been sorted into ordered
(ranked) categories. MultiODA is used to maxi-
mize the goodness of fit between the actual and
predicted category assignments. Kendall’s tau
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is a similarity index widely used for comparison
of two ranked sequences, and is proportional to
the number of satisfied inequalities between
paired observations. Thus, MultiODA finds a
linear discriminant function which maximizes
the value of Kendall’s tau. It is worthwhile to
note that this situation differs from the multi-
category case in that the latter corresponds to
the analysis of unordered categories.

Optimal Nonparametric
Linear Multiple Regression

A distribution-free approach to multiple
linear regression is available using the Kendall’s
tau procedure. Initially observations are ranked
according to their values on the dependent
measure. MultiODA is then used to find the
optimal predicted rank sequence. As a final
step, an inequality-constrained multiple linear
regression problem is solved for each optimal
rank sequence. This quadratic program uses
sum-of-squared-error as the objective function,
and the inequalities corresponding to the paired
observations as constraints. The linear model
produced by this procedure is the model with
the highest R? for which the value of Kendall’s
tau is the maximum achievable overall. If
multiple optimal sequences exist, the solution
with the highest R? is selected. We have solved
such a problem with 3 independent variables
and 22 observations in 49 CPU seconds on a 50
MHz 486 microcomputer.

Optimal Templates

Another interesting application of Multi-
ODA lies in the design of optimal templates. To
illustrate this, imagine an individual is given a
list of questions and set of possible responses
for each question, one of which is to be selected
as the individual’s answer to that question.
Each question is answered by filling in a circle
(e.g., on an “IBM answer form”) corresponding
to a selected answer. The class membership of
each individual is known. The objective of this
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MultiODA procedure is to produce a template,
that is, a series of holes on an opaque sheet, so
that overlaying the template on the answer sheet
and counting the number of filled-in holes pro-
duces a discriminant score for the individual.
This score is compared to the cutpoint obtained
by MultiODA in order to assign class member-
ship to individuals. This assignment minimizes
the number of classification errors.

This problem was formulated as a pure
integer program. As an example, consider the
application of creating a template for personnel
selection purposes. A 38-item questionnaire,
with each item answered as true or false, was
completed by 107 employees of a corporation,
70 of whom were known desirable workers, and
37 of whom were known undesirable workers.
MultiODA identified a template which resulted
in 74.8% PAC, requiring 26 CPU minutes on an
IBM 3090/600 running SAS/OR.

MultiODA with Boolean Attributes

The ODA approach of minimum error
may also be applied to classification problems
with purely logical attributes. In this case, the
decision rule involved in the assignment of an
observation to a class is a Boolean function of
logical attributes which have been measured for
that observation. We wish to find a Boolean
function with at most k terms which minimizes
the number of misclassifications. Alternatively,
we may look for a function with at most k mis-
classifications which minimizes the number of
logical terms. These problems can be formula-
ted as integer programs, or solved in crude brute
force manner via exhaustive enumeration.

Consider the following application as an
example of this procedure. A pair of emergency
physicians independently diagnosed 51 patients
with hip trauma for bony abnormality. Each
physician rated each patient as abnormal or
normal based a measure of sound conduction,
and also based on physical inspection. Presence
of bony abnormality (the class variable) was
independently determined radiographically. A
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Boolean MultiODA identified a single optimal
solution that achieved 96% overall PAC. The
optimal decision rule was: if either physician
rates either attribute as abnormal, then classify
the observation as abnormal; else classify the
observation as normal.

Classification Tree Analysis

Hierarchically optimal classification tree
analysis, or CTA, is an algorithm which chains
UniODA analyses together so as to stratify the
sample in a manner that explicitly maximizes
ESS.? As for MultiODA, discussion of CTA
lies outside the domain of this manuscript:
sufficient work using CTA has accumulated so
that a comprehensive review is warranted.

Summary

Research described herein, indeed the
sum total of all of the world’s knowledge in this
field to date, merely scratches the surface of
what ODA entails, what ODA offers. Although
we can only imagine what we must be missing,
it is clear to see that ODA is a powerful new
paradigm in the statistical analysis of data. It is
intuitively appealing, in the mathematical
modeling of any process, that the model should
make as few mistakes as possible. This is the
essence of the ODA approach. Its fruitfulness,
particularly in its application to the analysis of
problems previously unanalyzable, is an indica-
tion of its value as a general-purpose problem-
solving tool. Because ODA is inherently distri-
bution- and metric-free, it avoids the necessity
of making distributional assumptions required
by conventional parametric methods. In ODA,
powerful modeling capabilities of mathematical
programming are joined with the inferential
capabilities of statistics. Furthermore, one may
combine different ODA methods so that every
problem can be formulated in terms of its own
unique characteristics. It thus seems appropriate
to postulate that, in the area of optimal statistics,
the best surely is yet to come.
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