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Automated CTA Software: Fundamental 

Concepts and Control Commands 
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Optimal Data Analysis, LLC 

 

Fundamental methodological concepts are reviewed, and auto-

mated CTA software commands are annotated. 

 

A decade in the making, commercially-available 

software which conducts automated hierarchi-

cally optimal classification tree analysis
1
 (CTA) 

is now being offered to organizations and indi-

viduals.  This article reviews motivation under-

lying use of nonlinear models; shortcomings of 

suboptimal nonlinear methods; CTA methods, 

model interpretation and reporting; and use of 

automated software.  Software commands and 

sample code used for solving (un)weighted clas-

sification problems are annotated. 

“One Size Fits All” versus 

“Different Strokes for Different Folks” 

Examples of linear models broadly used 

in applied research include models derived via 

logistic regression, log-linear, and discriminant 

analysis.
2,3

  Regardless of derivation, all linear 

models share three important, usually unfulfilled 

assumptions. 

First, linear models assume attributes in 

the model are important for every observation in 

the sample.  In contrast, with nonlinear models 

different attribute sets can be used with different 

partitions of the sample: one set of attributes is 

used for classifying one partition of the sample; 

another set of attributes is used for classifying a 

different sample partition; and so forth. 

Second, linear models assume the model 

attributes have identical direction of influence 

(positively or negatively predictive) for every 

observation.  In contrast, with nonlinear models 

an attribute may predict class category 1 for one 

partition of the sample, versus category 0 for a 

different sample partition. 

Third, linear models assume attributes in 

the model have the same coefficient value (or 

decision weight) for all sample observations.  In 

contrast, in nonlinear models the coefficient for 

an attribute may assume two different values for 

two different sample partitions: for example, 0.2 

and -1.8, respectively. 

Traditional Nonlinear Methods 

Nonlinear classification methods based 

on general linear model (GLM) or maximum-

likelihood (ML) paradigms maximize variance 

ratios, or the value of the likelihood function for 

the sample, respectively.  Examples of such sub-

optimal methods are chi-square automatic inter-

action detection, classification and regression 

tree analysis, genetic algorithms and neural net-

works.  A problem for GLM-based methods in-

volves satisfying the multivariate normally dis-

tributed (MND) assumption required for p to be 

valid, and a problem for ML-based methods is 
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that model coefficients are biased except in the 

limit for enormous samples.
2,3

  A common issue 

is that neither GLM nor ML methods explicitly 

maximize model accuracy.
1
 

Example of a CTA Model 

 The first CTA model published involved 

exploratory research discriminating geriatric (at 

least 65 years of age) versus nongeriatric adult 

ambulatory medical patients on the basis of self-

reported well-being.
4
  Forty geriatric and 85 non-

geriatric ambulatory medical patients completed a 

survey assessing five functional status dimensions 

(Basic and Intermediate Activities, Mental Health 

[absence of depression], Social Activity, Quality of 

Social Interaction), and including five single-item 

measures assessing health satisfaction, physical 

limitations, and quantity of social interaction.  The 

CTA model (Figure 1) was constructed manually 

using ODA software.
1
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Figure 1: CTA Model Discriminating Geriatric 

vs. Nongeriatric Ambulatory Medical Patients 

On first glance a depiction of any classi-

fication tree model may appear similar to results 

obtained by decision analysis (DA), because 

both methods depict findings using tree-like rep-

resentations.
4
 As seen, CTA models initiate with 

a root node, from which two or more branches 

emanate and lead to other nodes:  branches indi-

cate pathways through the tree, and all branches 

ultimately terminate in model endpoints.  The 

CTA algorithm determines the attribute subset 

which predicts the outcome with maximum ac-

curacy, beginning with the attribute which best 

discriminates the class variable (geriatric status) 

with maximum accuracy for the total sample.  

DA estimates valence and likelihood associated 

with all possible decision-making strategies and 

outcomes.  In contrast, CTA identifies a specific 

decision-making strategy which maximizes ac-

curacy in predicting a specific outcome. 

        Circles represent nodes in this schematic 

illustration of the CTA model, arrows indicate 

branches, and rectangles represent model end-

points.  Numbers (or words, when attributes are 

categorical) adjacent to arrows indicate the 

value of the cutpoint (or category) for the node.  

Numbers underneath nodes give the generalized 

(per-comparison) Type I error rate for the node. 

The number of observations classified into each 

endpoint is indicated beneath the endpoint, and 

the percentage of geriatric observations is given 

inside the rectangle representing the endpoint. 

Using CTA models to classify individual 

observations is straightforward.  Consider a hypo-

thetical person having an Intermediate Activities 

score=85, a Mental Health score=64, and 7 close 

friends.  Starting with the first node, since the 

person’s Intermediate Activities score is <89.6, the 

left branch is appropriate.  At the second node the 

left branch is again appropriate because the per-

son’s Mental Health score is <65.  Finally, at the 

third node the right branch is appropriate since the 

person has more than 5 close friends.  The person 

is classified into the corresponding model end-

point: as seen, all six observations classified into 

this model endpoint were geriatric.  Note that end-

points represent sample strata identified by the 

CTA model.  The probability of being geriatric for 
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this endpoint is pgeriatric=1 for the sample (in light 

of the small sample size at this endpoint, it may be 

more meaningful, depending on the application, to 

report pgeriatric>6/7).  In this example, had the 

patient instead reported 5 or fewer close friends, 

then the left-hand endpoint would be appropriate, 

with pgeriatric=0 (i.e., pgeriatric<1/18). 

Some intuitive aspects of CTA models 

are immediately obvious.  For example, model 

“coefficients” are cutpoints or category descrip-

tions expressed in their natural measurement 

units.  In addition, sample stratification unfolds 

in a “flow” process which is easily visualized 

across model attributes.  The manner in which 

CTA handles observations having missing data 

is also intuitive: linear models drop observations 

missing data on any attributes in the model, but 

CTA only drops observations which are missing 

data on attributes required in their classification.  

