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This report improves measurement properties of data and analytic 

methods widely used in meteorological modeling and forecasting.  

Paradoxical confounding is defined and demonstrated using global 

temperature land-ocean index data.  It is shown that failure to add-

ress paradoxical confounding results in suboptimal atmospheric 

circulation pattern models, and correcting prior measurement and 

analytic deficiencies results in more accurate prediction of temp-

erature and precipitation anomalies, and export of Arctic sea ice.  

 

Simpson’s Paradox may be the single greatest 

threat to the validity of quantitative analysis in 

all empirical science.
1
  The Paradox can occur 

when data from two or more samples, groups or 

time periods are combined into a single sample: 

under such conditions, results obtained when 

analyzing the combined data may be different 

than when analyzing individual data sets separa-

tely. The following hypothetical example illus-

trates confounding for a simple correlation. 

Imagine we wish to correlate sea level 

pressure (SLP) with thunderstorm severity rated 

using a scale with greater values indicating 

greater severity, and data collected at two loca-

tions. Location A usually has relatively low SLP 

and short-lived, fast-moving storms: the lower 

the SLP the more severe the storm.  The hypo-

thetical correlation model (r=-0.8) relating SLP 

and severity is indicated using arrow “A” in 

Figure 1 (individual hypothetical data points 

from location A are indicated as “a”): data 

swarm A indicates strong negative association. 

Compared to A, Location B usually has 

relatively high SLP and long-lived slow-moving 

storms: the lower the SLP the more severe the 

storm.  The correlation (r=-0.8) relating SLP 

and severity is indicated in Figure 1 by arrow 

“B” (individual hypothetical data points from 

location B are indicated as “b”): data swarm B 

indicates strong negative association. 

When data from Locations A and B are 

combined, the resulting correlation model (r= 

0.7) relating SLP and severity is indicated by 

arrow “C” (individual hypothetical data points 

for combined sample are all “a” and “b”): data 

swarm C indicates strong positive association. 

In this hypothetical example, for two 

individual samples (Locations A and B) con-

sidered separately the analysis reveals that more 

severe storms are associated with decreasing 

SLP.  For the combined data, the same analysis 

reveals that more severe storms are associated 

with increasing SLP. 
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                     Figure 1: Hypothetical Illustration of Paradoxical Confounding 

 

Simpson’s Paradox threatens the validity of 

quantitative atmospheric science because 

nonstationarity is prevalent in longitudinal data 

series used in atmospheric science, such as 

temperature or pressure—and nonstationarity  

can induce Simpson’s Paradox.  For example, 

global surface temperature data clearly are 

nonstationary: in Figure 2, anomalies are 

computed relative to the period 1951-1980 

(http://data.giss.nasa.gov/gistemp/).

                           
Figure 2: Mean Global Temperature Land-Ocean Index Anomaly by Year 

http://data.giss.nasa.gov/gistemp/tabledata/GLB.Ts+dSST.txt
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Analysis was restricted to the time 

period that is the focus of most current 

quantitative atmospheric science, beginning in 

the year 1948.  Eyeball inspection of Figure 2 

suggests a relatively flat trajectory (“stationary 

series”) through 1976, versus a steadily 

increasing trajectory (“non-stationary series”) 

across subsequent years.  Regression analyses 

modeling temperature anomaly (dependent 

measure) as a function of year (independent 

measure), separately by month, are summarized 

In Table 1: findings confirm eyeball obser-

vations, and establish the generalizability of the 

phenomenon to a time period more granular 

than is afforded by annual measurements. 

Tabled for each model is the intercept as 

well as the value of the t-test for the two-tailed 

hypothesis that the value of the intercept is zero, 

and the associated Type I error rate.  For every 

model, in every month, the intercept is not 

significantly different than zero for the 

stationary series, but is significantly different 

than zero for the nonstationary and combined 

series.  Also tabled for each model is the slope 

(regression beta weight) and the value of the t-

test for the two-tailed hypothesis that the value 

of the slope is zero, and the associated Type I 

error rate.  Consistent with findings for inter-

cept, for every model, in every month, the slope 

is not significantly different than zero for the 

stationary series, but is significantly different 

than zero for the nonstationary and combined 

series.  Finally, Table 1 provides the percent of 

variance in temperature that is explained by the 

regression model as a function of year (R
2
), and 

p for the regression model. If model perform-

ance for the combined sample lies outside 

performance results for samples considered 

individually, then paradoxical confounding 

exists: this is indicated using red. 
 

           Table 1: Regression Modeling of Temperature Anomaly using Year, Separately by Month: 

                                                   Evidence of Paradoxical Confounding 
 

      Month      Time Period        Intercept, t, p         Slope, t, p          R
2
, p 

   -----------  --------------   ---------------------  -------------------  ------------ 

   January      Stationary         559.3   0.8  0.45    -0.29  -0.8  0.46     2.1  0.45 

                Non-Stationary   -3239.1  -5.3  0.0001   1.64   5.3  0.0001  49.4  0.0001 

                Combined         -2114.5  -7.9  0.0001   1.08   8.0  0.0001  52.2  0.0001 

 

   February     Stationary        -140.0  -0.2  0.87     0.07   0.2  0.87     1.0  0.87 

                Non-Stationary   -3842.6  -5.5  0.0001   1.95   5.6  0.0001  51.6  0.0001 

                Combined         -2451.3  -8.4  0.0001   1.25   8.5  0.0001  55.3  0.0001 

 

   March        Stationary        -550.5  -0.8  0.46     0.28   0.8  0.46     2.1  0.46 

                Non-Stationary   -3374.5  -5.9  0.0001   1.71   5.9  0.0001  54.9  0.0001 

                Combined         -2451.8 -10.0  0.0001   1.25  10.1  0.0001  63.8  0.0001 

 

   April        Stationary        -229.4  -0.4  0.71     0.12   0.4  0.72     0.5  0.72 

                Non-Stationary   -3216.2  -7.1  0.0001   1.63   7.1  0.0001  63.7  0.0001 

                Combined         -2159.7 -10.3  0.0001   1.10  10.4  0.0001  65.0  0.0001 

 

   May          Stationary        -197.5  -0.3  0.75     0.10   0.3  0.75     0.4  0.75 

                Non-Stationary   -2590.9  -4.9  0.0001   1.31   4.9  0.0001  45.4  0.0001 

                Combined         -1845.2  -8.6  0.0001   0.94   8.7  0.0001  56.7  0.0001 

 

   June         Stationary        -145.7  -0.3  0.75     0.07   0.3  0.75     0.4  0.75 

                Non-Stationary   -3291.0  -6.3  0.0001   1.67   6.4  0.0001  58.3  0.0001 

                Combined         -1918.6  -9.7  0.0001   0.98   9.7  0.0001  62.0  0.0001 
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   July         Stationary        -111.3  -0.3  0.78     0.06   0.3  0.79     0.3  0.79 

                Non-Stationary   -2841.5  -4.7  0.0001   1.44   4.8  0.0001  43.8  0.0001 

                Combined         -1937.1  -9.5  0.0001   0.99   9.6  0.0001  61.3  0.0001 

 

   August       Stationary         203.2   0.4  0.73    -0.10  -0.4  0.73     0.5  0.73 

                Non-Stationary   -3492.9  -6.5  0.0001   1.77   6.6  0.0001  60.0  0.0001 

                Combined         -1933.3  -8.5  0.0001   0.98   8.6  0.0001  55.8  0.0001 

 

   September    Stationary           3.9   0.0  0.99    -0.01  -0.0  0.99     0.1  0.99 

                Non-Stationary   -3359.2  -6.3  0.0001   1.70   6.4  0.0001  58.4  0.0001 

                Combined         -1888.2  -8.8  0.0001   0.96   8.8  0.0001  57.3  0.0001 

 

   October      Stationary         298.4   0.6  0.58    -0.15  -0.6  0.58     1.2  0.58 

                Non-Stationary   -4082.0  -8.5  0.0001   2.06   8.5  0.0001  71.4  0.0001 

                Combined         -1920.6  -8.5  0.0001   0.98   8.5  0.0001  55.7  0.0001 

 

   November     Stationary        -253.9  -0.5  .062     0.13   0.5  0.62     0.9  0.62 

                Non-Stationary   -3719.7  -6.1  0.0001   1.88   6.1  0.0001  56.3  0.0001 

                Combined         -2056.9  -9.1  0.0001   1.05   9.1  0.0001  58.9  0.0001 

 

   December     Stationary          41.4   0.1  0.95    -0.02  -0.7  0.95     0.1  0.95 

                Non-Stationary   -3076.1  -5.0  0.0001   1.56   5.1  0.0001  45.1  0.0001 

                Combined         -1998.4  -8.2  0.0001   1.02   8.3  0.0001  54.2  0.0001 

-------------------------------------------------------------------------------------- 

Note: Stationary=1948–1976; Non-Stationary=1977–2007; Combined=1948-2007.  

