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Optimal discriminant analysis (ODA) is a new paradigm in the 

general statistical analysis of data, which explicitly maximizes the 

accuracy achieved by a model for every statistical analysis, in the 

context of exact distribution theory.  This paper reviews optimal 

analogues of traditional statistical methods, as well as new special-

purpose models for which no conventional alternatives exist. 

Rarely does a technical report concerning an 

apparently focused and arcane classification 

methodology, such as optimal discriminant 

(data) analysis—ODA, stand a realistic chance 

of appealing to a diverse scientific community.  

Even more rarely, however, does one have the 

opportunity to report the emergence of a new 

paradigm in the statistical analysis of data.
1
  

ODA is a highly intuitive, powerful, and exact 

methodology for the general statistical analysis 

of data, and this paper reports on the emergence 

of this paradigm. 

ODA is the methodology that explicitly 

maximizes the accuracy of any type of statistical 

model for the training sample—that is, for the 

data upon which statistical analysis is per-

formed and upon which the statistical model is 

based.  An increasing awareness of the intuitive 

appeal of maximizing accuracy (and minimizing 

errors), and commercial availability of dedicated 

software, are fueling increasingly widespread 

application of ODA.
1
  Nevertheless, because 

ODA is relatively new, and therefore relatively 

few introductory and review resources covering 

the paradigm are yet widely available, this paper 

introduces many major concepts and methods of 

the ODA paradigm. 

This paper discusses initial emergence of 

the paradigm—the beginning. The paradigm has 

grown enormously, as discussed in this review: 

https://odajournal.com/2017/04/18/what-is-

optimal-data-analysis/  

Initial Assumptions 

An ODA model explicitly maximizes the 

number of correctly classified observations for a 

specific application.  Observations are consider-

ed correctly classified when the model assigns 

them to the class of which they are, in reality, a 

member, and are misclassified otherwise.  The 

number of misclassifications arising in a given 

analysis is referred to as the "optimal value."  It 

is clear that derivation of a distribution theory 

for ODA requires investigation of distributions 

underlying optimal values.  Using the simplest 

possible data structure to illustrate derivation of 

exact distribution theory, imagine a hypothetical 

application having the following three features. 

First, assume one binary class variable. 

In ODA, a class variable is what one is trying to 

https://odajournal.com/2017/04/18/what-is-optimal-data-analysis/
https://odajournal.com/2017/04/18/what-is-optimal-data-analysis/
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predict, discriminate, or classify. Examples of 

binary class variables might include gender 

(male, female), therapy (drug, placebo), or out-

come (success, failure).  Class variables may of 

course consist of more than two levels, but two 

levels is the simplest case. 

Second, assume one random continuous 

attribute.  In ODA, an attribute is a variable that 

will be employed in an effort to predict the class 

variable. The continuity assumption implies that 

every observation will achieve a unique score 

on the attribute (no ties).  Nothing is assumed 

about the shape of the distribution underlying 

scores on the attribute, but only that the scores 

are random—for example, uniform or normal.  

Single-attribute ODA analyses are referred to as 

univariable ODA, or UniODA.  Because the 

present case involves a continuous attribute, we 

are discussing a “continuous UniODA design”. 

Finally, assume three observations: two 

from one class, and one from the other class 

(three observations are required because with 

two the problem is trivial: the mean of two 

observations’ scores on a continuous attribute is 

a perfect discriminant classifier for those two 

observations).  Though it is arbitrary, refer to 

these as classes “1” and “0”, respectively.  

Hereafter, the total number of observations is 

referred to as n, and the number of observations 

in class c as nc. 

Note that only the continuity assumption 

is capable of being violated by “real-world” data 

(we return to this point later).  The first (binary 

class variable) and third (n in each class) 

assumptions can never be violated because they 

exactly define the structure of the design.  That 

is, we are considering a UniODA design with a 

binary class variable, and with n1=2 and n0=1: 

any deviation from this structure, such as more 

than two class levels or different sample sizes, 

simply defines another specific UniODA design. 

The UniODA Model 

For clarity we give an example of a two-

category continuous UniODA model. Imagine 

that a cardiologist wished to determine if heart 

rate variability (HRV)—the standard deviation 

of one's heart rate over a 24-hour period (the 

continuous attribute), can discriminate patients 

who die (class 0) versus live (class 1).  For a 

given sample UniODA would provide at least 

one optimal model, consisting of a cutpoint and 

a direction, which when used together explicitly 

maximize forecasting accuracy: percent accurate 

classification, or PAC. For example, a UniODA 

model could be: "if HRV score is greater than 

(direction) 12.2 (cutpoint), assign that person to 

class 0; otherwise, assign that person to class 1." 