In the present example, imagine an observation 

having an Intermediate Activities score of 89.6 

or greater, but missing data on number of close 

friends and/or on Mental Health.  Using a linear 

model the observation would be dropped, but 

using CTA the observation would be classified. 

Staging Tables 

Staging tables (see Table 1) represent an 

alternative intuitive representation of CTA find-

ings, and are useful for assigning “severity” or 

“propensity” scores (weights) to observations 

based on the findings of the CTA model.  The 

rows of the staging table are simply model end-

points reorganized in increasing order of percent 

of class 1 (geriatric) membership.  Stage is an 

ordinal index of geriatric propensity, and 

pgeriatric is the corresponding continuous index: 

increasing values on either index indicates in-

creasing propensity. Compared to Stage 1 (with 

pgeriatric set at <1/18, or 0.056), pgeriatric is ap-

proximately 4-times higher in Stage 2, 12-times 

higher in Stage 3, and 15-times higher in Stage 

4 (with pgeriatric set at >6/7, or 0.857). 

To use the table to stage geriatric pro-

pensity for a given observation, simply evaluate 

the fit between the observation’s data and each 

stage descriptor.  Begin at Stage 1, and work 

sequentially through stages until identifying the 

descriptor which is exactly true for the data of 

the observation undergoing staging.  Consider 

the hypothetical person discussed earlier.  Stage 

1 does not fit because the person has more than 

five close friends. Stage 2 does not fit because 

the person’s Intermediate Activities score is 

<89.6. Stage 3 does not fit because the person’s 

Mental Health score is <65.  The staging table 

has only one degree of freedom, so through the 

process of elimination, it is clear that Stage 4 

must be appropriate.  Because the person has an 

Intermediate Activities score <89.6, a Mental 

Health score <65, and >5 close friends, Stage 4 

clearly fits the data of this hypothetical person.  

        Table 1: Staging Table for Predicting 

                         Geriatric Status 

--------------------------------------------------------------- 
          Intermediate   Mental     Close 

Stage   Activities      Health    Friends   N    pgeriatric   Odds 

--------------------------------------------------------------- 

   1        < 89.6        < 65        < 5     17      0     <1:17 

   2        > 89.6        ------       -----    69   .217       1:4 

   3        < 89.6        > 65        -----    31   .645       2:1 

   4        < 89.6        < 65        > 5        6      1       >6:1 

--------------------------------------------------------------- 
Note: Increasing scores on  Intermediate Activities indi- 

          cate increasing adaptability, and increasing scores 

          on Mental Health indicate decreasing depression. 

Assessing Model Performance 

Performance measures for CTA (and for 

all ODA methods) are also intuitively appealing, 

and are derived from a confusion table, as indi-

cated for the present example in Table 2.  Rows 

of the confusion table indicate the actual class 

category of any given observation in the train-

ing sample (used for model development), and 

columns indicate the class category predicted 

for an observation by the CTA model.  For pre-

dictions involving the class category status of 
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individual observations in the training sample, 

when the actual and predicted class categories 

are identical (e.g., a geriatric person is predicted 

to be geriatric) then the model is correct; other-

wise it is incorrect.  Row and column marginal 

totals (the sum of all table entries in the row or 

column, respectively) are presented in the bor-

ders of the confusion table.  For example, for 

actual class=geriatric, the row marginal is 15+ 

26=41.  For predicted class=geriatric, the col-

umn marginal is 11+26=37.  Finally, the total 

sample size which is classified by the model is 

given in the lower right-hand corner of the table: 

this total is equal to the sum of row marginals, 

and also to the sum of column marginals. 

Table 2: Confusion Table for the 

Example CTA Model 

    ------------------------------------------------------------ 

                                        Predicted Class 

   Actual Class          Nongeriatric   Geriatric 

   Nongeriatric                    71               11            82 

   Geriatric                          15               26            41 

                                           86               37          123 

   ------------------------------------------------------------ 

Assessing the performance of a CTA (or 

any classification) model begins by computing 

five standard epidemiological indices.
1
  The first 

pair of indices assess the ability of the model to 

accurately classify observations in the different 

class categories.  Sensitivity is the likelihood of 

correctly classifying an observation from Class 

1, and is defined as the number of correctly 

classified Class 1 observations divided by the 

total number of Class 1 observations: here, 26/ 

41=0.634.  Specificity is the likelihood of cor-

rectly classifying an observation from Class 0, 

and is defined as the number of correctly classi-

fied Class 0 observations divided by the total 

number of Class 0 observations: 71/82=0.866. 

The next set of indices address the accu-

racy of the model when it is used to make classi-

fications.  Positive predictive value (PPV) is the 

likelihood that an observation predicted to be a 

member of Class 1 is accurately classified (i.e., 

is in reality a member of Class 1): here, 26/37= 

0.703.  Negative predictive value (NPV) is the 

likelihood that an observation predicted to be a 

member of Class 0 is accurately classified: here, 

71/86=0.826. 

Finally, overall accuracy, or percentage 

accuracy in classification (PAC), is 100% times 

the number of correctly classified observations 

divided by the total number of observations 

classified by the model: 100% x (71+26)/123= 

78.9%.  In the literature, sensitivity, specificity, 

PPV and NPV are typically multiplied by 100% 

in order to report all five indices in a common, 

familiar metric, and because the focus of CTA 

(and all statistical models in the optimal data 

analysis paradigm) is predictive accuracy rather 

than probabilistic likelihood.
1,5

 

Summarizing a confusion table is a me-

thodic, straightforward process, as illustrated for 

the present example: Using the CTA model, a 

total of 30.1% [100% x (26+11)/123] of the 

sample is predicted to be geriatric.  These pre-

dictions are correct 70.3% [100% x PPV] of the 

time, and correctly identify 63.4% [100% x 

sensitivity] of all geriatric observations.  Also, 

82.6% [100% x NPV] of the model-based pre-

dictions that an observation is nongeriatric are 

correct, and correctly classify 86.6% [100% x 

specificity] of all the nongeriatric observations.  