 

This exercise demonstrates that 

temperature does not increase between 1948 and 

1976, but does increase thereafter; funda-

mentally different “statistical infrastructure” 

(i.e., regression models) underlies the stationary 

and nonstationary series; and combining data 

from these two series typically results in 

paradoxical confounding.  What is the nature of 

the effect of this confounding?  In the initial 

hypothetical example, the effect of the 

confounding was one of “direction”: the result 

for the combined sample was opposite in 

direction to results obtained for individual 

samples.  For actual temperature data the effect 

of confounding is one of “magnitude”: the 

finding for the combined sample is in the same 

direction (indicating increase over time) as the 

finding for the nonstationary series, but the 

model for the combined sample misestimates 

the magnitude of the effect.  For any month, 

compared to the nonstationary series, the model 

for the combined sample has intercept and slope 

coefficients with lower absolute values: models 

for the combined data thus underestimate the 

rate of change in temperature for the nonstation-

ary series.  If Simpson’s Paradox confounds 

fundamental data, then models using those 

confounded data also are confounded. 

Measuring Atmospheric Circulation Patterns 

Seminal research conducted by Barnston 

and Livezey used orthogonally rotated principal 

components analysis (PCA) of monthly mean 

700 mb geopotential heights to identify the 

major modes of northern hemisphere upper-air 

variability.
2
  They used combined data from the 

years 1950 through 1984: measurements were 

taken on a 358-point grid covering latitudes 

from 20ºN to 85ºN, and ten “robust” modes 

(components) were identified which persisted 

throughout the year.  The Climate Prediction 

Center (CPC) performed a similar analysis of 

northern hemisphere 500 mb heights using data 

from 1950 to 2000: ten modes were identified 

and used to compute the values of the telecon-

nection indices (http://www.cpc.noaa.gov/data/ 

teledoc/telepatcalc.shtml).  Table 2 describes the 

ten modes of upper-air variability determined by 

the CPC analysis. 

http://www.cpc.noaa.gov/data/%20teledoc/telepatcalc.shtml
http://www.cpc.noaa.gov/data/%20teledoc/telepatcalc.shtml
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        Table 2: Ten Modes of Upper-Air Variability Determined by the CPC Analysis 

 
CPC Mode    Abbreviation                Description 

--------    ------------    -------------------------------------- 

   1            NAO         North Atlantic Oscillation 

   2            EA          East Atlantic Pattern 

   3            WP          West Pacific Pattern 

   4            EP/NP       East Pacific / North Pacific Pattern 

   5            PNA         Pacific / North American Pattern 

   6            EA/WR       East Atlantic/West Russia Pattern 

   7            SCA         Scandinavia Pattern 

   8            TNH         Tropical / Northern Hemisphere Pattern 

   9            POL         Polar/ Eurasia Pattern 

   10           PT          Pacific Transition Pattern 

------------------------------------------------------------------ 

 

Figure 3 gives the total variance in 500 

mb height data that is explained by these ten 

modes each year.  In the Figure, blue shading 

indicates levels of explained variation that fall 

below the mean.  In 2003 the combined sample 

includes an equal number of data points from 

stationary (1950-1976) and nonstationary (1977-

2003) series, but data from the nonstationary 

series dominate the combined sample by 2004.  

Extrapolation of earlier results suggests that 

increasing domination will accelerate paradox-

ical confounding and resulting underestimation 

of magnitude of effect.  Note that after 2003, 

performance of the quantitative model used to 

identify major modes of northern hemisphere 

upper-air variability has never been lower. 

 
    Figure 3: Variance in 500mb Height Data Explained by 10 CPC Modes, by Year 
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It is simple to show that this accelerating 

failure of the current state-of-the-art is in part 

attributable to paradoxical confounding. We 

obtained January 500 mb geopotential height 

data from 1948-2007 from the NCEP/NCAR 

Reanalysis dataset, for the full 379-point grid 

used in research cited earlier, separating the data 

into stationary (1948-1976) versus nonstationary 

(1977-2007) series (http://www.cdc.noaa.gov/ 

cgi-bin/Timeseries/timeseries1.pl). We replica-

ted prior varimax-rotated, ten-extracted-factor 

PCA of 500 mb height data (see Table 3).  The 

principal component column indicates success-

sive eigenvector (mode).  For Sample, S is the 

stationary series, NS the non-stationary series, 

and C the combined S and NS data.  Eigenvalue 

is given for each sample and mode, as is 

corresponding percent of total variance 

explained by the mode.  For example, the first 

mode for the stationary series had an eigenvalue 

of 68.1, thus explaining 18.0% of the total 

variance of 379 measurements of 500 mb 

heights.  Indicated using red, paradoxical con-

founding exists when the eigenvalue for the C 

sample falls outside of the domain defined by 

the S and NS samples.  Note that 80% of the 

modes clearly reveal paradoxical confounding: 

in every case except mode number 2 the effect 

was underestimation of explained variation. 

 

 Table 3: Replication of Prior Analysis of January 500 mb Geopotential 

                                  Height Data, Separately by Series 

Principal                      Percent of     Cumulative 

Component  Sample  Eigenvalue   Variance   Percent Variance 

---------  ------  ----------  ----------  ---------------- 

    1        S        68.1        18.0           18.0 

              NS       75.3        19.9           19.9 

              C        63.3        16.7           16.7 

 

    2        S        58.0        15.3           33.3 

              NS       50.2        13.3           33.1 

              C        60.0        15.8           32.5 

 

          3        S        42.0        11.1           44.4 

              NS       39.1        10.3           43.4 

              C        32.4         8.6           41.1 

 

    4        S        37.4         9.9           54.2 

              NS       34.2         9.0           52.5 

                C        29.5         7.8           48.9 

  

    5        S        24.8         6.5           60.8 

              NS       27.3         7.2           59.7 

              C        27.0         7.1           56.0 

  

    6        S        23.9         6.3           67.1 

              NS       22.7         6.0           65.7 

              C        21.0         5.5           61.5 

 

    7        S        18.6         4.9           72.0 

              NS       19.6         5.2           70.8 

              C        18.1         4.8           66.3 

 

 

http://www.cdc.noaa.gov/%20cgi-bin/Timeseries/timeseries1.pl
http://www.cdc.noaa.gov/%20cgi-bin/Timeseries/timeseries1.pl
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    8        S        16.1         4.2           76.2 

              NS       15.4         4.1           74.9 

              C        13.4         3.5           69.8 

 

    9        S        13.7         3.6           79.8 

              NS       15.3         4.0           78.9 

              C        12.5         3.3           73.1 

 

    10       S        13.2         3.5           83.3 

              NS       11.0         2.9           81.8 

              C        11.4         3.0           76.2 

----------------------------------------------------------- 

 

Table 3 also provides the cumulative 

percent of total variance (of 379 variables) 

explained by the modes for each sample, across 

successive modes.  Indicated using blue, para-

doxical confounding exists when the cumulative 

value of this performance index for the C 

sample falls outside of the domain defined by 

the S and NS samples.  All factors clearly reveal 

paradoxical confounding, and the effect was 

always underestimation of explained variation. 