A UniODA model is said to be optimal 

because the total number of misclassifications 

resulting from application of the model to the 

data is minimized, and the number of correct 

classifications is maximized.  In the example, no 

alternative combination of HRV cutpoint and 

direction would yield fewer misclassifications 

than the model which UniODA identified. 

Multiple optimal models which all yield 

the same maximum PAC may occur for a given 

data set.  For example, two different HRV cut-

points might result in the same overall number 

of misclassifications, yet one model may have 

greater sensitivity (ability to accurately classify 

members of class 1) and lower specificity 

(ability to accurately classify members of class 

0) than the other model.  In such cases, it is 

necessary to select one optimal model, prefer-

ably before conducting the analysis, using an 

appropriate decision heuristic.
1
  Examples of 

such selection heuristics include the sensitivity 

or specificity heuristic (select the model having 

greatest sensitivity or specificity, respectively), 

or the balanced performance heuristic (select the 

model with the smallest difference between 

sensitivity and specificity).
1
 

Exact Distribution Theory 

We are now ready to derive the theoreti-

cal distribution of optimal values for a two-

category continuous UniODA design with n1=2 

and n0=1.  First, it is necessary to determine the 
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set of all possible outcomes that could occur if 

the attribute were continuous and random.  In 

order to differentiate the two observations from 

class 1, they will be called “1A” and “1B.”   

There are six possible outcomes: one is 

that the value of the attribute for observation 1A 

is greater than that for observation 1B, which in 

turn is greater than that for the observation from 

class 0.  Symbolically, {1A > 1B > 0}.  The five 

other possible outcomes are: {1A > 0 > 1B}; 

{1B > 1A > 0}; {1B > 0 > 1A}; {0 > 1A > 1B}; 

and {0 > 1B > 1A}.  Because the attribute was 

random, each of these six possible outcomes is 

equally likely, with a probability of 1/6. 

Next, it is necessary to determine the 

optimal value for each of the six possible 

outcomes.  This, of course, means that UniODA 

must be performed for each of the six possible 

data configurations.
1
  Two of the six possible 

outcomes (those in which the attribute of the 

class 0 observation lies between the attributes of 

the two class 1 observations) have an associated 

optimal value of 1 misclassification, because at 

least one observation will be misclassified 

regardless of where the cutpoint is placed).  The 

other four possible outcomes (in which the two 

class 1 observations can be perfectly separated 

via a cutpoint from the class 0 observation) have 

an optimal value of 0 misclassifications.  Cumu-

lating optimal values over the set of possible 

outcomes gives the theoretical distribution of 

optimal values for this UniODA design: the 

probability of an optimal value of 0 is 4/6, and 

the probability of an optimal value of 1 is 2/6. 

Enumerating in this manner the theor-

etical distribution of optimal values for balanced 

(equal number of class 0 and 1 observations), 

continuous, two-tailed (no a priori hypothesis 

was specified) UniODA designs required a 

CRAY-2 supercomputer—which only achieved 

results for n<30 due to exponential increases in 

the number of combinations.
2
 Examination of 

the resulting table of optimal values for post hoc 

UniODA revealed organization which motivated 

discovery
3
 and proof

4
 of a closed-form solution 

for one-tailed confirmatory UniODA. 

Inexact Measures 

What if data aren’t continuous, and there 

are ties—violating the continuity assumption?  

Discontinuity in empirical data is thought to 

reflect imprecise measurement, and not as com-

promising of theoretical probabilities
5
, but this 

begged the question of exactly how imprecise 

can measurement become before the theoretical 

probabilities become compromised? This line of 

thinking naturally led to the question of what 

would occur for a binary attribute—and it was   

then that we understood that the binary attribute 

problem was the optimal analogue to chi-square 

analysis, and the continuous attribute problem 

was the optimal analogue to t-test.  Proceeding 

with binary enumeration we found the binary 

and continuous distributions differ.  This finding 

motivated two important insights. 

First, there is a theoretical dimension—

which we call precision—which may be used to 

describe the metric underlying the attribute for 

any specific UniODA problem.  The precision 

dimension is bounded at the extremes by binary 

data (least precise) versus continuous data (most 

precise).  Just as specific distribution theory can 

be derived for the extreme poles of the precision 

dimension, so too can exact distribution theory 

be derived for every specific attribute measure 

metric: for example, if the attribute is measured 

using a 7-point Likert scale, then derive distri-

bution theory by assuming a 7-point Likert scale 

was used.  As it is possible to derive distribution 

theory that assumes that the specific measure 

metric actually used in a given application was 

in fact used, distribution theory for ODA can be 

based strictly on structural features of a prob-

lem, and such distribution theory will never be 

violated by data for a given application. 