Overall, the model correctly classified 78.9% 

[PAC] of the observations in the sample. 

Foregoing indices are bounded by 0 and 

1 (or, equivalently, between 0% and 100%), and 

reference the absolute predictive capacity of a 

classification model.  The ultimate objective is 

for all of these indices to reach their theoretical 

upper limit of 100% correct prediction. How-

ever, in the likely event that a statistical model 

fails to achieve perfect prediction, statistical cri-

teria are used to assess the performance of CTA 

(and other) models, in terms of their predictive 

capacity relative to chance. 
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Effect Size for Sensitivity (ESS) 

None of the five absolute performance 

indices are normed relative to chance, or have 

an associated exact p value.
1
  Accordingly, the 

performance of all models in the optimal data 

analysis paradigm, including CTA, is summa-

rized using the effect strength for sensitivity 

(ESS) statistic, a normed index ranging between 

0 (representing the level of classification accu-

racy expected by chance) and 100 (representing 

errorless classification).
1
 

The formula for computing ESS for 

problems with class variables involving two cat-

egories (automated CTA software solves only 

two-category problems: CTA for more than two 

class categories has never been reported) is: 

ESS=100% x (Mean PAC – 50)/50                (1), 

where 

Mean PAC=100% x (sensitivity + specificity)/2 

                                                                        (2). 

For example, if a CTA model had sensitiv-

ity=0.85 and specificity=0.74, then mean PAC= 

100% x [(0.85+0.74)/2]=79.5%, and ESS=100% 

x [(79.5-50)/50]=59.0%. 

Using ESS one may directly compare the 

performance of different models, relative to 

chance, regardless of structural features of the 

analyses, such as sample size, number of class 

categories, number of attributes and attribute 

metric, sample skew, and so forth.  The rule-of-

thumb which is used for evaluating ecological 

significance of results achieved by classification 

models is: ESS<25% (one-quarter of the im-

provement in classification accuracy theoreti-

cally possible to attain beyond the performance 

achieved by chance) is a relatively weak effect; 

25%<ESS<50% is a moderate effect; 50%<ESS 

<75% a relatively strong effect; and ESS>75% 

is a strong effect.
1
  Thus, in order to complete 

the summary of the confusion table which was 

presented earlier, append the following conclu-

sion: “The CTA model yielded ESS=50.0%, a 

relatively strong effect.” 

It is noteworthy that linear models may 

classify all observations in the sample into the 

dominant class if the sample is highly skewed 

(e.g., more than 75% of the sample falls into one 

class category).  In this case Mean PAC is 50%, 

and ESS=0.  For expository purposes, Table 3 

illustrates how Mean PAC and ESS are related 

if one class category is classified perfectly, and 

Table 4 emphasizes that mean PAC=50 is what 

is anticipated by chance. 

Table 3: PAC in Each of Two Groups (PAC= 

  100% in One Group), Mean PAC, and ESS 

  Group A      Group B     Mean PAC     ESS 

     100                0                   50              0 

     100               10                  55             10 

     100               20                  60             20 

     100               30                  65             30 

     100               40                  70             40 

     100               50                  75             50 

     100               60                  80             60 

     100               70                  85             70 

     100               80                  90             80 

     100               90                  95             90 

     100             100                100           100 

------------------------------------------------------- 

Table 4: Patterns of PAC in Each of Two 

Groups that Yield ESS=0 

  Group A      Group B     Mean PAC     ESS 

     100                0                   50              0 

       90               10                  50              0 

       80               20                  50              0 

       70               30                  50              0 

       60               40                  50              0 

       50               50                  50              0 

------------------------------------------------------- 

 Ostrander et al.
6
 note that, in contrast to 

sensitivity and specificity, PPV and NPV are 

influenced by base rate of class category c (e.g., 

0 or 1) in the population, and by the false posi-
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tive rate—the likelihood that the model will 

classify an observation into class category c 

when the observation is not a member of c.  A 

method is given for easily assessing the models 

efficiency over different base rates (an efficient 

model provides PAC for category c which is 

greater than the category c base rate).
6
 

Model Interpretation 

In addition to its greater accuracy versus 

logistic regression analysis or Fisher’s discriminant 

analysis, CTA also produced substantively richer 

findings.  In the present example the linear models 

identified two patient clusters: relatively active, 

depressed nongeriatric people; and relatively inac-

tive, non-depressed geriatric people. 
 

Active

nongeriatric

adults

Inactive, happy

geriatric adults

Inactive, depressed,

socially isolated

young women

Inactive, depressed,

socially connected

geriatric adults

 

Figure 2: Pie-Chart Illustrating Distribution of 

Total Sample in Four CTA-Based Strata 

In contrast, the CTA model identified four 

patient strata.  Patients scoring >89.6 on Intermedi-

ate Activities were primarily (78.3%) relatively 

active nongeriatric adults (56% of total sample).  

Patients scoring at lower levels on Intermediate 

Activities, and at high levels (>65) on Mental 

Health, were largely (64.5%) relatively inactive, 

nondepressed geriatric adults (25% of sample).   

All the patients scoring at lower levels on both 

Intermediate Activities and Mental Health, and 

having fewer than six close friends, were inactive, 

depressed, socially isolated nongeriatric adults 

(14% of total sample, primarily young depressed 

women).  Finally, all patients scoring at lower 

levels on both Intermediate Activities and Mental 

health, but having more than five close friends, 

were inactive, depressed, socially-connected geria-

tric adults (5% of sample). 

Illustrating the portion of the total sample 

represented by CTA-identified strata, using a pie-

chart, can facilitate understanding and develop-

ment of policy implications of CTA-based find-

ings: for example, by indicating the percentage of 

the sample that falls into each strata, the likeli-

hood of attributing undue attention to compariti-

vely rare strata is diminished (see Figure 2). 