In addition to examining omnibus 

performance results of the current ten-mode 

solution, it is instructive to examine internal 

measurement properties of the individual 

modes.  If the structure underlying the modes 

(reflected by the relationship of the 379 

measurements of 500 mb heights to the mode 

score) is parallel, then the mode scores for the S,  

 

 

 

NS and C samples will be internally consistent 

(i.e., measure the same underlying construct), 

and a one-factor PCA of the three mode scores 

should explain most of the variation (theoretical 

maximum=100%), coefficient Alpha (positively 

related to the mean item-total correlation and 

the number of measures in the index) for the 

resulting factor score should be high (theoretical 

maximum=1.0), and the root-mean-squared-

residual, or RMSR (an index of the average 

error in estimating the actual inter-measure 

correlation based on the mode structure) of the 

resulting factor score should be low (theoretical 

minimum=0).  Seen below, the ten confounded 

current modes have poor internal measurement 

properties even by social science standards—for 

example, for personality surveys with modes 

measured using a fraction as many measures.
3 

  Table 4: Internal Measurement Properties of Ten CPC Modes 

 Principal              Percent of      

 Component  Eigenvalue   Variance   Alpha    RMSR 

 ---------  ----------  ----------  -----   ------ 

     1        1.89        63.3      0.710   0.2772            

     2        1.82        60.5      0.674   0.2913            

     3        2.22        74.1      0.825   0.1749            

     4        1.71        57.1      0.625   0.2744            

     5        1.54        51.4      0.527   0.2771            

     6        1.42        47.2      0.440   0.1812            
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     7        1.45        48.5      0.469   0.3011            

     8        1.96        65.2      0.734   0.1805            

     9        1.63        54.2      0.577   0.2293            

     10       1.56        52.0      0.539   0.2404            

 ------------------------------------------------- 

 

Empirical results clearly demonstrate 

that current state-of-the-art models of modes of 

northern hemisphere upper-air variability are 

confounded by Simpson’s paradox, underesti-

mate model performance and phenomenon 

effect strength, and produce modes having poor 

measurement properties.  Because data for only 

one month were used in this demonstration, 

these analyses represent a “best case scenario.”  

Prior research first smoothed data over 

successive three month periods prior to 

conducting PCA: because the reliability of a 

composite exceeds the reliability of the 

constituents, smoothed scores will result in 

lower volatility (i.e., less extreme outliers) and 

weaker inter-measure correlations, eigenvalues, 

and measurement properties.   

Theoretical consideration of current 

state-of-the-art models of modes also is not 

compelling.  First, current modes are non-

granular: postulating that a total of only ten 

modes underlie northern hemisphere upper-air 

variability is relatively simplistic compared with 

complexity underlying many large natural 

systems.  Second, current modes are nonpar-

simonious, because computing an omnibus 

mode score requires (in the scoring formula) the 

use of all geopotential height measures.  Third, 

low parsimony makes current mode scores 

robust: because many constituents (grid 

locations) are included in the scoring formula, 

positive changes in some constituents are offset 

by negative changes in others, so mode scores 

are insensitive.  Finally, by formulation PCA is 

designed to produce linear models (modes), yet 

the present results failed to reveal strong linear 

modes as indicated by modest eigenvalues: there 

is therefore discordance between methodology 

(PCA), data (paradoxically confounded), 

method (how PCA was conducted), and 

objective (identifying psychometrically sound 

measures of major modes of northern hemis-

phere upper-air variability). 

 

Unconfounded Measurement 

of Major Modes 

Theoretical and empirical limitations of 

the original solution motivated development of a 

new methodology for identifying superior 

modes, which eliminates problems discussed 

earlier.  Our proprietary method constitutes a 

theoretical shift in the way teleconnections are 

conceptualized, and a search algorithm.  The 

theoretical shift necessitates an ipsative 

standardization of geopotential height data prior 

to conducting PCA.
4
  The application of our 

algorithm involved searching for homogeneous 

spatial areas within which geopotential height 

measurements are highly related. Constraints 

included that independent application of PCA to 

the S, NS and C samples yields comparable, 

excellent macro performance (strong eigen-

values) and internal measurement properties 

across samples, and that mode constituents are 

physically contiguous.  Manually applied to 

January data the algorithm yielded 46 new 

modes summarized below (labels are nominal 

placeholders), ordered by percent of variance 

explained (i.e., decreasing linearity) for the 

stationary sample.  For Sample, S=stationary, 

NS=nonstationary, and C=combined S and NS 

data.  M is the number of geopotential height 

measures (grid locations) constituting the mode.  



Optimal Data Analysis    Copyright 2010 by Optimal Data Analysis, LLC 

2010, Vol. 1, Release 1 (September 17, 2010), 67-100  2155-0182/10/$3.00 

 

 

 

75 
 

Eigen indicates the eigenvalue of the mode for a 

one-factor PCA solution, and Var is the 

associated variance explained (100%xEigen/M). 

The theoretical upper-bound for internal consis-

tency is Alpha=1, and the theoretical lower-

bound for root-mean-square-error is RMSR=0.  

Finally, cumulative total eigenvalue, number of 

height measures, and total variance explained 

are also provided across successive modes. 

 

               Table 5: Principal Components Analysis of Unconfounded January 500 mb 

                                     Geopotential Height Data, Separately by Series 

                                                    Cumulative Totals 

                                              -------------------- 

Mode  Sample  M  Eigen   Var   Alpha   RMSR   Eigen    M    Var 

 J      S     3  2.866   95.5  .977   .0331   2.866    3    95.5 

        NS       2.831   94.4  .970   .0386   2.831         94.4 

        C        2.844   94.8  .973   .0364   2.844         94.8 

  

 H      S     3  2.840   94.7  .972   .0412   5.706    6    95.1 

        NS       2.819   94.0  .968   .0471   5.650         94.2 

        C        2.827   94.2  .969   .0445   5.671         94.5 

 

 PP     S     3  2.826   94.2  .969   .0360   8.532    9    94.8 

        NS       2.641   88.0  .932   .0685   8.291         92.1 

        C        2.761   92.0  .957   .0476   8.432         93.7 

 

 MM     S     3  2.803   93.4  .965   .0337   11.335   12   94.5 

        NS       2.743   91.4  .953   .0433   11.034        92.0 

        C        2.773   92.4  .959   .0380   11.205        93.4 

 

 P      S     4  3.731   93.3  .976   .0404   15.066   16   94.2 

        NS       3.575   89.4  .960   .0608   14.609        91.3 

        C        3.651   91.3  .968   .0499   14.856        92.8 

 

 L      S     3  2.795   93.2  .963   .0558   17.861   19   94.0 

        NS       2.729   91.0  .950   .0735   17.338        91.3 

        C        2.790   93.0  .962   .0568   17.646        92.9 

 

 NN     S     3  2.793   93.1  .963   .0406   20.654   22   93.9 

        NS       2.676   89.2  .939   .0562   20.014        91.0 

        C        2.748   91.6  .954   .0464   20.394        92.7 

 

 M      S     4  3.724   93.1  .975   .0416   24.378   26   93.8 

        NS       3.551   88.8  .958   .0603   23.565        90.6 

        C        3.604   90.1  .963   .0575   23.998        92.3 

 