The second insight is that UniODA is an 

optimal alternative to common conventional 

statistical methods: Student's t-test is often used 

to analyze data involving a binary class variable 
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and a continuous attribute, and chi-square is 

often used to analyze data involving a binary 

class variable and a binary attribute.  UniODA 

may also be used, and exact distributions may 

be determined for, designs that lie anywhere on 

the precision dimension—anywhere between the 

binary and continuous polar extremes.  This is 

not true for conventional statistical procedures. 

ODA as an Alternative to Conventional 

Statistical Methodologies 

Encouraged by early success, we began 

programmatic research to assess the domain of 

experimental designs and data configurations 

that may be addressed using UniODA.  We next 

investigated multicategory problems involving 

class variables with more than two levels.  For a 

continuous attribute, multicategory UniODA is 

analogous to oneway analysis of variance, and 

for a binary attribute it is analogous to log-linear 

analysis.
6,7

 

UniODA, and other models within the 

ODA paradigm, clearly can be used to analyze 

different data configurations that are evaluated 

using a host of different conventional statistical 

methods.  Why should ODA be used rather than 

a host of conventional methods? 

     First, only ODA explicitly maximizes 

(weighted) classification accuracy and provides 

a forecasting model for every application.  Not 

only do conventional methods fail to explicitly 

maximize PAC, but many, such as t-test or chi-

square, also fail to provide a forecasting model. 

Second, no matter what the nature of a 

particular data configuration might be—for 

example, the number of class levels, attribute 

metrics, or class sample-size imbalances, the 

classification performance of every ODA model 

is summarized using a normed measure of effect 

strength, called effect strength for sensitivity, or 

ESS.
1
 On this index 0 represents the level of 

classification performance that is expected by 

chance, and 100 represents perfect, errorless 

classification. No such intuitive, universal index 

can be used to compare the effect strength of 

different conventional methods such as analysis 

of variance, logistic regression, and tau. 

Third, conventional methods require 

assumptions regarding the nature of the data.  

Unlike ODA—for which distribution theory is 

exact for every design, conventional methods 

are inappropriate when the data violate their 

assumptions.  Whereas the assumptions of ODA 

must conform to the data, data must conform to 

the assumptions of conventional methods. 

Finally, with ODA a single methodology 

may be optimally applied to analyze a host of 

problems, while with the conventional approach 

a host of methods may be suboptimally applied 

to analyze a single problem.  ODA is therefore 

simultaneously more unique and parsimonious 

than conventional methods. 

To illustrate the flexibility and power of 

ODA as a general statistics paradigm, below we 

describe different common data configurations 

and conventional methods often used in their 

analysis, and the corresponding ODA model. 

Binary Class Variable 

and BinaryAttribute 

The most common conventional method 

for analyzing data of this type is chi-square 

analysis: the ODA analogue is two-category 

binary UniODA.  Chi-square is an approximate 

statistic that should not be used when the 

expected value for a given cell (cells are formed 

by cross-tabulating the class variable with the 

attribute) is less than five.
8
  In contrast, binary 

UniODA is an exact statistic with no such 

restriction: one- and two-tailed estimated p by 

UniODA and Fisher’s exact test are isomorphic 

except in a hypothetical degenerate condition.
1
 

It is easy to show that UniODA may be 

particularly useful in small sample designs.  For 

example, imagine a problem with n = 6, three 

observations from class 0 all scoring 0 on the 

attribute, and three observations from class 1 all 

scoring 1.  Chi-square can’t be used to analyze 

this problem, as the expected value is less than 

five in all four cells.  When analyzed using two-
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tailed binary UniODA, a single optimal model 

(if attribute < 0.5 then class = 0; else class = 1) 

emerged that achieved 100% PAC, p<0.032.  

No systematic review/comparison of chi-square 

versus binary UniODA has yet been reported. 

Binary Class Variable 

and Multiple Binary Attributes 

The most common linear methods for 

analyzing data of this type include log-linear or 

logistic regression analysis.  Completely binary 

problems are easiest for ODA to solve, but can 

be problematic for conventional methods, with 

aspects including marginal imbalance, sparse 

cells, singularities, and structural zeros (some 

design cells don’t exist), for example, rendering 

binary data difficult or impossible to analyze.  

The optimal linear analogue is binary Multi-

ODA—a linear model which uses two or more 

attributes to explicitly maximize classification 

accuracy (discussed ahead). 