      Table 5: AID Analysis for CTA Example 

                          Percent of Sample Evaluated in 

Attribute          Part on the Basis of the Attribute 

---------------------------------------------------------- 

Intermediate 

Activities                  123/123         100.0% 

 

Mental Health               54/123          43.9% 

 

Number of 

Close Friends               23/123          18.7% 

---------------------------------------------------------- 

It is also informative to evaluate the attrib-

utes loading in the CTA model in terms of their 

importance in the prediction-making process.  

Conceptually related to the R
2
 statistic from re-

gression analysis, which indicates the percentage 

of the variance in the class (independent) variable 

which is explained by attributes (dependent 

measures) in the model
2
, an Attribute Importance 

in Discrimination (AID) analysis indicates the per-

centage of the sample of classified observations 

which were influenced by the attribute (Table 5). 
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Only the root attribute is involved in the 

classification decisions for all observations in the 

sample.  Easily seen in Figure 1, Mental Health 

was involved in classification decisions for all of 

the observations except for those classified on the 

right-hand side of the root attribute: 123–69=54 

observations.  Mental Health therefore influenced 

classification decisions for 100% x 54/123, or 

43.9% of the total sample.  Also easily seen in Fig-

ure 1, the Number of Close Friends influenced 

classification decisions for 100% x 23/123, or 

18.7% of the total sample. 

Validity Assessment in CTA 

Limited by the daunting computational 

burden associated with manual construction of 

CTA models, experimental research addressing 

validity issues in CTA has been infeasible in the 

absence of automated software.  Psychometric 

properties of scores created using optimal data 

analysis methods has been a major focus of the 

paradigm since its inception
1
, and rigorous in-

vestigation in this area is underway. 

Nevertheless, some preliminary research 

in this area has been reported.  For example, a 

Bayesian method was developed for estimating 

the efficiency of a CTA model versus chance for 

any class variable base rate.
6 

 And, the first CTA 

model published in the field of medicine used a 

manual hold-out methodology to create a CTA 

model which was optimal for two random split-

halfs of a single large sample.
7
  This study used 

CTA to create a severity-of-illness score for pre-

dicting in-hospital mortality from Pneumocystis 

carinii pneumonia, which cross-generalized to 

independent random samples with strong ESS.
8
 

For all models created in the optimal 

data analysis paradigm, the upper-bound of ex-

pected cross-generalizability of the findings to 

an independent random sample is estimated via 

jackknife (“leave-one-out”) analysis, whereby 

each observation in the sample is classified by a 

model created using a sample omitting the 

observation’s data.
1
 In the absence of automated 

CTA software, only attributes with stable jack-

knife classification performance (i.e., with ESS 

that did not vary between training versus jack-

knife analyses) were used in manually-derived 

CTA models.  However, an estimate of Type I 

error associated with the jackknife procedure 

may be determined by computing the ESSj from 

the confusion table generated by this procedure.  

The proportion of ESS values greater than ESSj 

obtained from randomly shuffled classes in the 

original Monte Carlo procedure estimates the 

jackknife Type I error, and setting this propor-

tion to the desired value (e.g., 0.05) may be used 

in a decision rule to admit these attributes into 

the final model. 

Obtaining CTA Models 

The mechanics underlying construction 

of CTA models was described previously.
1,7,9

 

Recursively-derived CTA models chain together 

series of models, derived by univariate optimal 

discriminant analysis (UniODA), on monoton-

ically diminishing sample strata.
1
 Because they 

chain together UniODA models, CTA models 

may be derived manually
10

 via ODA software
1
 

which conducts UniODA (advantages of using 

automated software are discussed ahead). Exact 

statistical distribution theory and Monte Carlo 

simulation methodology are available for testing 

one- (confirmatory, a priori) and two-tailed (ex-

ploratory, post hoc) hypotheses.
1
 

Researchers are encouraged to construct 

at least one CTA model manually using ODA 

software, in order to gain a deeper understand-

ing of the recursive mechanical nature of CTA.  

Furthermore, ODA and CTA software use ident-

ical command syntax, so skill and knowledge 

acquired by using ODA will generalize to oper-

ation of CTA. 

Submitting a Program for Analysis 

Automatic CTA software can be used to 

analyze problems with two class categories, 500 

attributes, and 65,535 observations (methods to 

solve problems involving massive samples are 
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undergoing alpha testing), and is available under 

either commercial or individual license: custom 

systems are also created for special-purpose ap-

plications.  The software is available through the 

ODA webpage.
11

  To run an analysis, registered 

users login to the ODA webpage and upload the 

associated command and data file.  Analyses are 

executed in the order they were received, and all 

associated output is returned via eMail. 

A quick word seems in order regarding 

why Optimal Data Analysis, LLC, adopted a 

“software as service” model for distributing ac-

cess to the automated CTA software.  From the 

perspective of users there are several advantages 

of this model: (1) users needn’t tie-up their 

(probably slower) computers, our fast computers 

will do the work; (2) the most current version of 

the software is always immediately available; 

(3) one can work 24/7/365 from any computer, 

anywhere; and (4) if the system crashes then 

specialists will be scrambling to fix the problem 

immediately—and any problems may well be 

fixed before most users are even aware that an 

issue had occurred.  Another advantage to both 

user and Optimal Data Analysis, LLC, is sav-

ings in money and time, because the software 

doesn’t need to be adjusted to run in the context 

of many different types of constantly changing 

computers, operating systems and data-base pro-

grams.  Users simply send text files to the CTA 

system, and the CTA system returns a text file 

output via eMail. 

Interpreting Automated Software Output 

 The module which produces schematic 

illustrations of CTA models is currently under 

development, and investigation addressing op-

timal information display in this context is un-

derway in our laboratory.
12

  The present soft-

ware reports CTA models using an intuitive 

shorthand notation describing the node constitu-

ents of the CTA model.  To facilitate clarity, 

Figure 3 gives a schematic illustration of node 

structure underlying all CTA models. 