 Q      S     3  2.789   93.0  .962   .0541   27.167   29   93.7 

        NS       2.613   87.1  .926   .0992   26.178        90.3 

        C        2.707   90.2  .946   .0750   26.705        92.1 

  

 YY     S     3  2.788   92.9  .962   .0411   29.955   32   93.6 

        NS       2.663   88.8  .937   .0566   28.841        90.1 

        C        2.729   91.0  .950   .0474   29.434        92.0 
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 I      S     3  2.785   92.8  .961   .0511   32.740   35   93.5 

        NS       2.725   90.8  .950   .0720   31.566        90.2 

        C        2.755   91.8  .955   .0612   32.189        92.0 

 

 CC     S     3  2.775   92.5  .960   .0492   35.515   38   93.5 

        NS       2.653   88.4  .935   .0677   34.219        90.1 

        C        2.717   90.6  .948   .0577   34.906        91.9 

 

 G      S     3  2.773   92.5  .959   .0586   38.288   41   93.4 

        NS       2.802   93.4  .965   .0540   37.021        90.3 

        C        2.788   92.9  .962   .0563   37.694        91.9 

 

 K      S     3  2.773   92.4  .959   .0561   41.061   44   93.3 

        NS       2.672   89.1  .939   .0875   39.693        90.2 

        C        2.703   90.1  .945   .0764   40.397        91.8 

 

 JJ     S     6  5.544   92.4  .984   .0348   46.605   50   93.2 

        NS       5.236   87.3  .971   .0685   44.929        90.0 

        C        5.360   89.3  .976   .0568   45.757        91.5 

    

 WW     S     3  2.770   92.3  .959   .0547   49.375   53   93.2 

        NS       2.675   89.2  .939   .0581   47.604        89.8 

        C        2.722   90.7  .949   .0483   48.479        91.5 

 

 R      S     3  2.769   92.3  .958   .0617   52.144   56   93.1 

        NS       2.869   95.6  .977   .0358   50.473        90.1 

        C        2.843   94.8  .972   .0422   51.322        91.6 

 

 O      S     3  2.764   92.1  .957   .0646   54.908   59   93.1 

        NS       2.864   95.5  .976   .0373   53.337        90.4 

        C        2.828   94.2  .970   .0468   54.150        91.8 

 

 XX     S     3  2.763   92.1  .957   .0453   57.671   62   93.0 

        NS       2.730   91.0  .951   .0498   56.067        90.4 

        C        2.744   91.5  .953   .0474   56.894        91.8 

   

 T      S     3  2.756   91.9  .956   .0613   60.427   65   93.0 

        NS       2.694   89.8  .943   .0801   58.761        90.4 

        C        2.715   90.5  .948   .0731   59.609        91.7 

 

 F      S     5  4.585   91.7  .977   .0437   65.012   70   92.9 

        NS       4.393   87.9  .965   .0742   63.154        90.2 

        C        4.471   89.4  .970   .0612   64.080        91.5 

 

 EE     S     3  2.749   91.6  .954   .0426   67.761   73   92.8 

        NS       2.529   84.3  .907   .0898   65.683        90.0 

        C        2.658   88.6  .936   .0608   66.738        91.4 

 

 2      S     3  2.743   91.4  .953   .0609   70.504   76   92.8 

        NS       2.599   86.6  .923   .0844   68.282        89.8 

        C        2.627   87.6  .929   .0824   69.365        91.3 

 

 B      S     6  5.472   91.2  .981   .0535   75.976   82   92.7 

        NS       5.352   89.2  .976   .0773   73.634        90.0 

        C        5.399   90.0  .978   .0654   74.764        91.2 
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 ZZ     S     3  2.727   90.9  .950   .0464   78.703   85   92.6 

        NS       2.787   92.9  .962   .0422   76.421        89.9 

        C        2.738   91.3  .952   .0450   77.502        91.2 

 

 E      S     4  3.634   90.8  .966   .0511   82.337   89   92.5 

        NS       3.526   88.2  .955   .0697   79.947        89.8 

        C        3.567   89.2  .960   .0606   81.069        91.1 

 

 RR     S     3  2.723   90.8  .949   .0555   85.060   92   92.5 

        NS       2.611   87.0  .925   .0813   82.558        89.7 

        C        2.658   88.6  .936   .0694   83.727        91.0 

 

 D      S     3  2.721   90.7  .949   .0782   87.781   95   92.4 

        NS       2.807   93.6  .966   .0521   85.365        89.9 

        C        2.724   90.8  .949   .0758   86.451        91.0 

 

 C      S     4  3.605   90.1  .964   .0566   91.386   99   92.3 

        NS       3.667   91.7  .970   .0500   89.032        89.9 

        C        3.637   90.9  .967   .0537   90.088        91.0 

 

 U      S     3  2.703   90.1  .945   .0648   94.089   102  92.2 

        NS       2.746   91.5  .954   .0624   91.778        90.0 

        C        2.727   90.9  .950   .0631   92.815        91.0 

 

 LL     S     3  2.695   89.8  .943   .0603   96.784   105  92.2 

        NS       2.599   86.6  .923   .0832   94.377        90.0 

        C        2.680   89.3  .940   .0646   95.495        90.9 

 

 TT     S     3  2.687   89.6  .942   .0565   99.471   108  92.1 

        NS       2.840   94.7  .972   .0271   97.217        90.0 

        C        2.780   93.3  .964   .0345   98.275        91.0 

 

 V      S     3  2.687   89.6  .942   .0845   102.158  111  92.0 

        NS       2.659   88.6  .936   .0922    99.876       90.0 

        C        2.662   88.7  .937   .0914   100.937       90.9 

 

 HH     S     3  2.683   89.4  .941   .0567   104.841  114  92.0 

        NS       2.567   85.6  .916   .0994   102.443       89.9 

        C        2.615   87.2  .926   .0797   103.552       90.8 

 

 UU     S     3  2.681   89.4  .941   .0536   107.522  117  91.9 

        NS       2.638   87.9  .931   .0757   105.081       89.8 

        C        2.667   88.9  .938   .0623   106.219       90.8 

 

 GG     S     3  2.675   89.2  .939   .0627   110.197  120  91.8 

        NS       2.723   90.8  .949   .0540   107.804       89.8 

        C        2.714   90.5  .947   .0525   108.933       90.8 

 

 1      S     3  2.673   89.1  .939   .0603   112.870  123  91.8 

        NS       2.771   92.4  .959   .0438   110.575       89.9 

        C        2.747   91.6  .954   .0473   111.680       90.8 

 

 II     S     3  2.672   89.1  .939   .0578   115.542  126  91.7 

        NS       2.745   91.5  .954   .0427   113.320       89.9 

        C        2.706   90.2  .946   .0502   114.386       90.8 
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 DD     S     4  3.562   89.1  .959   .0616   119.104  130  91.6 

        NS       3.540   88.5  .957   .0588   116.860       89.9 

        C        3.547   88.7  .957   .0595   117.933       90.7 

  

 VV     S     3  2.656   88.5  .935   .0715   121.760  133  91.5 

        NS       2.728   90.9  .950   .0479   119.588       89.9 

        C        2.717   90.6  .948   .0547   120.650       90.7 

 

 Y      S     3  2.652   88.4  .934   .0941   124.412  136  91.5 

        NS       2.791   93.0  .962   .0555   122.379       90.0 

        C        2.680   89.3  .940   .0864   123.330       90.7 

 

 3      S     4  3.530   88.3  .956   .0733   127.942  140  91.4 

        NS       3.623   90.6  .965   .0539   126.002       90.0 

        C        3.559   89.0  .959   .0671   126.889       90.6 

 

 FF     S     3  2.646   88.2  .933   .0987   130.588  143  91.3 

        NS       2.701   90.0  .945   .0835   128.703       90.0 

        C        2.649   88.3  .934   .0972   129.538       90.6 

 

