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Automated CTA Software: Fundamental
Concepts and Control Commands
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Fundamental methodological concepts are reviewed, and auto-
mated CTA software commands are annotated.

A decade in the making, commercially-available
software which conducts automated hierarchi-
cally optimal classification tree analysis' (CTA)
is now being offered to organizations and indi-
viduals. This article reviews motivation under-
lying use of nonlinear models; shortcomings of
suboptimal nonlinear methods; CTA methods,
model interpretation and reporting; and use of
automated software. Software commands and
sample code used for solving (un)weighted clas-
sification problems are annotated.

“One Size Fits All” versus
“Different Strokes for Different Folks”

Examples of linear models broadly used
in applied research include models derived via
logistic regression, log-linear, and discriminant
analysis.>® Regardless of derivation, all linear
models share three important, usually unfulfilled
assumptions.

First, linear models assume attributes in
the model are important for every observation in
the sample. In contrast, with nonlinear models
different attribute sets can be used with different
partitions of the sample: one set of attributes is
used for classifying one partition of the sample;
another set of attributes is used for classifying a
different sample partition; and so forth.
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Second, linear models assume the model
attributes have identical direction of influence
(positively or negatively predictive) for every
observation. In contrast, with nonlinear models
an attribute may predict class category 1 for one
partition of the sample, versus category O for a
different sample partition.

Third, linear models assume attributes in
the model have the same coefficient value (or
decision weight) for all sample observations. In
contrast, in nonlinear models the coefficient for
an attribute may assume two different values for
two different sample partitions: for example, 0.2
and -1.8, respectively.

Traditional Nonlinear Methods

Nonlinear classification methods based
on general linear model (GLM) or maximum-
likelihood (ML) paradigms maximize variance
ratios, or the value of the likelihood function for
the sample, respectively. Examples of such sub-
optimal methods are chi-square automatic inter-
action detection, classification and regression
tree analysis, genetic algorithms and neural net-
works. A problem for GLM-based methods in-
volves satisfying the multivariate normally dis-
tributed (MND) assumption required for p to be
valid, and a problem for ML-based methods is
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that model coefficients are biased except in the
limit for enormous samples.>* A common issue
is that neither GLM nor ML methods explicitly
maximize model accuracy.!

Example of a CTA Model

The first CTA model published involved
exploratory research discriminating geriatric (at
least 65 years of age) versus nongeriatric adult
ambulatory medical patients on the basis of self-
reported well-being.* Forty geriatric and 85 non-
geriatric ambulatory medical patients completed a
survey assessing five functional status dimensions
(Basic and Intermediate Activities, Mental Health
[absence of depression], Social Activity, Quality of
Social Interaction), and including five single-item
measures assessing health satisfaction, physical
limitations, and quantity of social interaction. The
CTA model (Figure 1) was constructed manually
using ODA software.!
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Figure 1: CTA Model Discriminating Geriatric
vs. Nongeriatric Ambulatory Medical Patients

On first glance a depiction of any classi-
fication tree model may appear similar to results
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obtained by decision analysis (DA), because
both methods depict findings using tree-like rep-
resentations.* As seen, CTA models initiate with
a root node, from which two or more branches
emanate and lead to other nodes: branches indi-
cate pathways through the tree, and all branches
ultimately terminate in model endpoints. The
CTA algorithm determines the attribute subset
which predicts the outcome with maximum ac-
curacy, beginning with the attribute which best
discriminates the class variable (geriatric status)
with maximum accuracy for the total sample.
DA estimates valence and likelihood associated
with all possible decision-making strategies and
outcomes. In contrast, CTA identifies a specific
decision-making strategy which maximizes ac-
curacy in predicting a specific outcome.

Circles represent nodes in this schematic
illustration of the CTA model, arrows indicate
branches, and rectangles represent model end-
points. Numbers (or words, when attributes are
categorical) adjacent to arrows indicate the
value of the cutpoint (or category) for the node.
Numbers underneath nodes give the generalized
(per-comparison) Type | error rate for the node.
The number of observations classified into each
endpoint is indicated beneath the endpoint, and
the percentage of geriatric observations is given
inside the rectangle representing the endpoint.

Using CTA maodels to classify individual
observations is straightforward. Consider a hypo-
thetical person having an Intermediate Activities
score=85, a Mental Health score=64, and 7 close
friends. Starting with the first node, since the
person’s Intermediate Activities score is <89.6, the
left branch is appropriate. At the second node the
left branch is again appropriate because the per-
son’s Mental Health score is <65. Finally, at the
third node the right branch is appropriate since the
person has more than 5 close friends. The person
is classified into the corresponding model end-
point: as seen, all six observations classified into
this model endpoint were geriatric. Note that end-
points represent sample strata identified by the
CTA model. The probability of being geriatric for
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this endpoint is pgeriaric=1 for the sample (in light
of the small sample size at this endpoint, it may be
more meaningful, depending on the application, to
report Pgeriaic>6/7).  In this example, had the
patient instead reported 5 or fewer close friends,
then the left-hand endpoint would be appropriate,
with pgeriatric:O (i.e., pgeriatricfll 18)-

Some intuitive aspects of CTA models
are immediately obvious. For example, model
“coefficients” are cutpoints or category descrip-
tions expressed in their natural measurement
units. In addition, sample stratification unfolds
in a “flow” process which is easily visualized
across model attributes. The manner in which
CTA handles observations having missing data
is also intuitive: linear models drop observations
missing data on any attributes in the model, but
CTA only drops observations which are missing
data on attributes required in their classification.
In the present example, imagine an observation
having an Intermediate Activities score of 89.6
or greater, but missing data on number of close
friends and/or on Mental Health. Using a linear
model the observation would be dropped, but
using CTA the observation would be classified.