For example, we reanalyzed data from a 

study designed to predict if 120 persons with 

AIDS would require home care or structured 

long-term care (the class variable) on the basis 

of three binary attributes which assessed the 

attitudes of patient and physician towards long-

term care, and whether the patient had mental 

impairment.
9
  The data were “ill-condiioned” 

and thus could not be analyzed by log-linear or 

logistic regression methods.  MultiODA, how-

ever, found a two-attribute model that achieved 

93.3% PAC in <1/20 CPU second on a 33MHz 

386 microcomputer running a special-purpose 

ODA search algorithm (discussed ahead). 

Binary Class Variable 

and Continuous Attribute 

Among the most frequently reported of 

statistical tests, Student’s t-test is a common 

conventional procedure for analyzing data of 

this type.  The ODA analogue is two-category 

continuous UniODA. 

It is easy to construct a hypothetical 

problem for which t-test fails to find a signifi-

cant intergroup mean difference on the attribute, 

while UniODA detects nearly perfect intergroup 

discriminability.  Imagine that ten class A obser-

vations each score a value of 0 on the attribute; 

nine class B observations all score 1, and a tenth 

class B observation scores -9. Because the mean 

difference on the attribute between groups is 

zero, t-test would conclude that the groups can’t 

be discriminated whatsoever by the attribute.  

But, with UniODA, 95% of the observations are 

correctly classified—nearly perfect intergroup 

discriminability. Systematic research contrasting 

UniODA and t-test is not yet available. 

 

Binary Class Variable 

and Multiple Continuous Attributes 

Common linear methods for analyzing 

data in this configuration are linear discriminant 

analysis, logistic regression analysis, and one-

way multivariate analysis of variance.
6,7

  The 

linear ODA analogue is continuous MultiODA, 

but UniODA has been used with great success 

to maximize accuracy achieved by suboptimal 

models.
10,11

 

Monte Carlo research is often used to 

contrast continuous MultiODA versus conven-

tional statistical methods.
12,13

  A difficulty with 

such simulation research is that the experimental 

data are generated using idealized routines that 

meet criteria—such as normally distributed data 

and coincident covariance, which are important 

for conventional statistical methodologies but 

which are no substitute for “real-world” data 

collected by naturalistic empirical observation.  

Our strategy has been to analyze a variety of 

different applications using MultiODA, and then 

compare the performance against suboptimal 

methods such as Fisher's discriminant or logistic 

regression analysis, using training and validity 

data.  Early results are encouraging, but more 

research is needed to compare “in the field” 
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classification performance of MultiODA versus 

conventional procedures.
9,14,15

 

Binary or Multicategory Class Variable 

and Continuous and Binary Attributes 

Multinomial logistic regression analysis 

is a commonly employed conventional analysis 

for problems of this type.  The linear optimal 

analogue is MultiODA, with weights used to 

reduce problem size by eliminating redundant 

data profiles (discussed ahead).  Little research 

using either approach is available, and to our 

knowledge no prior research comparing these 

approaches has yet been published (until now). 

Analyzing credit screening data for a 

British bank, our objective was to develop a 

model to predict credit worthiness (the class 

variable) for a sample of 325 credit applicants.  

Attributes were two binary variables and a third 

4-point ordinal attribute. A nonparametric class-

ification methodology that performed sample 

stratification based on a recursive chi-square 

procedure identified four interaction terms used 

as attributes in follow-up analysis.  With these 

data logistic regression analysis and MultiODA 

both achieved 90.5% PAC in training analysis, 

but the latter model used one less term (and thus 

was more efficient and parsimonious) than the 

former model.  Comparing the two models using 

jackknife validity analysis revealed that PAC for 

the MultiODA model was stable, but regressed 

to 83.1% for the obviously over-determined 

logistic regression model. 

Multicategory Class Variable 

and Polychotomous Attribute 

Common conventional methodologies 

for analyzing these designs include chi-square, 

log-linear, or multinomial logistic regression 

analysis.  The optimal analogue is multicategory 

UniODA.  As was true for designs that involved 

one binary class variable and multiple binary 

attributes, issues such as structural zeros, sparse 

cells, imbalanced marginal distributions, small 

samples, and multicollinearity may spell disaster 

for conventional designs.  As discussed earlier, 

these are not problems for ODA. 

It is easy to construct an example for 

which conventional analyses are inappropriate, 

but for which multicategory UniODA is ideal.  

For example, imagine a problem with a three-

category (A, B, C) class variable, with each 

category having three observations.  Further 

imagine all three class A observations scored a 

value of 1 on the attribute; all three class B 

observations scored a 2, and all three class C 

observations scored a 3.  Although the small 

sample renders conventional methods  inappro-

priate, a multicategory UniODA achieved 100% 

PAC, two-tailed p<0.01. 