2

 4 5

32 33 34 35 36 37

16  17 18

38 39 40 41 42 43 44 45 46 47

2019  21 22 23

8 9 10 11

3

 6 7

48 49 50 51 52 53

24  25 26

54 55 56 57 58 59 60 61 62 63

2827  29 30 31

 12 13 14 15

1

 

Figure 3: CTA Node Structure 

It is a simple matter to determine the 

“identity number” of a node existing at a deeper 

depth than is illustrated in this five-level-deep 

tree (depth level 1 of the tree includes node 1; 

level 2 includes nodes 2 and 3; level 3 includes 

nodes 4-7; level 4 includes nodes 8-15; level 5 

includes nodes 16-31; and level 6 includes 

nodes 32-63).  From the perspective of node X 

(for X>1), the identify number of the node ema-

nating from X’s left-hand side is 2X, and from 
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X’s right-hand side is 2X+1.  For example, from 

node 47, node 94 (2x47) emanates to the left, 

and node 95 (94+1) emanates to the right.  From 

node 94, node 188 emanates to the left, node 

189 to the right, etcetera.  Note that after the 

root attribute (depth 2 and deeper), all even-

numbered nodes lie on the left-hand branch, and 

odd-numbered nodes on the right-hand branch, 

of the tree. 

CTA software produces output employ-

ing node identity numbers to describe the CTA 

model: an example of CTA software output is 

presented in Figure 4 (hypothetical data).  Re-

spectively, the automated CTA software output 

lists: attribute name (D2, D3 and D4 loaded in 

the hypothetical CTA model); node identity 

number; tree depth level; sample size for the 

analysis indicated; ESS for the attribute; 

whether jackknife (leave-one-out, or LOO) va-

lidity analysis was stable (indicated) or unstable; 

jackknife ESS; p for the jackknife ESS; attribute 

metric (ORD=ordered, CAT=categorical); and 

CTA model shorthand. 

The root attribute (here, D2) is listed 

first in the report.  For each attribute the report 

first indicates the cutpoint and outcome for the 

left-hand branch emanating from the attribute, 

and second for the right-hand branch.  Branches 

ending in model endpoints are marked by an as-

terisk.  As seen, the left-hand branch emanating 

from D2 has a cutpoint of <6.2 units: observa-

tions having D2 scores <6.2 units are predicted 

to be a member of class 4, and this branch ter-

minates in a model endpoint representing a total 

of 242 observations, of whom 165 (68.18%) are 

correctly classified.  The remaining 242–165= 

77 observations having D2 scores <6.2 units 

were members of class 5, and were misclassified 

by this branch of the CTA model. 

 

 

 

 

 

 

Figure 4: Sample CTA Software Output (Hypothetical Expository Data) 

The right-hand branch emanating from 

D2 has a cutpoint of >6.2 units: observations 

having D2 scores >6.2 units are predicted to be 

members of class 5, but this branch does not 

terminate in a model endpoint.  Rather, the 

model includes attribute D3 at node 3. 

As seen, the left-hand branch emanating 

from D3 has a cutpoint of <4.5 units: observa-

tions having D3 scores <4.5 units are predicted 

to be members of class 4, but this branch does 

not terminate in a model endpoint. 

The right-hand branch from D3 has a 

cutpoint of >4.5 units: observations with D3 

scores >4.5 units are predicted to be members of 

class 5, and this branch terminates in a model 

endpoint representing a total of 229 observa-

tions, of whom 206 (89.96%) are correctly clas-

sified.  The remaining 229–206=23 observa-

tions having D3 scores >4.5 units were mem-

bers of class 4, and were misclassified by this 

branch of the CTA model. 

Both branches emanating from D4 term-

inate in a model endpoint (this is always true for 

 

  ATTRIBUTE NODE LEV  OBS    p     ESS     LOO    ESSL  LOOp TYP            MODEL 

  --------- ---- ---  ---    -     ---     ---    ----  ---- ---  ------------------------- 

         D2   1   1   704  .000  48.44%  STABLE  48.44% .000 ORD  <=6.2-->4,165/242,68.18%* 

                                                                   >6.2-->5,375/462,81.17% 

 

         D3   3   2   292  .000  41.60%  STABLE  41.60% .000 ORD  <=4.5-->4,29/63,46.03% 

                                                                   >4.5-->5,206/229,89.96%* 

 

         D4   6   3    62  .039  28.99%  STABLE  28.99% .039 ORD  <=1.9-->4,18/30,60.00%* 

                                                                   >1.9-->5,22/32,68.75%* 
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the last attribute listed in the output).  The left-

hand branch has a cutpoint of <1.9 units: obser-

vations with D4 scores <1.9 units are predicted 

to be members of class 4; this endpoint repre-

sents 30 observations of whom 18 (60.00%) are 

correctly classified and 30–18=12 (40.00%) are 

misclassified.  And, the right-hand branch has a 

cutpoint of >1.9 units: observations having D4 

scores >1.9 units are predicted to be members of 

class 5; this endpoint represents 32 observations 

of whom 22 (68.75%) are correctly classified 

and 32–22=10 (31.25%) are misclassified. 

To construct an illustration of the final 

CTA model, referring to Figure 3 select nodes 1, 

3 and 6 (see Table 3, column 2): these are de-

picted by circles (Figure 1).  Branches are then 

depicted using arrows emanating from the left-

hand side of the root attribute (D2), the right-

hand side of D3, and both sides of D4, terminate 

in model endpoints depicted using rectangles 

(Figure 1).  Add the Type I error rate beneath 

each attribute, cutpoint values adjacent to ar-

rows, and text indicating the outcome for each 

endpoint—and the CTA model is complete. 

 

Automated CTA Command Syntax 

Table 6 gives an alphabetical roster and 

description of automated CTA software control 

commands and keywords (an example of an 

automated CTA program is provided ahead). 

 

Table 6: Control Commands for 

Automated CTA Software 
--------------------------------------------------------------------------------------- 

ATTRIBUTE 

     Syntax ATTRIBUTE variable list ; 

        Alias ATTR 

 Remarks The ATTRIBUTE command lists 

the attribute(s) to be used in the 

analysis.  The TO keyword may be 

used to define multiple attributes in 

the list.  For example, the command 

      ATTR A1 to A4; 

 indicates that A1, A2, A3 and A4 

will be treated as attributes.  Further 

 exposition of the TO keyword is 

found in the discussion for VARS. 