Staging Tables

Staging tables (see Table 1) represent an
alternative intuitive representation of CTA find-
ings, and are useful for assigning “severity” or
“propensity” scores (weights) to observations
based on the findings of the CTA model. The
rows of the staging table are simply model end-
points reorganized in increasing order of percent
of class 1 (geriatric) membership. Stage is an
ordinal index of geriatric propensity, and
Pgeriatric 1S the corresponding continuous index:
increasing values on either index indicates in-
creasing propensity. Compared to Stage 1 (with
Pgeriatric St at <1/18, or 0.056), Pgeriatric IS ap-
proximately 4-times higher in Stage 2, 12-times
higher in Stage 3, and 15-times higher in Stage
4 (With pgeriatric Set at >6/7, or 0.857).

To use the table to stage geriatric pro-
pensity for a given observation, simply evaluate
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the fit between the observation’s data and each
stage descriptor. Begin at Stage 1, and work
sequentially through stages until identifying the
descriptor which is exactly true for the data of
the observation undergoing staging. Consider
the hypothetical person discussed earlier. Stage
1 does not fit because the person has more than
five close friends. Stage 2 does not fit because
the person’s Intermediate Activities score is
<89.6. Stage 3 does not fit because the person’s
Mental Health score is <65. The staging table
has only one degree of freedom, so through the
process of elimination, it is clear that Stage 4
must be appropriate. Because the person has an
Intermediate Activities score <89.6, a Mental
Health score <65, and >5 close friends, Stage 4
clearly fits the data of this hypothetical person.

Table 1: Staging Table for Predicting
Geriatric Status

Intermediate Mental Close
Stage Activities Health Friends N pgeriaric Odds

<89.6

1 <65 <5 17 0 <117
2 >896 - - 69 .217 1:4
3 <89.6 >65 - 31 645 21
4 <89.6 <65 >5 6 1 >61

Note: Increasing scores on Intermediate Activities indi-
cate increasing adaptability, and increasing scores
on Mental Health indicate decreasing depression.

Assessing Model Performance

Performance measures for CTA (and for
all ODA methods) are also intuitively appealing,
and are derived from a confusion table, as indi-
cated for the present example in Table 2. Rows
of the confusion table indicate the actual class
category of any given observation in the train-
ing sample (used for model development), and
columns indicate the class category predicted
for an observation by the CTA model. For pre-
dictions involving the class category status of
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individual observations in the training sample,
when the actual and predicted class categories
are identical (e.g., a geriatric person is predicted
to be geriatric) then the model is correct; other-
wise it is incorrect. Row and column marginal
totals (the sum of all table entries in the row or
column, respectively) are presented in the bor-
ders of the confusion table. For example, for
actual class=geriatric, the row marginal is 15+
26=41. For predicted class=geriatric, the col-
umn marginal is 11+26=37. Finally, the total
sample size which is classified by the model is
given in the lower right-hand corner of the table:
this total is equal to the sum of row marginals,
and also to the sum of column marginals.

Table 2: Confusion Table for the
Example CTA Model

Predicted Class

Actual Class Nongeriatric Geriatric

Nongeriatric 71 11 82

Geriatric 15 26 41
86 37 123

Assessing the performance of a CTA (or
any classification) model begins by computing
five standard epidemiological indices." The first
pair of indices assess the ability of the model to
accurately classify observations in the different
class categories. Sensitivity is the likelihood of
correctly classifying an observation from Class
1, and is defined as the number of correctly
classified Class 1 observations divided by the
total number of Class 1 observations: here, 26/
41=0.634. Specificity is the likelihood of cor-
rectly classifying an observation from Class 0,
and is defined as the number of correctly classi-
fied Class O observations divided by the total
number of Class 0 observations: 71/82=0.866.

The next set of indices address the accu-
racy of the model when it is used to make classi-
fications. Positive predictive value (PPV) is the
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likelihood that an observation predicted to be a
member of Class 1 is accurately classified (i.e.,
is in reality a member of Class 1): here, 26/37=
0.703. Negative predictive value (NPV) is the
likelihood that an observation predicted to be a
member of Class 0 is accurately classified: here,
71/86=0.826.

Finally, overall accuracy, or percentage
accuracy in classification (PAC), is 100% times
the number of correctly classified observations
divided by the total number of observations
classified by the model: 100% x (71+26)/123=
78.9%. In the literature, sensitivity, specificity,
PPV and NPV are typically multiplied by 100%
in order to report all five indices in a common,
familiar metric, and because the focus of CTA
(and all statistical models in the optimal data
analysis paradigm) is predictive accuracy rather
than probabilistic likelihood.'”

Summarizing a confusion table is a me-
thodic, straightforward process, as illustrated for
the present example: Using the CTA model, a
total of 30.1% [100% x (26+11)/123] of the
sample is predicted to be geriatric. These pre-
dictions are correct 70.3% [100% x PPV] of the
time, and correctly identify 63.4% [100% x
sensitivity] of all geriatric observations. Also,
82.6% [100% x NPV] of the model-based pre-
dictions that an observation is nongeriatric are
correct, and correctly classify 86.6% [100% X
specificity] of all the nongeriatric observations.
Overall, the model correctly classified 78.9%
[PAC] of the observations in the sample.