Multicategory Class Variable 

and Continuous Attribute 

The most common conventional analysis 

used for such designs is oneway analysis of 

variance, and the optimal analogue is multicate-

gory UniODA.  As for t-test, distribution theory 

for analysis of variance is highly sensitive to 

assumption violations.
5
  Such data can present 

insurmountable problems for multinomial logis-

tic regression, because of small samples, sparse 

cells, and marginal imbalance, particularly when 

polychotomous attributes are thrown in the mix: 

for example the analysis will fail if a degenerate 

attribute—which has fewer response categories 

than the class variable has levels—is included in 

the analysis. 

As an example of a three-category Uni-

ODA, imagine the following hypothetical data 

set, problematic for conventional methods due 

to the small sample, the presence of outliers, 

heterogeneity, the presence of zero variance for 

one group, and non-normality (in Table 1, X is 

the attribute). 
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TABLE 1: Hypothetical data set for three-category UniODA 

                                                  Class      X         Class      X        Class     X 

                                                  -------   -----       -------    -----     -------   ----- 

                                                     A       29            B         35          C        5  

                                                     A       30            B         35          C       42 

                                                     A       31            B         35          C       43 

                                                     A       50            B         35          C       50 

 

In this example the mean X of classes A, 

B, and C is exactly equal, so F=0.  However, the 

UniODA model (if X < 33 then class = A; if X  

> 38.5 then class = C; else class = B) correctly 

classified 10 of the 12 data points: overall and 

mean PAC over all three groups is 83.3%, two-

tailed p<0.05. 

Ordered Class Variable 

and Continuous and/or Binary Attributes 

Among the many types of nonparametric 

methods in use, Kendall's tau is arguably the 

least problematic procedure conventionally used 

to evaluate associations among ordinal (ranked) 

data.
16

  Tau is a computed index for evaluating 

the relationship between two ordered variables: 

collect data, compute tau, and “it is what it is.”  

Ahead we show that multicategory MultiODA 

can be used to determine criterion weights for 

two or more attributes to generate a summary 

score which explicitly maximizes tau. 

Receiver Operator Curve 

(Signal Detection) Analysis 

 Bayesian classification methods are 

commonly used to evaluate the discriminating 

power of attributes.
17

  Such procedures typically 

aim to maximize the sensitivity, specificity, or 

some combination of sensitivity and specificity 

achieved using an attribute.  Since ODA models 

may be derived which explictly maximize sensi-

tivity, specificity, or any weighted composite of 

sensitivity and specificity, either for individual 

attributes or for sets of attributes, we call this 

application “optimal signal detection analysis.” 

In summary, it is a common practice to 

employ multiple different statistical methods, 

each requiring data to satisfy different essential 

assumptions, to analyze a given sample of data 

in numerous “different” (actually related) ways.  

We recommend using a single statistical method 

to analyze data with one objective function in 

mind: maximizing accuracy.  The utility of this 

approach will undoubtedly receive increased 

attention as researchers learn more about the 

unrivaled generalizability and power of ODA 

across different data configurations. 

Fast MultiODA Solutions 

Early research was highly productive, 

and new applications for UniODA models were 

discovered routinely as new data structures were 

considered.
1
  As data configurations became 

increasingly complex, so did ODA models, and 

researchers began formulating and investigating 

optimal linear models for designs with a binary 

class variable and two or more ordinal and/or 

binary attributes: an optimal analogue of logis-

tic regression or Fisher’s discriminant analysis.  

These multivariable ODA models are called 

“MultiODA,” for short. 

Although UniODA problems can easily 

be solved for enormous samples, MultiODA 
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problems may be computationally intractable 

for tiny samples, even on the fastest computers.  

Several procedures affording reductions of an 

order of magnitude or more in solution time for 

MultiODA problems were recently developed, 

and analysis is feasible for enormous samples in 

favorable circumstances. Review of MultiODA 

here will be brief: so much work has focused on 

MultiODA models that a review is warranted. 

Below we review two fast new methods to solve 

MultiODA problems: MIP45 is a mixed integer 

formulation, and WARMACK a special-purpose 

search algorithm.  These methods are extended 

for nonlinear and multicategory MultiODA. 

MIP45 

The first approach to computing a Multi-

ODA solution that we shall discuss is a mixed 

integer linear programming formulation called 

MIP45, in which the discriminant function is 

normalized so the sum of the absolute values of 

the coefficients adds to one.
18

  This enables one 

to determine, for each constraint, a lower bound 

for the value of the problem parameter, M.  This 

is in distinction to previous formulations of this 

problem, where M is defined as “a very large 

number.”  Since the value of M can be kept low 

for each constraint, the branch-and-bound 

procedure can fathom branches more quickly 

than other formulations.  Also, fewer branches 

need to be stored in memory, and computation 

time is reduced. 