CATEGORICAL 

     Syntax CATEGORICAL {ON | OFF} ; 

 CATEGORICAL variable list ; 

        Alias CAT 

 Remarks The CATEGORICAL command 

specifies that categorical analysis 

will be used, and is required when 

the attribute to be analyzed is 

categorical.  Using the ON keyword 

indicates that all variables in the 

variable list are categorical.  CAT 

with no parameters is the same as 

CAT ON.  The TO keyword may be 

used in the variable list (see the 

discussion under VARS). 

CLASS 

     Syntax CLASS  variable list ; 

Remarks The mandatory CLASS command 

specifies the class variable to be 

used in the analysis.  A separate 

analysis will be run for each class 

variable named.  The TO keyword 

may be used in the variable list (see 

discussion under VARS). 

DIRECTION 

     Syntax DIRECTION  {< | LT | > | GT |  

                     OFF} value list ; 

    Aliases DIR, DIRECTIONAL 

 Remarks The DIRECTION command defines 

the presence and nature of a direc-

tional (i.e., a priori, one-tailed, or 

confirmatory) hypothesis.  The 
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parameter < or LT indicates that the 

class values in the value list are 

ordered in the “less than” direction.  

The parameter > or GT indicates the 

class values are ordered in the 

“greater than” direction.  The value 

list must contain every value of the 

class variable currently defined.  

The default is OFF.   

ENUMERATE 

      Syntax ENUMERATE {ROOT} 

{MINOBS value} ; 

  Remarks The ENUMERATE command with 

no options specifies that all combin-

ations of attributes in the top three 

nodes will evaluated.  

ENUMERATE ROOT specifies 

that only the top node will have all 

attributes evaluated.  

ENUMERATE MINOBS value 

allows only solution trees with at 

least value observations in them. 

EXCLUDE 

     Syntax EXCLUDE  variable {= | <> | < | > | 

   <= | >= | OFF} value (,value2,…) ; 

    Aliases EX, EXCL 

 Remarks This command excludes observa-

tions having the indicated value of 

variable.  For example, 

      EXCLUDE D=4 ; 

 drops all observations with the 

value of 4 for attribute D.  The 

 command 

      EXCLUDE B=2 Z>=113 ; 

 drops all observations with the 

value of 2 for attribute B or values 

greater than or equal to 113 for 

attribute Z.  Commas in the exclude 

string enable the user to exclude 

multiple values of a variable using a 

single command: 

      EXCLUDE C=2,4 ; 

 excludes all observations having a 

value of 2 or 4 for attribute C.  

Multiple EXCLUDE commands 

may be entered, up to a maximum 

of 100 clauses.  Observations which 

satisfy any of the EXCLUDE 

clauses will be excluded. 

FORCENODE  

     Syntax FORCENODE node var ; 

 Remarks The FORCENODE command 

forces CTA to insert the attribute 

var at node node in the solution 

tree.  If the UniODA solution for 

this attribute is not significant, or 

this node is subsequently pruned, an 

error message will be printed. 

GO 

     Syntax GO ; 

 Remarks The GO command begins execution 

of the currently defined analysis. 

INCLUDE 

     Syntax INCLUDE  variable {= | <> | < | > | 

<= | >= | OFF} value (,value2,…)  ; 

    Aliases IN, INCL 

 Remarks The INCLUDE command functions 

in the same manner as the 

EXCLUDE command, except that 

only those observations with the 

indicated value for variable are 

included.  If multiple INCLUDE 

statements exist, only those obser-
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vations will be kept which satisfy 

all these INCLUDE statements. 

LOO 

     Syntax  LOO  {pvalue | STABLE} ; 

 Remarks The LOO command indicates that 

leave-one-out analysis will be 

performed for every attribute in the 

tree.  LOO STABLE allows only 

attributes with LOO ESS equal to 

the ESS for that attribute.  LOO 

pvalue allows only those attributes 

in the solution tree which have an 

ESS that yields a p < pvalue. 

MCARLO 

     Syntax MCARLO  {ITERATIONS value | 

CUTOFF pvalue | STOP confvalue 

} ; 

        Alias MC 

 Remarks The MCARLO command controls 

Monte Carlo analysis for estimating 

Type I error, or p.  The keywords 

specify stopping criteria; if any 

criterion is met, then the analysis 

stops.  ITERATIONS (ITER) 

specifies the maximum number of 

Monte Carlo iterations.  STOP xxx 

indicates the confidence level (in 

percent), which will stop processing 

for the current attribute, if the 

estimated Type I error rate 

(specified with the CUTOFF 

keyword) drops below this level.  

For example, the command 

      MCARLO ITER 70000  

      CUTOFF .05 STOP 99.9 ; 

 indicates a Monte Carlo analysis 

will be conducted, and will stop 

when one of the following occurs: 

(1) 70,000 iterations have been 

executed, (2) a confidence level of 

less than 99.9% that p<.05 has been 

obtained. 

MAXLEVEL 

     Syntax MAXLEVEL value ; 

 Remarks The MAXLEVEL command 

specifies the deepest level or depth 

allowed in the solution tree. 

MINDENOM 

     Syntax MINDENOM value ; 

Remarks The MINDENOM command 

specifies that only attributes which 

yield a denominator of value or 

more will be allowed in the solution 

tree. 

MISSING 

     Syntax MISSING  {variable list | ALL}  

(value) ; 

        Alias MISS 

 Remarks The MISSING command tells ODA 

to treat observations with value 

(value) as missing for each variable 

on the list.  For example, the 

command 

           MISSING X Y Z (-4) ; 

 indicates that observations with 

attrbutes X, Y, or Z equal to -4 will 

be dropped if they are present in a 

CLASS, ATTRIBUTE, WEIGHT, 

or GROUP variable.  ALL specifies 

that the indicated missing value 

applies to all variables.  The TO 

keyword may be used in the attribu-

te list (see discussion under VARS). 
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OPEN 

     Syntax OPEN  {path\file name | DATA} ; 

 Remarks The OPEN command specifies the 

data file to be processed by ODA.  