Foregoing indices are bounded by 0 and
1 (or, equivalently, between 0% and 100%), and
reference the absolute predictive capacity of a
classification model. The ultimate objective is
for all of these indices to reach their theoretical
upper limit of 100% correct prediction. How-
ever, in the likely event that a statistical model
fails to achieve perfect prediction, statistical cri-
teria are used to assess the performance of CTA
(and other) models, in terms of their predictive
capacity relative to chance.
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Effect Size for Sensitivity (ESS)

None of the five absolute performance
indices are normed relative to chance, or have
an associated exact p value.! Accordingly, the
performance of all models in the optimal data
analysis paradigm, including CTA, is summa-
rized using the effect strength for sensitivity
(ESS) statistic, a normed index ranging between
0 (representing the level of classification accu-
racy expected by chance) and 100 (representing
errorless classification).

The formula for computing ESS for
problems with class variables involving two cat-
egories (automated CTA software solves only
two-category problems: CTA for more than two
class categories has never been reported) is:

ESS=100% x (Mean PAC — 50)/50 (1),

where

Mean PAC=100% x (sensitivity + specificity)/2
(2).

For example, if a CTA model had sensitiv-
ity=0.85 and specificity=0.74, then mean PAC=
100% x [(0.85+0.74)/2]=79.5%, and ESS=100%
X [(79.5-50)/50]=59.0%.

Using ESS one may directly compare the
performance of different models, relative to
chance, regardless of structural features of the
analyses, such as sample size, number of class
categories, number of attributes and attribute
metric, sample skew, and so forth. The rule-of-
thumb which is used for evaluating ecological
significance of results achieved by classification
models is: ESS<25% (one-quarter of the im-
provement in classification accuracy theoreti-
cally possible to attain beyond the performance
achieved by chance) is a relatively weak effect;
25%<ESS<50% is a moderate effect; 50%<ESS
<75% a relatively strong effect; and ESS>75%
is a strong effect.’ Thus, in order to complete
the summary of the confusion table which was
presented earlier, append the following conclu-
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sion: “The CTA model yielded ESS=50.0%, a
relatively strong effect.”

It is noteworthy that linear models may
classify all observations in the sample into the
dominant class if the sample is highly skewed
(e.g., more than 75% of the sample falls into one
class category). In this case Mean PAC is 50%,
and ESS=0. For expository purposes, Table 3
illustrates how Mean PAC and ESS are related
if one class category is classified perfectly, and
Table 4 emphasizes that mean PAC=50 is what
is anticipated by chance.

Table 3: PAC in Each of Two Groups (PAC=
100% in One Group), Mean PAC, and ESS

Group A GroupB Mean PAC ESS

100 0 50 0

100 10 55 10
100 20 60 20
100 30 65 30
100 40 70 40
100 50 75 50
100 60 80 60
100 70 85 70
100 80 90 80
100 90 95 90
100 100 100 100

Table 4: Patterns of PAC in Each of Two
Groups that Yield ESS=0

Group A GroupB Mean PAC ESS

100 0 50 0
90 10 50 0
80 20 50 0
70 30 50 0
60 40 50 0
50 50 50 0

Ostrander et al.® note that, in contrast to
sensitivity and specificity, PPV and NPV are
influenced by base rate of class category c (e.g.,
0 or 1) in the population, and by the false posi-
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tive rate—the likelihood that the model will
classify an observation into class category c
when the observation is not a member of c. A
method is given for easily assessing the models
efficiency over different base rates (an efficient
model provides PAC for category ¢ which is
greater than the category c base rate).®

Model Interpretation

In addition to its greater accuracy versus
logistic regression analysis or Fisher’s discriminant
analysis, CTA also produced substantively richer
findings. In the present example the linear models
identified two patient clusters: relatively active,
depressed nongeriatric people; and relatively inac-
tive, non-depressed geriatric people.

Active
nongeriatric
adults

Inactive, happy
geriatric adults

Inactive, depressed,
socially isolated
young women

Inactive, depressed,
socially connected
geriatric adults

Figure 2: Pie-Chart Illustrating Distribution of
Total Sample in Four CTA-Based Strata

In contrast, the CTA model identified four
patient strata. Patients scoring >89.6 on Intermedi-
ate Activities were primarily (78.3%) relatively
active nongeriatric adults (56% of total sample).
Patients scoring at lower levels on Intermediate
Activities, and at high levels (>65) on Mental
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Health, were largely (64.5%) relatively inactive,
nondepressed geriatric adults (25% of sample).
All the patients scoring at lower levels on both
Intermediate Activities and Mental Health, and
having fewer than six close friends, were inactive,
depressed, socially isolated nongeriatric adults
(14% of total sample, primarily young depressed
women). Finally, all patients scoring at lower
levels on both Intermediate Activities and Mental
health, but having more than five close friends,
were inactive, depressed, socially-connected geria-
tric adults (5% of sample).

Illustrating the portion of the total sample
represented by CTA-identified strata, using a pie-
chart, can facilitate understanding and develop-
ment of policy implications of CTA-based find-
ings: for example, by indicating the percentage of
the sample that falls into each strata, the likeli-
hood of attributing undue attention to compariti-
vely rare strata is diminished (see Figure 2).