 A      S     5  4.357   87.1  .963   .0777   134.945  148  91.2 

        NS       4.538   90.8  .975   .0706   133.241       90.0 

        C        4.414   88.3  .967   .0770   133.952       90.5 

 

 

 SS     S     3  2.603   86.8  .924   .0778   137.548  151  91.1 

        NS       2.755   91.8  .955   .0471   135.996       90.1 

        C        2.652   88.4  .934   .0676   136.604       90.5 

 

 BB     S     4  3.473   86.8  .949   .0656   141.021  155  91.0 

        NS       3.612   90.3  .964   .0566   139.608       90.1 

        C        3.514   87.8  .954   .0645   140.118       90.4 

------------------------------------------------------------------ 

 

There is no evidence of paradoxical 

confounding (performance results for C always 

fall between results for S and NS), and the 

percentage of variance explained, Alpha, and 

RMSR meet psychometric criteria for “good to 

excellent” fit for exploratory PCA models.
1,3

  

We also examined internal measurement proper-

ties of the individual modes via one-factor PCA 

of the three sample scores (S, NS, C), and 

analysis revealed virtually perfect measurement: 

for every mode, percent of total variance (of M 

measures) explained > 99.9%; Alpha > 0.99, 

and RMSR < 0.0002.  We attempted to model 

the original ten modes using the new 46 modes, 

and vice versa,  using multiple regression analy- 

 

 

sis, but no satisfactory models were identified: 

the original ten modes and the new 46 modes 

are not related to each other. 

Considered together these findings 

clearly show that the 46 new and unique modes 

eliminate every empirical problem identified for 

the original ten modes: there is no evidence of 

Simpson’s paradox (S and NS data may be com-

bined without inducing confounding); model 

performance and phenomenon effect strength 

are not erroneously misestimated (estimates 

from all samples are convergent); and mode 

scores exhibit ideal measurement properties. 

The new modes also address all theoretical con-

cerns identified for the original ten modes: 

granularity increased 4.6-fold; the new modes 



Optimal Data Analysis    Copyright 2010 by Optimal Data Analysis, LLC 

2010, Vol. 1, Release 1 (September 17, 2010), 67-100  2155-0182/10/$3.00 

 

 

 

79 
 

are parsimonious (factor weighting coefficients 

are all approximately one in absolute magni-

tude, each grid location appears on only one 

mode); mode scores are sensitive (composed of 

six or fewer strongly related grid locations, 

small changes in geopotential heights are easily 

detectable); and the modes are extremely well 

modeled by PCA, representing a set of nearly 

perfectly linear measures. 

Qualitative Interpretation of Ipsative Modes 

Figure 4 locates the ipsative modes on a 

polar projection map of the northern hemis-

phere.

 

 

 

                                 Figure 4: Polar projection Map of the Ipsative Modes  
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The principal-component-derived CPC 

modes of upper-air variability listed in Table 2 

are highly consistent with the modes identified 

in the original principal components analysis
2
 of 

700 mb height data, and have counterparts in the 

ipsative modes developed presently.   

The first mode, North Atlantic Oscilla-

tion (NAO), had strong positive coefficients for 

grid points over Greenland, corresponding to 

ipsative mode U.  NAO also had strong nega-

tive coefficients for grid points in the North 

Atlantic, west of the Azores (ipsative mode 

VV); Manchuria (ipsative mode H); and the 

central plains of the US (between ipsative fac-

tors EE and 1).  

  The second mode, East Atlantic Pattern 

(EA), had strong positive coefficients for grid 

points over North Africa (ipsative mode DD), 

and in the Atlantic east of Cuba (ipsative mode 

F).  EA also had strong negative coefficients for 

grid points in the North Atlantic, east of Labra-

dor and south of Greenland (ipsative mode FF).  

 The West Pacific Pattern (WP) had 

strong positive coefficients for grid points in the 

Philippine Sea (ipsative mode D), and strong 

negative coefficients for grid points just east of 

Kamchatka (ipsative mode ZZ). 

 The East Pacific/North Pacific Pattern 

(EP/NP) had strong positive coefficients for grid 

points over southeast Alaska (between ipsative 

modes GG and 2).  EP/NP also had strong nega-

tive coefficients for grid points in the North 

Pacific south of the Aleutian Islands (ipsative 

mode TT), and near James Bay in Canada (ipsa-

tive mode M). 

 The Pacific/North American Pattern 

(PNA) had strong positive coefficients for grid 

points west of Hawaii (ipsative mode A), and in 

the Pacific Northwest of the US (ipsative mode 

LL).  PNA also had strong negative coefficients 

for grid points in the North Pacific southwest of 

the Aleutian Islands (ipsative mode O), and over 

the southeast US (ipsative mode EE). 

 The East Atlantic/West Russia Pattern 

(EA/WR) had strong positive coefficients for 

grid points near England (between ipsative fac-

tors II and UU), and in Siberia north of Man-

churia (ipsative mode G).  EA/WR also had 

strong negative coefficients for grid points 

northeast of the Caspian Sea (ipsative mode JJ). 

 The Scandinavian Pattern (SCA) had 

strong positive coefficients for grid points in 

Central Russia (between ipsative modes G and 

P), and in the North Atlantic, northwest of Spain 

(ipsative mode WW).  SCA also had strong 

negative coefficients for grid points near Fin-

land (between ipsative modes XX and JJ). 

 The Tropical/Northern Hemisphere Pat-

tern (TNH) had strong positive coefficients for 

grid points in the North Pacific west of the 

Pacific Northwest of the US (ipsative mode SS), 

and near the Bahamas (ipsative mode MM).  

TNH also had strong negative coefficients for 

grid points near James Bay in Canada (ipsative 

mode M). 

 The Polar/Eurasia Pattern (POL) had 

strong positive coefficients for grid points in 

eastern Mongolia (near ipsative modes G and 

H), and strong negative coefficients for grid 

points in the Arctic Ocean north of eastern 

Siberia (ipsative mode HH). 

Finally, the Pacific Transition Pattern 

(PT)—which did not materialize in either of the 

original principal component analyses for the 

month of January, had for the month of Septem-

ber strong positive coefficients for grid points 

over the northern plains of the US (ipsative 

mode 1), and west of Hawaii (ipsative mode A).  

PT also had strong negative coefficients for grid 

points in the North Pacific south of Alaska 

(ipsative mode C), and over the eastern US 

(ipsative mode V). 

Predicting Temperature Anomalies 

To determine whether predictive validity 

is augmented by nonconfounded measurement, 

we assessed whether statistical models that use 

the 46 newly discovered (vs. original ten) modes 

of northern hemisphere upper-air variability 

produce more accurate temperature forecasting.  
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We used classification tree analysis, or CTA
5
, to 

predict whether mean temperature in January, 

February, and March fell above or below the 

median temperature for the years 1950-2007, for 

48 contiguous US states.  Falling within the 

optimal data analysis paradigm, CTA explicitly 

maximizes model accuracy when applied to a 

given sample or series.
6
  Proprietary software 

was used to automatically identify CTA models 

that weighted more heavily observations having 

greater deviations from the median temperature: 

of course, depending on the application, “natural 

weights” such as inches of rain, may be used 

instead of, or in conjunction with, “tailored 

weights” such as we used.
6
  The weighted CTA 

algorithm was performed using three sets of 

attributes: ipsative modes (46 modes discovered 

presently); published normative modes obtained 

from the CPC, with PT omitted due to inactivity 

in January; and computed normative modes ob-

tained from our replication of the CPC analysis 

using only January data. 