We compared computational resources 

needed to solve a problem in classification of 

medical residency applicants using MIP45 and a 

recent formulation that did not limit M.  The 

problem had 3 attributes and 49 observations.  

Running the SAS/OR optimization package on 

an IBM 3090/600 mainframe computer, MIP45 

solved the problem in 48 CPU seconds, versus 

268 CPU seconds using the other formulation: 

MIP45 analyzed 2,896 branches, versus 14,549 

branches using the other formulation. 

MIP45 can be extended to obtain Multi-

ODA solutions which maximize the weighted 

number of satisfied inequalities.  As for Uni-

ODA, this is useful in two different contexts. 

First, the weights may represent the 

return obtained in the correct classification of an 

observation.  For example, consider the problem 

of predicting whether the price of a stock will 

rise or fall over a given time horizon, given a 

series of market indicators and price measure-

ments.  If the prediction is for a rise in the stock 

price, the stock will be purchased.  Conversely, 

if a fall in the price is predicted, the stock will 

be sold short.  The weighted MultiODA solution 

of this problem would maximize the trading 

return over the set of observations. 

The other context in which the weighted 

criterion is useful occurs when the number of 

observations in each class differs.  In this case, 

the weighted MultiODA solution balances the 

number in each class by maximizing the mean 

PAC over the two classes. 

A useful extension of MIP45 involves 

fixing the sign of the discriminant coefficients 

(e.g., in a confirmatory design).  In fact, bounds 

or any linear constraints on the coefficients may 

be imposed.  Yet another type of constraint 

which can be modeled is any Boolean function 

of actual or predicted class membership among 

the observations.  One example of this would be 

forcing certain observations to be classified 

correctly in the MultiODA solution (if this is 

feasible).  Another example would be forcing 

observation A to be assigned to a certain class 

only if observation B is similarly classified.  

Finally, a method for reducing the prob-

lem size can be applied when multiple observa-

tions share identical values for all attributes.  In 

this case, these observations may be aggregated 

into a single observation, with a weight applied 

to the objective function.  This procedure is 

especially useful with binary attributes: we 

solved binary MultiODA problems having five 

attributes and one million observations in less 

than ten CPU seconds on an IBM 3090/600. 
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WARMACK 

A second approach to obtaining fast 

solutions to MultiODA problems involves our 

adaptation of a fast search algorithm initially 

developed by Warmack and Gonzalez (hence 

the origin of the name we use to refer to the 

method).
19

  With this method we obtained a 

reduction of an order of magnitude or more in 

computation time versus the MIP45 approach.   

We conducted Monte Carlo research to 

investigate the computer resources required by 

this algorithm as a function of n, the number of 

attributes, and the relative discriminability of 

the data.  Problems having 2 attributes and 700 

observations can be solved in less than one CPU 

minute on an IBM 3090/600.  This is also true 

for problems with 3 attributes and 200 observa-

tions, or 4 attributes and 100 observations.  Our 

findings show that the number of attributes 

exerts greater influence on computation time 

than n or relative discriminability of the data. 

Extension of MultiODA to Nonlinear and 

Multicategory Problems 

 MultiODA may be extended to a large 

class of nonlinear separating surfaces.  This is 

accomplished by defining attributes which are 

polynomial functions of the original attributes.  

Any nonlinear function which is linear in the 

parameters of the original attributes may be 

modeled in this manner. 

It is also possible to solve multicategory 

problems involving more than two class levels 

using either MIP45 or WARMACK.  There are 

two ways to accomplish this. If there are k class 

categories, the first method is to determine the 

ODA solution obtained with k-1 separating 

surfaces in parallel with each other.  From a 

computational standpoint, this is equivalent to 

adding an extra attribute for each additional 

class. 

The second method involves the deter-

mination of k different discriminant functions: 

an observation is assigned to the class for which 

the maximum value is obtained over these func-

tions.  If there are p original attributes, this is 

equivalent to a MultiODA problem with p times 

k attributes. 

In conclusion, MIP45 and WARMACK 

make feasible the solution of much larger Multi-

ODA problems than have been possible to solve 

previously, particularly for binary problems. 

Optimal analogues to conventional statistical 

methods are now available to researchers. How-

ever, ODA is far more than simply an optimal 

analogue to conventional statistics. 

Special-Purpose ODA Models 

The flexibility of the ODA methodology 

lends itself to special-purpose classification 

applications for which there are no alternative 

conventional statistical procedures.  Indeed, the 

number of different ODA models that may be 

created is limitless, due to the inherently infinite 

number of possible unique classification appli-

cations.  Nevertheless, below we describe some 

specialized ODA models that should be of great 

utility across a variety of applications.   