Table 5: AID Analysis for CTA Example

Percent of Sample Evaluated in
Part on the Basis of the Attribute

Attribute

Intermediate

Activities 123/123 100.0%
Mental Health 54/123 43.9%
Number of

Close Friends 23/123 18.7%

It is also informative to evaluate the attrib-
utes loading in the CTA model in terms of their
importance in the prediction-making process.
Conceptually related to the R? statistic from re-
gression analysis, which indicates the percentage
of the variance in the class (independent) variable
which is explained by attributes (dependent
measures) in the model®, an Attribute Importance
in Discrimination (AID) analysis indicates the per-
centage of the sample of classified observations
which were influenced by the attribute (Table 5).
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Only the root attribute is involved in the
classification decisions for all observations in the
sample. Easily seen in Figure 1, Mental Health
was involved in classification decisions for all of
the observations except for those classified on the
right-hand side of the root attribute: 123-69=54
observations. Mental Health therefore influenced
classification decisions for 100% x 54/123, or
43.9% of the total sample. Also easily seen in Fig-
ure 1, the Number of Close Friends influenced
classification decisions for 100% x 23/123, or
18.7% of the total sample.

Validity Assessment in CTA

Limited by the daunting computational
burden associated with manual construction of
CTA models, experimental research addressing
validity issues in CTA has been infeasible in the
absence of automated software. Psychometric
properties of scores created using optimal data
analysis methods has been a major focus of the
paradigm since its inception’, and rigorous in-
vestigation in this area is underway.

Nevertheless, some preliminary research
in this area has been reported. For example, a
Bayesian method was developed for estimating
the efficiency of a CTA model versus chance for
any class variable base rate.® And, the first CTA
model published in the field of medicine used a
manual hold-out methodology to create a CTA
model which was optimal for two random split-
halfs of a single large sample.” This study used
CTA to create a severity-of-illness score for pre-
dicting in-hospital mortality from Pneumocystis
carinii pneumonia, which cross-generalized to
independent random samples with strong ESS.?

For all models created in the optimal
data analysis paradigm, the upper-bound of ex-
pected cross-generalizability of the findings to
an independent random sample is estimated via
jackknife (“leave-one-out™) analysis, whereby
each observation in the sample is classified by a
model created using a sample omitting the
observation’s data.® In the absence of automated
CTA software, only attributes with stable jack-
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knife classification performance (i.e., with ESS
that did not vary between training versus jack-
knife analyses) were used in manually-derived
CTA models. However, an estimate of Type |
error associated with the jackknife procedure
may be determined by computing the ESSj from
the confusion table generated by this procedure.
The proportion of ESS values greater than ESS;j
obtained from randomly shuffled classes in the
original Monte Carlo procedure estimates the
jackknife Type | error, and setting this propor-
tion to the desired value (e.g., 0.05) may be used
in a decision rule to admit these attributes into
the final model.

Obtaining CTA Models

The mechanics underlying construction
of CTA models was described previously."®
Recursively-derived CTA models chain together
series of models, derived by univariate optimal
discriminant analysis (UniODA), on monoton-
ically diminishing sample strata.' Because they
chain together UniODA models, CTA models
may be derived manually™® via ODA software’
which conducts UniODA (advantages of using
automated software are discussed ahead). Exact
statistical distribution theory and Monte Carlo
simulation methodology are available for testing
one- (confirmatory, a priori) and two-tailed (ex-
ploratory, post hoc) hypotheses.*

Researchers are encouraged to construct
at least one CTA model manually using ODA
software, in order to gain a deeper understand-
ing of the recursive mechanical nature of CTA.
Furthermore, ODA and CTA software use ident-
ical command syntax, so skill and knowledge
acquired by using ODA will generalize to oper-
ation of CTA.

Submitting a Program for Analysis

Automatic CTA software can be used to
analyze problems with two class categories, 500
attributes, and 65,535 observations (methods to
solve problems involving massive samples are
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undergoing alpha testing), and is available under
either commercial or individual license: custom
systems are also created for special-purpose ap-
plications. The software is available through the
ODA webpage.™* To run an analysis, registered
users login to the ODA webpage and upload the
associated command and data file. Analyses are
executed in the order they were received, and all
associated output is returned via eMail.

A quick word seems in order regarding
why Optimal Data Analysis, LLC, adopted a
“software as service” model for distributing ac-
cess to the automated CTA software. From the
perspective of users there are several advantages
of this model: (1) users needn’t tie-up their
(probably slower) computers, our fast computers
will do the work; (2) the most current version of
the software is always immediately available;
(3) one can work 24/7/365 from any computer,
anywhere; and (4) if the system crashes then
specialists will be scrambling to fix the problem
immediately—and any problems may well be
fixed before most users are even aware that an

issue had occurred. Another advantage to both
user and Optimal Data Analysis, LLC, is sav-
ings in money and time, because the software
doesn’t need to be adjusted to run in the context
of many different types of constantly changing
computers, operating systems and data-base pro-
grams. Users simply send text files to the CTA
system, and the CTA system returns a text file
output via eMail.