This file must be in ASCII format.  

DATA indicates that a DATA state-

ment, with inline data following, 

appears in the command stream. 

OUTPUT 

     Syntax OUTPUT  path\file name  

{APPEND} ; 

 Remarks The OUTPUT command specifies 

the output file containing the results 

of the ODA run.  The default is 

ODA.OUT.  APPEND indicates 

that the report is to be appended to 

the end of an already existing output 

file. 

PRIORS 

     Syntax PRIORS  {ON | OFF} ; 

 Remarks The PRIORS command indicates 

whether the ODA criterion will be 

weighted by the reciprocal of sam-

ple class membership.  The default 

is ON.  PRIORS with no parameters 

is the same as PRIORS ON. 

PRUNE 

     Syntax PRUNE pvalue {NOPRIORS} ; 

 Remarks The PRUNE command indicates the 

p-value with which to optimally 

prune the classification tree.  The 

NOPRIORS keyword should be 

used when PRIORS is turned OFF. 

SKIPNODE 

     Syntax SKIPNODE node ; 

 

 Remarks The SKIPNODE command 

specifies that the node node will be 

empty of any attribute in the 

solution tree. 

TITLE 

     Syntax TITLE  title ; 

 Remarks The TITLE command specifies the 

title to be printed in the report.  

TITLE with no parameters erases 

the currently defined title. 

USEFISHER 

     Syntax USEFISHER value ; 

 

 Remarks The USEFISHER command 

specifies that all probability 

calculations for categorical variable 

will be determined by Fisher’s exact 

test, rather than by Monte Carlo. 

VARS 

     Syntax VARS  variable list ; 

Remarks The VARS command specifies a list 

of attribute names corresponding to 

fields in the input data set. The TO 

keyword may be used to define 

multiple variables in the variable 

list. For example, the command 

      VARS X Y Z V1 TO V4 ; 

 specifies that the input file contains, 

in order, variables X, Y, Z, V1, V2, 

V3, and V4, and that there is at least 

one blank space separating all 

adjacent data.  Alternatively, the 

data points may be separated by a 

single comma (with no spaces). 

       The TO keyword may be used to 

input a range of variables which 

have the same name except for the 
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integer at the end of the name: the 

integers must be positive and 

 ascending, increasing one unit per 

variable.  Thus, VAR1 TO VAR10 

is admissible (defining 10 

variables).  In contrast, VAR10 TO 

VAR1, VARA TO VARJ, or A TO 

X10, are not admissible. 

                         The data for each observation 

may all exist on a single line of the 

data set, or may be placed on 

multiple adjacent lines.  It is not 

recommended that a new observa-

tion is included on a line containing 

data from the previous observation. 

WEIGHT 

     Syntax WEIGHT  {variable | OFF} ; 

        Alias RETURN 

 Remarks The optional WEIGHT command 

specifies the weight variable for the 

analysis.  The data values for the 

WEIGHT variable supply the 

weight the corresponding 

observation.  The default is OFF. 
 

 

Two Example Automated CTA Programs 

Imagine an application in finance.  In 

light of the recent calamitous failure of home 

mortgages, it is decided that a new credit-

screening methodology is needed.  Toward this 

objective a bank creates a dataset consisting of 

records describing all mortgages granted in the 

past three years (for exposition, imagine N=300 

loans were made, of which, 10%, or 30 loans, 

were in default).  The class variable is whether 

or not the loan went into default (label this class 

variable “Loan”, and use dummy-codes 1=sol-

vent, 0=default).  The weight is the value of the 

loan in dollars (label this variable “Value”).  Fi-

nally, imagine data are available for twenty at-

tributes (Var1-Var20).  Of these, Var1-Var10 

are ordered, and the rest categorical. 

Imagine that data and program files have 

been saved, and the output file will be saved, in 

the “c:cta” directory.  As per the automated CTA 

system job-naming convention, a common name 

is used for data, program and output files: the 

name of the data file is “loan.dat”; the name of 

the program file is “loan.pgm”; and the name of 

the output file is “loan.out.”  The following code 

defines data and output files, assigns class, 

weight, and attribute variables, and defines the 

categorical attributes: 

open c:\cta\loan.out; 

output c:\cta\loan.out; 

vars loan value var1 to var20; 

class loan; 

attr var1 to var20; 

cat var11 to var20; 

weight value; 

It is decided a priori that, to increase the 

likelihood of the model cross-generalizing when 

applied to a validity sample, model endpoints 

should represent at least 5% of the total sample 

(5% of N=300 is N=15): 

mindenom 15; 

It is also decided a priori that to increase 

the likelihood of the model cross-generalizing, 

only variables stable in leave-one-out analysis 

would be allowed as model nodes: 

loo stable; 

It is decided a priori to use the system 

default (on) for weighting by prior odds intact, 

as another means of increasing the likelihood of 

the model cross-generalizing to an independent 

random sample, and also to explicitly maximize 

ESS (setting priors off explicitly maximizes 

overall PAC).  The conventional experiment-

wise Type I error rate (p<0.05) is selected for 

pruning
13

 to maximize ESS (experimentwise p< 



Optimal Data Analysis     Copyright 2010 by Optimal Data Analysis, LLC 

2010, Vol. 1, Release 1 (September 17, 2010), 144-160  2155-0182/10/$3.00 

 

 

 

158 
 

0.05 is used automatically during model growth 

to control overfitting
1
): 

prune .05; 

Because there are relatively many cate-

gorical variables, it is decided to use Fisher’s 

exact test to assess p for categorical variables
1
 

and reduce the number of Monte Carlo simula-

tion experiments conducted: 

usefisher; 

Because the sample is modest in size, as 

is the number of attributes, and in light of the 

small number of failed loans in conjunction with 

the minimum denominator specification, it is 

decided that full enumeration of the first three 

nodes is feasible and appropriate, using 25,000 

Monte Carlo experiments to compute p for all 

ordered attributes: 

enumerate; 

mcarlo iter 25000 cutoff .05 stop 99.9; 

title loan default weighted CTA; 

go; 

Imagine an application in space physics.  