Minimizing the Number of Terms in a 

MultiODA Solution 

When performing an analysis, it is des-

irable to obtain a solution with as few terms as 

possible, in light of the principle of parsimony.  

This can be achieved in the context of the 

MIP45 formulation: an upper bound is set on the 

number of misclassifications, and the number of 

attributes used in the solution is minimized.  

This results in a more parsimonious model, with 

a corresponding increase in statistical power. 

Optimal Attribute Subsets 

A related problem is the determination 

of an optimal subset of attributes with exactly k 

members.  This also is an extension of MIP45.  

This procedure is useful when the ratio of 

number of attributes to number of observations 
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is too high to yield a meaningful model, or when 

redundant (multicollinear) attributes are present. 

For example, we used this procedure to 

discriminate 15 Type A from 15 Type B (class 

variable) undergraduates using a subset of 20 

items (attributes) from the Bem Sex-Role Inven-

tory.  With k specified at 2 attributes, MultiODA 

identified a single solution that achieved 93.3% 

PAC; with k specified at 3 attributes MultiODA 

identified a single solution with 100% PAC.  

These problems required 91.9 and 73.9 CPU 

seconds to solve on an IBM 3090/600 computer 

running SAS/OR.  When the attributes selected 

by MultiODA were evaluated using logistic 

regression analysis, 90% PAC was achieved for 

both the 2- and 3-attribute models.  The best 2-

attribute model identified using stepwise logistic 

regression achieved 90% PAC, and the best 3-

attribute model achieved 93.3% PAC. 

Integer-Valued Coefficients 

UniODA may be used to solve Multi-

ODA problems in which the model weights for 

the attributes (the discriminant coefficients) are 

constrained to take on a small set of values.  For 

example, in a problem having p attributes, the 

discriminant coefficients restricted to the values 

0, 1, or -1, and the threshold coefficient uncon-

strained, all optimal solutions may be found by 

solving 3
p
/2 UniODAs.  In general, for k pos-

sible coefficient values and p attributes, k
p
/2 

UniODAs are solved.  If k and p are relatively 

small, then few computational problems arise 

due to the fast speed of UniODA.  An additional 

benefit of this analysis is that optimal attribute 

subsets of every size are evaluated.  We solved a 

problem with 3 coefficient values, 8 attributes, 

and 900 observations in 716 CPU seconds on a 

33Mhz 386 microcomputer.
15

 

Optimal Selection of Observation Subsets 

with Unknown Class Membership 

In some problems, observations are 

available for which their class membership is 

unknown.  Typically, exactly k of these observa-

tions are to be acted upon in some manner.  The 

initial phase of the MultiODA approach to this 

problem involves partitioning observations into 

two sets: the decision set, consisting of observa-

tions with unknown class membership, and the 

evaluation set, consisting of observations with 

known class membership. 

To illustrate this, consider the problem 

of selecting k job applicants from a pool of 

applicants.  The attributes may reflect measures 

of previous employment experience and skills 

required to perform the job task.  The evaluation 

set is comprised of previously hired individuals 

who have been measured on these attributes.  

Each individual in the evaluation set is weighted 

by a performance index, in this case a measure 

of job performance.  The decision set is compri-

sed of the pool of job applicants, k of whom are 

to be selected for employment, and all of whom 

have been measured on the attributes.  Multi-

ODA identifies a solution which maximizes the 

weighted number of inequalities in the eval-

uation set, such that exactly k inequalities in the 

decision set are satisfied.   

Or, consider the problem of selecting 

prisoners to be released under a court mandate 

which requires that exactly k must be released, 

due to overcrowding.  Here the decision set is 

the current population of prisoners, and the eval-

uation set are those prisoners who previously 

were released. The performance index, which is 

to be minimized, is a measure of mayhem pro-

duced by the previously released prisoners. 

Other interesting applications of this 

method lie in the areas of market research, 

investment selection, and pattern recognition. 

Ordered Class Variables 

Another fruitful area of investigation 

relates to the use of MultiODA in analysis of 

data which have been sorted into ordered 

(ranked) categories.  MultiODA is used to maxi-

mize the goodness of fit between the actual and 

predicted category assignments.  Kendall’s tau 
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is a similarity index widely used for comparison 

of two ranked sequences, and is proportional to 

the number of satisfied inequalities between 

paired observations.  Thus, MultiODA finds a 

linear discriminant function which maximizes 

the value of Kendall’s tau.  It is worthwhile to 

note that this situation differs from the multi-

category case in that the latter corresponds to 

the analysis of unordered categories. 