Interpreting Automated Software Output

The module which produces schematic
illustrations of CTA models is currently under
development, and investigation addressing op-
timal information display in this context is un-
derway in our laboratory.** The present soft-
ware reports CTA models using an intuitive
shorthand notation describing the node constitu-
ents of the CTA model. To facilitate clarity,
Figure 3 gives a schematic illustration of node
structure underlying all CTA models.
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Figure 3: CTA Node Structure

It is a simple matter to determine the
“identity number” of a node existing at a deeper
depth than is illustrated in this five-level-deep
tree (depth level 1 of the tree includes node 1;
level 2 includes nodes 2 and 3; level 3 includes
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nodes 4-7; level 4 includes nodes 8-15; level 5
includes nodes 16-31; and level 6 includes
nodes 32-63). From the perspective of node X
(for X>1), the identify number of the node ema-
nating from X’s left-hand side is 2X, and from
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X’s right-hand side is 2X+1. For example, from
node 47, node 94 (2x47) emanates to the left,
and node 95 (94+1) emanates to the right. From
node 94, node 188 emanates to the left, node
189 to the right, etcetera. Note that after the
root attribute (depth 2 and deeper), all even-
numbered nodes lie on the left-hand branch, and
odd-numbered nodes on the right-hand branch,
of the tree.

CTA software produces output employ-
ing node identity numbers to describe the CTA
model: an example of CTA software output is
presented in Figure 4 (hypothetical data). Re-
spectively, the automated CTA software output
lists: attribute name (D2, D3 and D4 loaded in
the hypothetical CTA model); node identity
number; tree depth level; sample size for the
analysis indicated; ESS for the attribute;
whether jackknife (leave-one-out, or LOO) va-
lidity analysis was stable (indicated) or unstable;

jackknife ESS; p for the jackknife ESS; attribute
metric (ORD=ordered, CAT=categorical); and
CTA model shorthand.

The root attribute (here, D2) is listed
first in the report. For each attribute the report
first indicates the cutpoint and outcome for the
left-hand branch emanating from the attribute,
and second for the right-hand branch. Branches
ending in model endpoints are marked by an as-
terisk. As seen, the left-hand branch emanating
from D2 has a cutpoint of <6.2 units: observa-
tions having D2 scores <6.2 units are predicted
to be a member of class 4, and this branch ter-
minates in a model endpoint representing a total
of 242 observations, of whom 165 (68.18%) are
correctly classified. The remaining 242-165=
77 observations having D2 scores <6.2 units
were members of class 5, and were misclassified
by this branch of the CTA model.

ATTRIBUTE NODE LEV OBS P

ESS

704 .000

292 .000

.039

LOO

48.44% STABLE

41.60% STABLE

28.99% STABLE 28.99%

ESSL LOOp TYP MODEL
48.44% .000 ORD <=6.2-->4,165/242,68.18%*
>6.2-->5,375/462,81.17%
41.60% .000 ORD <=4.5-->4,29/63,46.03%
>4.5-->5,206/229,89.96%*
.039 ORD <=1.9-->4,18/30,60.00%*
>1.9-->5,22/32,68.75%*

Figure 4: Sample CTA Software Output (Hypothetical Expository Data)

The right-hand branch emanating from
D2 has a cutpoint of >6.2 units: observations
having D2 scores >6.2 units are predicted to be
members of class 5, but this branch does not
terminate in a model endpoint. Rather, the
model includes attribute D3 at node 3.

As seen, the left-hand branch emanating
from D3 has a cutpoint of <4.5 units: observa-
tions having D3 scores <4.5 units are predicted
to be members of class 4, but this branch does
not terminate in a model endpoint.
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The right-hand branch from D3 has a
cutpoint of >4.5 units: observations with D3
scores >4.5 units are predicted to be members of
class 5, and this branch terminates in a model
endpoint representing a total of 229 observa-
tions, of whom 206 (89.96%) are correctly clas-
sified. The remaining 229-206=23 observa-
tions having D3 scores >4.5 units were mem-
bers of class 4, and were misclassified by this
branch of the CTA model.

Both branches emanating from D4 term-
inate in a model endpoint (this is always true for



Optimal Data Analysis
2010, Vol. 1, Release 1 (September 17, 2010), 144-160

Copyright 2010 by Optimal Data Analysis, LLC
2155-0182/10/$3.00

the last attribute listed in the output). The left-
hand branch has a cutpoint of <1.9 units: obser-
vations with D4 scores <1.9 units are predicted
to be members of class 4; this endpoint repre-
sents 30 observations of whom 18 (60.00%) are
correctly classified and 30-18=12 (40.00%) are
misclassified. And, the right-hand branch has a
cutpoint of >1.9 units: observations having D4
scores >1.9 units are predicted to be members of
class 5; this endpoint represents 32 observations
of whom 22 (68.75%) are correctly classified
and 32-22=10 (31.25%) are misclassified.

To construct an illustration of the final
CTA model, referring to Figure 3 select nodes 1,
3 and 6 (see Table 3, column 2): these are de-
picted by circles (Figure 1). Branches are then
depicted using arrows emanating from the left-
hand side of the root attribute (D2), the right-
hand side of D3, and both sides of D4, terminate
in model endpoints depicted using rectangles
(Figure 1). Add the Type I error rate beneath
each attribute, cutpoint values adjacent to ar-
rows, and text indicating the outcome for each
endpoint—and the CTA model is complete.

Automated CTA Command Syntax

Table 6 gives an alphabetical roster and
description of automated CTA software control
commands and keywords (an example of an
automated CTA program is provided ahead).

Table 6: Control Commands for
Automated CTA Software

ATTRIBUTE
Syntax ATTRIBUTE variable list ;
Alias ATTR

Remarks The ATTRIBUTE command lists
the attribute(s) to be used in the
analysis. The TO keyword may be
used to define multiple attributes in
the list. For example, the command
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ATTR Alto A4;

indicates that Al, A2, A3 and A4
will be treated as attributes. Further
exposition of the TO keyword is
found in the discussion for VARS.