The findings of these analyses are 

summarized in Table 6.  Tabled are modes (see 

Table 5 for coding) emerging with p<0.05 in the 

weighted CTA model.  The weights were deter-

mined by sorting the observations by monthly 

mean temperature, and adding 1.5 for every 

position above or below the median.  WESS is a 

standardized measure of weighted effect 

strength, on which 0 is the level of weighted 

predictive accuracy that is expected by chance, 

and 100 represents errorless (perfect) weighted 

predictive accuracy.
6
  A dash (-) indicates no 

solution was identified having p<0.05 for any 

mode; a missing row indicates no solution was 

identified for any data type (ipsative, published, 

or computed); and an asterisk (*) indicates that 

results for the indicated modes were identical to 

findings for the ipsative modes. 

Models derived using ipsative modes to 

predict temperature anomalies in the United 

States convincingly and broadly outperformed 

corresponding models derived with normative 

modes, when considered from the perspective of 

predictive accuracy, and quantified using the 

standardized WESS metric: 

 For a given state and month (correspon-

ding to individual rows in Table 6), the 

ipsative mode model yielded the greatest 

WESS 117 times (91.4%), versus 5 and 

6 (3.9% and 4.7%) times for published 

and computed normative mode models, 

respectively. 

 In January the ipsative mode models 

always achieved greater WESS than the 

corresponding normative mode models.  

In February the ipsative mode models 

almost always (93.2% of the time) 

achieved greatest WESS (44 states had 

models based on February data), and 

even as the data aged substantially—for 

March, ipsative models usually (78.1% 

of the time) achieved greatest WESS (32 

states had models using March data). 

 For January data, using ipsative modes, 

all 48 states had CTA models with 

WESS>90%, versus two states with 

CTA models involving published norm-

ative modes, and one state CTA model 

involving computed normative modes. 

For February data, using ipsative modes, 

a dozen states had CTA models with 

WESS>90% (and three for March data), 

versus none using normative modes. 
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Table 6: Temperature Prediction via Weighted CTA by US State, for January, February, and March of 2008, 

            Using Ipsative mode Scores, and Published and Computed Raw Mode Scores 

                                                     Published                      Computed 

   State       Month  Ipsative Modes    WESS       Normative Modes     WESS       Normative Modes    WESS 

-------------  -----  ----------------  -----   ---------------------  -----   --------------------  ----- 

Alabama         Jan   B,EE,JJ,MM,2      97.43   EAWR,NAO,PNA           71.30   2,3,9                 68.44 

                Feb   A,C,I,EE,PP       93.80   NAO,SCA                57.74   3,6                   62.59 

                Mar   DD,GG             51.55   -                      -       -                     - 

Arkansas        Jan   C,R,EE,MM,XX,2    98.54   EPNP,PNA,WP            74.63   3,5,8                 80.36 

                Feb   CC,DD,RR,VV       88.90   EPNP,NAO               63.35   3,5,10                79.31 

                Mar   II                38.63   -                      -       -                     - 

Arizona         Jan   C,H,U,YY,1        93.22   NAO,POL,WP             75.80   2,6                   84.40 

                Feb   F,II,PP           72.65   -                      -       -                     - 

California      Jan   C,BB,GG,VV,WW,YY  98.89   PNA,WP                 52.83   2,6                   77.79 

                Feb   RR,TT             74.87   EAWR,EPNP,PNA          76.04   -                     - 

Colorado        Jan   I,V,T,SS,WW       95.62   -                      -       2,6                   79.60 

                Feb   M,O,P,Q,BB,3      91.70   -                      -       -                     - 

                Mar   J,SS,1            72.76   NAO                    39.74   1,5                   57.69 

Connecticut     Jan   E,K,LL,2          96.43   EA,EAWR,EPNP,NAO,WP    86.62   3,4,5                 74.52 

                Feb   PP,2              50.44   -                      -       -                     -     

Delaware        Jan   V,EE,MM,2         95.15   EAWR,EPNP,NAO,WP       84.63   3,5,7                 71.71 

                Feb   HH,JJ,PP,SS       73.41   NAO                    42.84   3                     44.89 

                Mar   J                 37.97   -                      -       -                     - 
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Florida         Jan   A,G,O,MM,PP,YY    98.95   EAWR,EPNP,PNA          89.19   2,3,6                 82.23 

                Feb   D,Q,CC,LL,RR      93.22   NAO                    40.50   5                     63.06 

                Mar   K,DD,EE,GG        75.80   -                      -       -                     - 

Georgia         Jan   P,EE,MM,PP,2      98.13   EAWR,EPNP,PNA          84.04   2,3,9                 70.66 

                Feb   A,C,H,EE,PP       92.34   NAO,SCA                57.16   3,5                   73.47 

Iowa            Jan   H,L,V,2           93.51   EPNP,SCA,WP            76.74   3,4,7,8               84.57 

                Feb   D,DD,JJ           80.95   EAWR                   49.09   3,7                   44.18 

                Mar   J,HH,LL,PP,1      87.26   PNA                    41.15   -                     - 

Idaho           Jan   C,I,MM,SS,ZZ      94.56   -                      -       2,3,6                 81.59 

                Feb   D,Q,R,BB          86.91   PNA                    60.78   -                     -     

                Mar   D,R,Y,RR          93.86   NAO,PNA,SCA            83.99   1,5                   63.82 

Illinois        Jan   B,D,E,V,EE,WW,2   99.36   EPNP,PNA,WP            83.52   3,4,8                 86.62 

                Feb   D,DD,GG,PP        83.40   EAWR,NAO,SCA           66.04   -                     - 

                Mar   -                 -       PNA                    39.86   -                     - 

Indiana         Jan   D,E,K,V,EE,WW     96.61   EPNP,PNA,WP            82.70   3,5,8                 82.35 

                Feb   K,U,NN,RR         71.01   EAWR,NAO,POL           73.58   3                     40.44 

                Mar   L,II              57.04   PNA                    39.39   1,10                  57.22 

Kansas          Jan   F,Q,GG,WW,1       96.73   EPNP,WP                59.44   1,3,6,9               69.43 

                Feb   V,CC,FF,UU        80.19   EAWR,NAO               60.55   3,6,7,9               82.82 

                Mar   D,H,FF            73.00   -                      -       -                     - 
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Kentucky        Jan   E,J,V,PP,2        96.20   EAWR,EPNP,NAO          79.37   3,5                   73.82 

                Feb   F,I,Q,U,RR        96.55   NAO                    53.36   3,6                   60.14 

Louisiana       Jan   U,V,EE,LL,3       96.20   NAO,PNA                69.37   1,2,6                 84.22 

                Feb   A,C,EE,PP         79.37   NAO                    53.71   3,5,6,10              79.19 

                Mar   D,DD              52.95   -                      -       -                     - 

Massachusetts   Jan   E,I,K,LL,2        97.72   EA,EAWR,EPNP,NAO,WP    90.06   3,4,5                 73.70 

                Mar   -                 -       -                      -       2                     38.92 

Maryland        Jan   E,G,L,V,RR,UU     98.54   EAWR,EPNP,WP           84.28   3,5,8                 71.30 

                Feb   Y,RR,XX           69.96   NAO,POL                55.00   3                     46.41 

Maine           Jan   E,O,LL,2          95.21   EPNP,WP                61.60   3,8                   65.81 

                Feb   Q,RR,1            76.04   -                      -       7                     39.63 

                Mar   Q                 39.10   -                      -       -                     - 

Michigan        Jan   D,E,GG,II         97.37   EAWR,EPNP,WP           81.71   3,5,7,8               86.56 

                Feb   I,DD,GG,HH        82.76   EAWR,NAO               53.65   3,7                   51.43 

                Mar   J,L               57.51   PNA,SCA                59.73   2                     44.18 

Minnesota       Jan   C,E,CC,1,2        95.73   EAWR,EPNP,PNA,WP       88.49   4,5,8                 79.78 

                Feb   F,Q,NN,RR         78.08   EAWR                   44.71   7,10                  61.19 

                Mar   J,O,1             82.70   PNA,WP                 56.81   2                     40.68 