Optimal Nonparametric 

Linear Multiple Regression 

A distribution-free approach to multiple 

linear regression is available using the Kendall’s 

tau procedure.  Initially observations are ranked 

according to their values on the dependent 

measure.  MultiODA is then used to find the 

optimal predicted rank sequence.  As a final 

step, an inequality-constrained multiple linear 

regression problem is solved for each optimal 

rank sequence.  This quadratic program uses 

sum-of-squared-error as the objective function, 

and the inequalities corresponding to the paired 

observations as constraints.  The linear model 

produced by this procedure is the model with 

the highest R
2
 for which the value of Kendall’s 

tau is the maximum achievable overall.  If 

multiple optimal sequences exist, the solution 

with the highest R
2
 is selected.  We have solved 

such a problem with 3 independent variables 

and 22 observations in 49 CPU seconds on a 50 

MHz 486 microcomputer.  

Optimal Templates 

Another interesting application of Multi-

ODA lies in the design of optimal templates.  To 

illustrate this, imagine an individual is given a 

list of questions and set of possible responses 

for each question, one of which is to be selected 

as the individual’s answer to that question.  

Each question is answered by filling in a circle 

(e.g., on an “IBM answer form”) corresponding 

to a selected answer.  The class membership of 

each individual is known.  The objective of this 

MultiODA procedure is to produce a template, 

that is, a series of holes on an opaque sheet, so 

that overlaying the template on the answer sheet 

and counting the number of filled-in holes pro-

duces a discriminant score for the individual.  

This score is compared to the cutpoint obtained 

by MultiODA in order to assign class member-

ship to individuals.  This assignment minimizes 

the number of classification errors.   

This problem was formulated as a pure 

integer program.  As an example, consider the 

application of creating a template for personnel 

selection purposes.  A 38-item questionnaire, 

with each item answered as true or false, was 

completed by 107 employees of a corporation, 

70 of whom were known desirable workers, and 

37 of whom were known undesirable workers.  

MultiODA identified a template which resulted 

in 74.8% PAC, requiring 26 CPU minutes on an 

IBM 3090/600 running SAS/OR. 

MultiODA with Boolean Attributes 

The ODA approach of minimum error 

may also be applied to classification problems 

with purely logical attributes.  In this case, the 

decision rule involved in the assignment of an 

observation to a class is a Boolean function of 

logical attributes which have been measured for 

that observation.  We wish to find a Boolean 

function with at most k terms which minimizes 

the number of misclassifications.  Alternatively, 

we may look for a function with at most k mis-

classifications which minimizes the number of 

logical terms.  These problems can be formula-

ted as integer programs, or solved in crude brute 

force manner via exhaustive enumeration.   

Consider the following application as an 

example of this procedure.  A pair of emergency 

physicians independently diagnosed 51 patients 

with hip trauma for bony abnormality.  Each 

physician rated each patient as abnormal or 

normal based a measure of sound conduction, 

and also based on physical inspection.  Presence 

of bony abnormality (the class variable) was 

independently determined radiographically.  A 
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Boolean MultiODA identified a single optimal 

solution that achieved 96% overall PAC.  The 

optimal decision rule was: if either physician 

rates either attribute as abnormal, then classify 

the observation as abnormal; else classify the 

observation as normal. 

Classification Tree Analysis 

Hierarchically optimal classification tree 

analysis, or CTA, is an algorithm which chains 

UniODA analyses together so as to stratify the 

sample in a manner that explicitly maximizes 

ESS.
20

  As for MultiODA, discussion of CTA 

lies outside the domain of this manuscript: 

sufficient work using CTA has accumulated so 

that a comprehensive review is warranted. 

Summary 

Research described herein, indeed the 

sum total of all of the world’s knowledge in this 

field to date, merely scratches the surface of 

what ODA entails, what ODA offers.  Although 

we can only imagine what we must be missing, 

it is clear to see that ODA is a powerful new 

paradigm in the statistical analysis of data.  It is 

intuitively appealing, in the mathematical 

modeling of any process, that the model should 

make as few mistakes as possible.  This is the 

essence of the ODA approach.  Its fruitfulness, 

particularly in its application to the analysis of 

problems previously unanalyzable, is an indica-

tion of its value as a general-purpose problem-

solving tool.  Because ODA is inherently distri-

bution- and metric-free, it avoids the necessity 

of making distributional assumptions required 

by conventional parametric methods.  In ODA, 

powerful modeling capabilities of mathematical 

programming are joined with the inferential 

capabilities of statistics.  Furthermore, one may 

combine different ODA methods so that every 

problem can be formulated in terms of its own 

unique characteristics.  It thus seems appropriate 

to postulate that, in the area of optimal statistics, 

the best surely is yet to come. 
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