CATEGORICAL

Syntax CATEGORICAL {ON | OFF};
CATEGORICAL variable list ;

Alias CAT

Remarks The CATEGORICAL command
specifies that categorical analysis
will be used, and is required when
the attribute to be analyzed is
categorical. Using the ON keyword
indicates that all variables in the
variable list are categorical. CAT
with no parameters is the same as
CAT ON. The TO keyword may be
used in the variable list (see the
discussion under VARS).

CLASS

Syntax CLASS variable list ;

Remarks The mandatory CLASS command
specifies the class variable to be
used in the analysis. A separate
analysis will be run for each class
variable named. The TO keyword
may be used in the variable list (see

discussion under VARS).
DIRECTION

Syntax DIRECTION {<|LT|>|GT|
OFF} value list ;

Aliases DIR, DIRECTIONAL

Remarks The DIRECTION command defines
the presence and nature of a direc-
tional (i.e., a priori, one-tailed, or
confirmatory) hypothesis. The
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parameter < or LT indicates that the
class values in the value list are
ordered in the “less than” direction.
The parameter > or GT indicates the
class values are ordered in the
“greater than” direction. The value
list must contain every value of the
class variable currently defined.

The default is OFF.

attribute Z. Commas in the exclude
string enable the user to exclude
multiple values of a variable using a
single command:

EXCLUDE C=2/4;

excludes all observations having a
value of 2 or 4 for attribute C.
Multiple EXCLUDE commands
may be entered, up to a maximum

ENUMERATE of 100 clauses. Observations which

satisfy any of the EXCLUDE
clauses will be excluded.

Syntax ENUMERATE {ROOT}
{MINOBS value} ;

Remarks The ENUMERATE command with FORCENODE

no options specifies that all combin-
ations of attributes in the top three
nodes will evaluated.
ENUMERATE ROOQT specifies
that only the top node will have all
attributes evaluated.

ENUMERATE MINOBS value
allows only solution trees with at
least value observations in them.

Syntax FORCENODE node var ;

Remarks The FORCENODE command
forces CTA to insert the attribute
var at node node in the solution
tree. If the UniODA solution for
this attribute is not significant, or
this node is subsequently pruned, an
error message will be printed.

EXCLUDE GO
Syntax EXCLUDE variable {=|<>|<|>| Syntax GO :
<=|>=| OFF} value (,value2,...) ;
) Remarks The GO command begins execution
Aliases EX, EXCL of the currently defined analysis.
Remarks This command excludes observa- INCLUDE
tions having the indicated value of
variable. For example, Syntax INCLUDE variable {=|<>|<|>|
<=|>=| OFF} value (,value2,...) ;
EXCLUDE D=4 ;
) ) Aliases IN, INCL
drops all observations with the
value of 4 for attribute D. The Remarks The INCLUDE command functions

command
EXCLUDE B=2 7z>=113 ;

drops all observations with the
value of 2 for attribute B or values
greater than or equal to 113 for
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in the same manner as the
EXCLUDE command, except that
only those observations with the
indicated value for variable are
included. If multiple INCLUDE
statements exist, only those obser-
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LOO
Syntax

Remarks

MCARLO

Syntax

Alias

Remarks

vations will be kept which satisfy
all these INCLUDE statements.

LOO {pvalue | STABLE};

The LOO command indicates that
leave-one-out analysis will be
performed for every attribute in the
tree. LOO STABLE allows only
attributes with LOO ESS equal to
the ESS for that attribute. LOO
pvalue allows only those attributes
in the solution tree which have an
ESS that yields a p < pvalue.

MCARLO {ITERATIONS value |
CUTOFF pvalue | STOP confvalue

}
MC

The MCARLO command controls
Monte Carlo analysis for estimating
Type I error, or p. The keywords
specify stopping criteria; if any
criterion is met, then the analysis
stops. ITERATIONS (ITER)
specifies the maximum number of
Monte Carlo iterations. STOP xxx
indicates the confidence level (in
percent), which will stop processing
for the current attribute, if the
estimated Type | error rate
(specified with the CUTOFF
keyword) drops below this level.
For example, the command

MCARLO ITER 70000
CUTOFF .05 STOP 99.9;

indicates a Monte Carlo analysis
will be conducted, and will stop
when one of the following occurs:
(2) 70,000 iterations have been

155

executed, (2) a confidence level of
less than 99.9% that p<.05 has been
obtained.

MAXLEVEL

Syntax

Remarks

MAXLEVEL value ;

The MAXLEVEL command
specifies the deepest level or depth
allowed in the solution tree.

MINDENOM

Syntax

Remarks

MISSING
Syntax

Alias

Remarks

MINDENOM value ;

The MINDENOM command
specifies that only attributes which
yield a denominator of value or
more will be allowed in the solution
tree.

MISSING {variable list | ALL}
(value) ;

MISS

The MISSING command tells ODA
to treat observations with value
(value) as missing for each variable
on the list. For example, the
command

MISSING X Y Z (-4) ;

indicates that observations with
attrbutes X, Y, or Z equal to -4 will
be dropped if they are present in a
CLASS, ATTRIBUTE, WEIGHT,
or GROUP variable. ALL specifies
that the indicated missing value
applies to all variables. The TO
keyword may be used in the attribu-
te list (see discussion under VARS).
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OPEN
Syntax OPEN {path\file name | DATA} ;

Remarks The OPEN command specifies the
data file to be processed by ODA.
This file must be in ASCII format.
DATA indicates that a DATA state-
ment, with inline data following,
appears in the command stream.