Missouri        Jan   D,E,F,EE,GG       94.92   EPNP,PNA,WP            85.74   3,4,7,8               93.98 

                Feb   EE,RR,SS,TT,VV    93.44   EAWR,EPNP,NAO,POL      77.93   3,5,7                 76.52 
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Mississippi     Jan   I,V,EE,2          96.20   EPNP,NAO,PNA           86.91   1,2,6                 78.73 

                Feb   A,C,EE,PP         79.54   NAO                    52.78   3,6,10                71.95 

                Mar   DD,GG             51.32   -                      -       -                     - 

Montana         Jan   E,F,L,ZZ,2        96.67   EPNP,PNA,SCA,WP        84.04   2,6,9                 75.45 

                Feb   A,G,Q,R           85.62   PNA                    47.05   7                     49.80 

                Mar   CC,GG,TT,3        80.60   PNA                    45.35   1                     39.22 

North Carolina  Jan   E,Y,MM,XX         95.38   EAWR,EPNP,PNA          86.15   3,5                   71.60 

                Feb   D,T,Y,RR,VV       89.83   NAO,SCA                54.94   3,9                   56.52 

North Dakota    Jan   C,E,L,WW          96.90   EPNP,PNA,SCA,WP        91.41   1,3,5,7               80.89 

                Feb   D,Q,II,RR         94.21   EAWR,PNA               61.84   7                     45.35 

                Mar   J,GG,1            77.91   PNA                    43.83   -                     - 

Nebraska        Jan   A,V,DD,1,2        95.56   EPNP,WP                57.10   1,3,9                 70.19 

                Feb   Q,DD,RR,TT        86.44   EAWR                   43.83   -                     - 

                Mar   D,LL              74.81   -                      -       -                     - 

New Hampshire   Jan   E,K,JJ,LL,2       97.49   EA,EPNP,WP             71.89   3,5,7                 70.72 

                Feb   -                 -       -                      -       7                     39.28 

                Mar   -                 -       -                      -       2                     40.56 

New Jersey      Jan   E,K,H,LL          98.48   EA,EAWR,EPNP,NAO,WP    87.38   3,4,5                 76.74 

                Feb   Y,RR,1            70.72   -                      -       3                     40.68 
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New Mexico      Jan   G,T,RR,UU,ZZ      97.84   EA,NAO                 64.64   1,6                   84.16 

                Feb   F,G,RR,VV,1       88.43   NAO                    43.25   6                     42.84 

                Mar   G,Y,3             73.52   -                      -       -                     - 

Nevada          Jan   C,I,V,SS,ZZ       96.43   -                      -       2,3,6                 86.62 

                Feb   RR,TT,WW          76.62   EA,PNA                 60.43   -                     - 

                Mar   1                 38.81   NAO                    41.44   -                     - 

New York        Jan   II,MM,XX,2        97.02   EA,EAWR,EPNP,NAO,WP    89.42   3,4,5                 77.79 

                Mar   L                 38.98   -                      -       -                     - 

Ohio            Jan   E,L,V,RR          96.67   EAWR,EPNP,WP           80.65   3,5,8                 79.43 

                Feb   D,GG,HH,PP        81.71   NAO,POL                59.03   3                     39.98 

                Mar   L,II              56.22   -                      -       1,10                  55.93 

Oklahoma        Jan   F,K,Q,DD,E,2      96.90   EA,EPNP                59.15   8                     63.35 

                Feb   H,EE,RR,TT,VV     85.86   EPNP,NAO               67.15   3,6,7                 74.17 

                Mar   D,J               49.09   -                      -       -                     - 

Oregon          Jan   C,I,EE,MM,PP      91.88   NAO,PNA,WP             83.99   2,3,5                 81.18 

                Feb   Q,R,NN,3          86.15   PNA                    61.72   1,3,7                 63.35 

                Mar   F,R,V,SS,2        82.58   NAO,PNA,POL            69.08   -                     - 

Pennsylvania    Jan   E,J,HH,YY         96.96   EAWR,EPNP,NAO,WP       85.80   3,5,8                 72.36 

                Feb   Q,RR              58.45   NAO                    43.42   3,7                   56.81 

                Mar   L                 39.80   -                      -       -                     - 
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Rhode Island    Jan   E,K,LL,2          96.84   EA,EAWR,EPNP,NAO,WP    86.50   3,4,5                 75.34 

                Feb   G,K,2             73.52   -                      -       -                     - 

                Mar   J,Q,CC,EE,XX      71.54   -                      -       -                     - 

South Carolina  Jan   Q,R,MM,RR         96.73   EAWR,EPNP,PNA          85.91   2,3,9                 70.89 

                Feb   D,Q,JJ,RR         90.01   NAO,SCA                55.29   3,6                   62.01 

South Dakota    Jan   C,E,L,2           97.25   EPNP,SCA,WP            88.02   5,8                   62.30 

                Feb   D,Q,II,RR         92.69   EAWR                   47.69   7                     42.20 

                Mar   D,J,DD,1          87.67   -                      -       -                     - 

Tennessee       Jan   I,Q,V,EE,3        94.86   EAWR,EPNP,NAO,PNA      77.85   3,5                   69.02 

                Feb   D,T,U,RR,TT       87.38   NAO                    53.13   3,6                   56.75 

Texas           Jan   C,EE,GG,NN,RR     92.17   NAO,PNA,POL            68.73   1,2,6                 82.99 

                Feb   A,M,JJ,RR,WW,3    94.62   NAO                    51.96   3,5,10                74.34 

                Mar   Y,FF,LL,PP        72.36   -                      -       -                     - 

Utah            Jan   C,I,V,BB,SS,ZZ    96.32   -                      -       1,2,6                 84.34 

                Feb   Q,CC,DD,NN        80.25   PNA                    44.59   -                     - 

                Mar   1                 41.61   NAO                    43.13   1,5                   58.62 

Virginia        Jan   E,H,L,V,RR        97.37   EAWR,EPNP,PNA          85.68   3,5                   72.06 

                Feb   A,H,Y,RR,VV       92.87   NAO                    49.50   3,5,9                 56.98 

Vermont         Jan   E,CC,JJ,LL,2      99.12   EA,EPNP,NAO,WP         73.41   3,5,7                 71.30 

                Mar   Q                 42.72   -                      -       -                     - 
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Washington      Jan   L,O,CC,EE,VV      97.78   EA,NAO,PNA,WP          91.06   2,5,6                 76.68 

                Feb   M,R,EE,WW         88.37   PNA                    67.45   1,7                   58.56 

                Mar   D,H,PP,TT,XX,2    92.93   PNA                    57.39   -                     -     

Wisconsin       Jan   E,M,GG,UU,ZZ      97.84   EAWR,EPNP,PNA          79.31   3,5,8                 75.04 

                Feb   Q,RR,ZZ,1         74.87   EAWR                   44.54   7                     48.39 

                Mar   L,T,CC,GG,NN      93.10   PNA,SCA                65.81   2                     43.60 

West Virginia   Jan   E,H,V,EE,LL       98.19   EAWR,EPNP,PNA,SCA      83.46   3,5                   76.74 

                Feb   D,T,U,LL,RR,TT    95.91   NAO                    52.54   3                     42.31 

Wyoming         Jan   K,DD,MM,YY,ZZ     92.11   -                      -       2,3,5                 77.50 

                Feb   C,G,Q,DD          84.57   -                      -       -                     - 

                Mar   D,F,LL,SS         89.89   NAO                    43.37   1                     41.03 

---------------------------------------------------------------------------------------------------------- 
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 We statistically contrasted the WESS 

of each pair of these three sets of fac-

tors.  If no model was found, WESS 

was assumed to be zero. ODA was 

used to determine which set of modes 

was better at predicting whether or not 

the mean temperature of the states 

exceeded the median. The PTMP pro-

cedure
7
 was used to estimate the exact 

Type I error of each contrast. Analyses 

indicated that ipsative mode models 

had significantly greater WESS than 

the published or computed normative 

mode models for all three months (p’s 

<0.0001), and that normative models 

could never reliably be discriminated 

from each other by WESS (p’s>0.17). 