A phased array of 16 high-frequency antennas 

located in Goose Bay (Labrador), with a total 

transmitted power exceeding 6 kilowatts, was 

used to target free electrons in the ionosphere.
14

  

The class variable was labeled “return”: “good” 

returns showed evidence of some type of 

structure in the ionosphere, and “bad” returns 

failed to provide evidence of structure (dummy-

coded as “1” vs. “0”, respectively).  Received 

signals were processed using an autocorrelation 

function with two arguments per signal: time of 

pulse and pulse number.  Because there were 17 

pulse numbers for the Goose Bay system, there 

were thus 34 ordered attributes (“X1-X34”).  

There was no weight variable, and no categori-

cal attribute. The objective is to maximize over-

all PAC—the total number of accurately classi-

fied good and bad returns. 

Imagine that data and program files have 

been saved, and the output file will be saved, in 

the “c:cta” directory.  As per the automated CTA 

system job-naming convention, a common name 

is used for data, program and output files: the 

name of the data file is “radar.dat”; the name of 

the program file is “radar.pgm”; and the name 

of the output file is “radar.out.”  The following 

code defines data and output files, and assigns 

class and attribute variables: 

open c:\cta\radar.out; 

output c:\cta\radar.out; 

vars return x1 to x34; 

class return; 

attr x1 to x34; 

It is decided a priori that, to maximize 

overall PAC achieved, the endpoint minimum 

denominator and model maximum depth would 

be unconstrained, but rather explicitly optimized 

by the program (no commands required). 

Also, to maximize overall PAC it was 

decided to let attributes load as nodes even if 

unstable in LOO analysis, so long as their ESS 

in LOO analysis exceeded the ESS achieved by 

any other attribute: 

loo 0.05; 

It is decided a priori to set priors off in 

order to explicitly maximize overall PAC: 

priors off; 

The default setting for optimal pruning is 

priors on, so the prune command has to be ad-

justed to indicate that priors is set to off.  Also, 

to maximize overall PAC, a statistical marginal 

loading will be allowed in the optimally-pruned 

model: 

prune .10 nopriors; 

Because there are no categorical attrib-

utes, the usefisher command is omitted.  Be-

cause the sample is moderate in size, as is the 
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number of attributes, and the attributes are or-

dered with few ties, analysis will be resource 

intensive.  Also, 100,000 Monte Carlo experi-

ments will be used in order to provide adequate 

statistical power for the small denominator end-

points that are anticipated: 

mcarlo iter 100000 cutoff .05 stop 99.9; 

Because UniODA analysis showed many 

attributes are loo-unstable, the analysis is judged 

to be too computationally intensive to attempt 

full enumeration on the first pass through the 

data via CTA (omitting the enumeration com-

mand results in an algorithmic analysis by de-

fault).  Thus, after specifying enumeration of the 

root variable only, and providing a title, the pro-

gram is ready to go: 

enumerate root; 

title RADAR maximum-PAC CTA; 

go; 

Advantages of Automated versus 

Manually-Derived CTA 

 Perhaps the most striking advantage of 

the automated software is that it is able to ac-

complish the example analyses just described, 

whereas neither of those analyses are possible to 

accomplish using manual derivation.  Two spe-

cific advantages of the automated software are 

integrated automated pruning procedures: (a) 

sequentially-rejective Sidak “Bonferroni-type” 

multiple comparisons adjustment
1
 to prevent 

model overfitting during the growth phase of the 

analysis; and (b) optimal pruning to maximize 

ESS at any specified experimentwise alpha level 

after growth has ceased.
13

  And, those with ex-

perience conducting manual CTA using ODA
1
 

software would likely be amazed to hear that in 

recent speed trials (N=351, 34 continuous at-

tributes) the automated software was able to 

solve enumerated CTA models averaging 0.7 

CPU seconds per model, running 5,000 Monte 

Carlo experiments on a 3 GHz Intel Pentium D 

microcomputer.  An algorithmic CTA derived 

manually for either type of CTA would typically 

require one or more man-days. 

Initial comparisons of automated versus 

manual methods clearly reveal that the increased 

depth of search afforded by the enumeration ca-

pabilities of the automated software typically 

returns stronger, more efficient models.
8
  The 

enumerated models may also be more consistent 

with original hypotheses than manually-derived 

counterparts.
15

  Preliminary investigations in our 

laboratory suggest that the advantages of auto-

mated software become even more striking in 

applications which feature numerous, scattered, 

missing data.  We are aware of several studies 

which compare previously-completed manually-

derived CTA models vs. models derived using 

automated software, either planned or in prog-

ress.  Monte Carlo simulation studies comparing 

the two methods are obviously warranted. 

It is exciting to witness, whether as actor 

or spectator, the beginning of a new area of in-

quiry involving a powerful and evolving new 

methodology.  Manually-derived CTA may be 

likened to an early telescope, focused by mov-

ing the body much like a trombone slide.  Initial 

exploration using this early tool was fruitful and 

informative, and motivated the development of 

the automated system, which may be likened to 

a modern telescope.  The modern instrument 

allows for pinpoint placement of the machine in 

any particular area (forcenode), aspect control 

including depth of field (maxlevel) and search 

(mcarlo iter; enumerate), luminosity (minobs; 

mindenom), fuzzy control (loo stable vs. .0x), 

and a standardized measure of acuity (ESS).  It 

is likely that using these controls in a variety of 

applications will lead to refinements in the con-

trols themselves, as well as in the methods of 

their operations, and these developments in turn 

may result in the creation of additional control 

features.  For these reasons we anticipate surpri-

sing findings and major advances in the under-

standing of absolute and comparative capabili-

ties of automated CTA—soon to come. 
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