OUTPUT
Syntax OUTPUT path\file name
{APPEND} ;

Remarks The OUTPUT command specifies
the output file containing the results
of the ODA run. The default is
ODA.OUT. APPEND indicates
that the report is to be appended to
the end of an already existing output
file.

PRIORS
Syntax PRIORS {ON | OFF};

Remarks The PRIORS command indicates
whether the ODA criterion will be
weighted by the reciprocal of sam-
ple class membership. The default
is ON. PRIORS with no parameters
is the same as PRIORS ON.

PRUNE
Syntax PRUNE pvalue {NOPRIORS} ;

Remarks The PRUNE command indicates the
p-value with which to optimally
prune the classification tree. The
NOPRIORS keyword should be
used when PRIORS is turned OFF.

SKIPNODE
Syntax SKIPNODE node ;
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Remarks

TITLE
Syntax

Remarks

The SKIPNODE command
specifies that the node node will be
empty of any attribute in the
solution tree.

TITLE title;

The TITLE command specifies the
title to be printed in the report.
TITLE with no parameters erases
the currently defined title.

USEFISHER

Syntax

Remarks

VARS
Syntax

Remarks

USEFISHER value ;

The USEFISHER command
specifies that all probability
calculations for categorical variable
will be determined by Fisher’s exact
test, rather than by Monte Carlo.

VARS variable list ;

The VARS command specifies a list
of attribute names corresponding to
fields in the input data set. The TO
keyword may be used to define
multiple variables in the variable
list. For example, the command

VARS XY ZV1TO V4,

specifies that the input file contains,
in order, variables X, Y, Z, V1, V2,
V3, and V4, and that there is at least
one blank space separating all
adjacent data. Alternatively, the
data points may be separated by a
single comma (with no spaces).

The TO keyword may be used to
input a range of variables which
have the same name except for the
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integer at the end of the name: the
integers must be positive and
ascending, increasing one unit per
variable. Thus, VAR1 TO VAR10
is admissible (defining 10
variables). In contrast, VAR10 TO
VAR1, VARA TO VARJ,or ATO
X10, are not admissible.

The data for each observation
may all exist on a single line of the
data set, or may be placed on
multiple adjacent lines. It is not
recommended that a new observa-
tion is included on a line containing
data from the previous observation.

WEIGHT

Syntax WEIGHT {variable | OFF} ;

Alias RETURN

Remarks The optional WEIGHT command
specifies the weight variable for the
analysis. The data values for the
WEIGHT variable supply the
weight the corresponding

observation. The default is OFF.

Two Example Automated CTA Programs

Imagine an application in finance. In
light of the recent calamitous failure of home
mortgages, it is decided that a new credit-
screening methodology is needed. Toward this
objective a bank creates a dataset consisting of
records describing all mortgages granted in the
past three years (for exposition, imagine N=300
loans were made, of which, 10%, or 30 loans,
were in default). The class variable is whether
or not the loan went into default (label this class
variable “Loan”, and use dummy-codes 1=sol-
vent, O=default). The weight is the value of the
loan in dollars (label this variable “Value”). Fi-
nally, imagine data are available for twenty at-
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tributes (Varl-Var20). Of these, Varl-Varl0
are ordered, and the rest categorical.

Imagine that data and program files have
been saved, and the output file will be saved, in
the “c:cta” directory. As per the automated CTA
system job-naming convention, a common name
is used for data, program and output files: the
name of the data file is “loan.dat”; the name of
the program file is “loan.pgm”; and the name of
the output file is “loan.out.” The following code
defines data and output files, assigns class,
weight, and attribute variables, and defines the
categorical attributes:

open c:\cta\loan.out;

output c:\cta\loan.out;

vars loan value varl to var20;
class loan;

attr varl to var20;

cat varll to var20;

weight value;

It is decided a priori that, to increase the
likelihood of the model cross-generalizing when
applied to a validity sample, model endpoints
should represent at least 5% of the total sample
(5% of N=300 is N=15):

mindenom 15;

It is also decided a priori that to increase
the likelihood of the model cross-generalizing,
only variables stable in leave-one-out analysis
would be allowed as model nodes:

loo stable;

It is decided a priori to use the system
default (on) for weighting by prior odds intact,
as another means of increasing the likelihood of
the model cross-generalizing to an independent
random sample, and also to explicitly maximize
ESS (setting priors off explicitly maximizes
overall PAC). The conventional experiment-
wise Type | error rate (p<0.05) is selected for
pruning® to maximize ESS (experimentwise p<
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0.05 is used automatically during model growth
to control overfitting®):

prune .05;

Because there are relatively many cate-
gorical variables, it is decided to use Fisher’s
exact test to assess p for categorical variables®
and reduce the number of Monte Carlo simula-
tion experiments conducted:

usefisher;

Because the sample is modest in size, as
is the number of attributes, and in light of the
small number of failed loans in conjunction with
the minimum denominator specification, it is
decided that full enumeration of the first three
nodes is feasible and appropriate, using 25,000
Monte Carlo experiments to compute p for all
ordered attributes:

enumerate;
mecarlo iter 25000 cutoff .05 stop 99.9;
title loan default weighted CTA,;

go,

Imagine an application in space physics.
A phased array of 16 high-frequency antennas
located in Goose Bay (Labrador), with a total
transmitted power exceeding 6 kilowatts, was
used to target free electrons in the ionosphere.**
The class variable was labeled “return”: “good”
returns showed evidence of some type of
structure in the ionosphere, and “bad” returns
failed to provide evidence of structure (dummy-
coded as “1” vs. “0”, respectively). Received
signals were processed using an autocorrelation
function with two arguments per signal: time of
pulse and pulse number. Because there were 17
pulse numbers for the Goose Bay system, there
were thus 34 ordered attributes (“X1-X347).
There was no weight variable, and no categori-
cal attribute. The objective is to maximize over-
all PAC—the total number of accurately classi-
fied good and bad returns.
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Imagine that data and program files have
been saved, and the output file will be saved, in
the “c:cta” directory. As per the automated CTA
system job-naming convention, a common name
is used for data, program and output files: the
name of the data file is “radar.dat”; the name of
the program file is “radar.pgm”; and the name
of the output file is “radar.out.” The following
code defines data and output files, and assigns
class and attribute variables:

open c:\cta\radar.out;
output c:\cta\radar.out;
vars return x1 to x34;
class return;

attr x1 to x34;

It is decided a priori that, to maximize
overall PAC achieved, the endpoint minimum
denominator and model maximum depth would
be unconstrained, but rather explicitly optimized
by the program (no commands required).

Also, to maximize overall PAC it was
decided to let attributes load as nodes even if
unstable in LOO analysis, so long as their ESS
in LOO analysis exceeded the ESS achieved by
any other attribute:

loo 0.05;

It is decided a priori to set priors off in
order to explicitly maximize overall PAC:

priors off;

The default setting for optimal pruning is
priors on, so the prune command has to be ad-
justed to indicate that priors is set to off. Also,
to maximize overall PAC, a statistical marginal
loading will be allowed in the optimally-pruned
model:

prune .10 nopriors;

Because there are no categorical attrib-
utes, the usefisher command is omitted. Be-
cause the sample is moderate in size, as is the
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number of attributes, and the attributes are or-
dered with few ties, analysis will be resource
intensive. Also, 100,000 Monte Carlo experi-
ments will be used in order to provide adequate
statistical power for the small denominator end-
points that are anticipated:

mcarlo iter 200000 cutoff .05 stop 99.9;

Because UniODA analysis showed many
attributes are loo-unstable, the analysis is judged
to be too computationally intensive to attempt
full enumeration on the first pass through the
data via CTA (omitting the enumeration com-
mand results in an algorithmic analysis by de-
fault). Thus, after specifying enumeration of the
root variable only, and providing a title, the pro-
gram is ready to go:

enumerate root;
title RADAR maximum-PAC CTA;

go,

Advantages of Automated versus
Manually-Derived CTA

Perhaps the most striking advantage of
the automated software is that it is able to ac-
complish the example analyses just described,
whereas neither of those analyses are possible to
accomplish using manual derivation. Two spe-
cific advantages of the automated software are
integrated automated pruning procedures: (a)
sequentially-rejective Sidak “Bonferroni-type”
multiple comparisons adjustment’ to prevent
model overfitting during the growth phase of the
analysis; and (b) optimal pruning to maximize
ESS at any specified experimentwise alpha level
after growth has ceased.’* And, those with ex-
perience conducting manual CTA using ODA*
software would likely be amazed to hear that in
recent speed trials (N=351, 34 continuous at-
tributes) the automated software was able to
solve enumerated CTA models averaging 0.7
CPU seconds per model, running 5,000 Monte
Carlo experiments on a 3 GHz Intel Pentium D
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microcomputer. An algorithmic CTA derived
manually for either type of CTA would typically
require one or more man-days.

Initial comparisons of automated versus
manual methods clearly reveal that the increased
depth of search afforded by the enumeration ca-
pabilities of the automated software typically
returns stronger, more efficient models.® The
enumerated models may also be more consistent
with original hypotheses than manually-derived
counterparts.® Preliminary investigations in our
laboratory suggest that the advantages of auto-
mated software become even more striking in
applications which feature numerous, scattered,
missing data. We are aware of several studies
which compare previously-completed manually-
derived CTA models vs. models derived using
automated software, either planned or in prog-
ress. Monte Carlo simulation studies comparing
the two methods are obviously warranted.

It is exciting to witness, whether as actor
or spectator, the beginning of a new area of in-
quiry involving a powerful and evolving new
methodology. Manually-derived CTA may be
likened to an early telescope, focused by mov-
ing the body much like a trombone slide. Initial
exploration using this early tool was fruitful and
informative, and motivated the development of
the automated system, which may be likened to
a modern telescope. The modern instrument
allows for pinpoint placement of the machine in
any particular area (forcenode), aspect control
including depth of field (maxlevel) and search
(mcarlo iter; enumerate), luminosity (minobs;
mindenom), fuzzy control (loo stable vs. .0x),
and a standardized measure of acuity (ESS). It
is likely that using these controls in a variety of
applications will lead to refinements in the con-
trols themselves, as well as in the methods of
their operations, and these developments in turn
may result in the creation of additional control
features. For these reasons we anticipate surpri-
sing findings and major advances in the under-
standing of absolute and comparative capabili-
ties of automated CTA—soon to come.
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