 As a test of cross-sample general-

izability we also evaluated a larger 

field of northern hemisphere data.  In 

the crutem3v dataset are 217 locations 

which have no missing data for Jan-

uary, February or March, for the years 

1948-2007.   As a test of cross-method 

generalizability, temperature predict-

ions for each location and month were 

obtained using stepwise multiple 

regression analysis: the independent 

variables were the January data, and 

ipsative, published raw, or computed 

raw modes were used as dependent 

variables. The R
2
 value for each model 

was determined: if no model was 

found, R
2
 was assumed to be zero. 

Statistical comparison via the PTMP 

procedure showed that ipsative modes 

clearly outperformed the other modes 

(p’s<0.0001).  Computed raw modes 

outperformed published raw modes in 

all cases: contrasts were statistically 

significant for January and February 

(p’s<0.0001), but not March (p<0.27). 

 

Predicting Precipitation Anomalies 

As a second investigation of predictive valid-

ity we assessed whether statistical models that 

use the ipsative modes produce more accurate 

precipitation forecasting.  We used CTA to 

predict whether mean precipitation in 

January, February, and March fell above or 

below the median precipitation for the years 

1950-2007, for 48 contiguous US states.  As 

for temperature modeling, the weighted CTA 

algorithm was performed using three sets of 

attributes: the 46 newly discovered ipsative 

modes; published normative modes (obtained 

from the CPC, with PT omitted due to inacti-

vity in January); and computed normative 

modes (obtained from our replication of CPC 

analysis using only January data). The find-

ings of these analyses are summarized in 

Table 7.  Tabled are modes (see Table 5 for 

coding) emerging with p<0.05 in the weighted 

CTA model.  The weights were determined 

by the same method as was used in predicting 

temperature anomalies, but total monthly pre-

cipitation was used for the sort and median. 

As when modeling temperature anom-

alies, models derived using ipsative modes to 

predict precipitation anomalies in the United 

States convincingly and broadly outperformed 

corresponding models derived by normative 

modes, when considered from the perspective 

of predictive accuracy: 

 For a given state and month (corres-

ponding to individual rows in Table 

7), the ipsative mode model yielded 

the greatest WESS 126 times (92.6%), 

versus 5 (3.7%) times each for the 

published and computed normative 

mode models. 
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Table 7: Precipitation Prediction via Weighted CTA by US State, for January, February, and March of 2008, 

            Using Ipsative mode Scores, and Published and Computed Raw Mode Scores 

                                                     Published                      Computed 

   State       Month  Ipsative Modes    WESS       Normative Modes     WESS       Normative Modes    WESS 

-------------  -----  ----------------  -----   ---------------------  -----   --------------------  ----- 

Alabama         Jan   C,O,P,MM,NN       89.01   EA,SCA                 64.47   8                     39.86 

                Feb   A,R,T,V,II        87.03   EA                     39.45   -                     -     

                Mar   I,YY              59.56   -                      -       -                     -     

Arkansas        Jan   C,R,FF,MM,YY      90.01   NAO,PNA                76.27   1,3,9                 80.54 

                Feb   Q                 39.98   -                      -       -                     -     

                Mar   HH                39.28   -                      -       -                     - 

Arizona         Jan   G,LL,SS           73.47   EPNP                   39.63   9                     52.02 

                Feb   I,J,L,1           87.14   EPNP,SCA               62.83   3,5                   71.36 

                Mar   G,Q,T,JJ,SS       84.51   PNA                    38.11   5,7,9                 57.10 

California      Jan   BB,LL,NN,SS,2     94.62   EA                     48.92   3,6,8                 76.33 

                Feb   V,SS,XX           68.79   -                      -       -                     - 

                Mar   C,R,U,SS          84.57   NAO                    44.07   -                     - 

Colorado        Jan   D,EE              59.44   PNA                    52.48   -                     - 

                Feb   NN,XX             65.75   SCA                    45.59   3,7                   59.73 

                Mar   II,SS,3           76.21   PNA                    45.47   -                     -     

Connecticut     Jan   V,BB,XX           87.67   -                      -       5                     42.02 

                Feb   P,HH              77.26   EAWR                   43.54   10                    38.92 

                Mar   G,H,J             51.32   POL                    44.07   -                     - 
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Delaware        Jan   B,RR              57.74   EAWR,NAO               51.49   2                     41.44 

                Feb   C,BB,EE           70.31   -                      -       6                     46.29 

                Mar   CC,DD,EE,PP       90.77   NAO,WP                 55.35   -                     - 

Florida         Jan   F,O,BB,CC,DD      92.11   EA                     43.66   3                     40.62 

                Feb   T,EE,VV,2         94.62   -                      -       -                     -     

                Mar   C,D,O,SS,TT       89.60   -                      -       4,5                   53.54 

Georgia         Jan   O,MM,NN           73.76   EA                     68.32   6,8                   57.63 

                Feb   C,J,T,SS,WW       91.88   -                      -       3                     42.02 

Iowa            Jan   GG,NN             59.38   EAWR,PNA               60.61   1                     49.68 

                Feb   G,I,R,PP          77.97   -                      -       -                     -     

                Mar   T,EE              56.52   -                      -       -                     - 

Idaho           Jan   E,L,T,GG,WW,1     98.48   EPNP,PNA,SCA           75.75   1,6,8,9               86.50 

                Feb   J,M,U,NN,XX       85.86   EA,POL                 64.52   5,7                   62.77 

                Mar   I,U,HH,LL,3       89.54   EA,NAO,WP              80.77   2,4,5                 84.80 

Illinois        Jan   H,Q,R,MM,NN       92.99   PNA                    50.32   9                     46.05 

                Feb   Q,U,BB,HH         81.06   -                      -       7                     39.51 

                Mar   E,J,JJ,UU         87.90   -                      -       -                     - 

Indiana         Jan   F,I,EE,HH,PP      91.23   NAO,PNA                72.59   9                     40.56 

                Feb   R,EE,LL,XX        83.46   -                      -       4,7                   66.45 

                Mar   O,JJ,SS           74.05   -                      -       -                     -     
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Kansas          Jan   E,Y,GG,LL         84.72   -                      -       3,6                   55.91 

                Feb   F,K,M,FF          78.08   -                      -       -                     -     

                Mar   D,H,R,2           81.12   PNA                    41.55   -                     - 

Kentucky        Jan   A,V,HH,PP         89.42   PNA,SCA                69.67   1,6                   79.95 

                Feb   Q,V,II,LL,TT      86.09   -                      -       7                     50.96 

                Mar   G,NN,XX           75.39   -                      -       2                     53.83 

Louisiana       Jan   H,DD,FF,WW        80.77   EA,EPNP                51.61   -                     - 

                Feb   C,P,T             71.24   -                      -       2                     40.09 

                Mar   A,E,K,FF,WW       85.80   -                      -       6,7                   64.87 

Massachusetts   Jan   -                 -       -                      -       2                     39.45 

                Feb   I,SS,WW,1         78.43   -                      -       -                     -     

                Mar   C,G,HH            66.74   POL                    50.85   -                     - 

Maryland        Jan   G,H,WW            69.73   -                      -       -                     - 

                Feb   E,P,Q,YY          88.54   -                      -       6                     42.96 

                Mar   I,HH,RR,VV        94.80   SCA,WP                 53.19   -                     - 

Maine           Jan   HH,WW,YY,2        86.44   -                      -       5                     39.22 

                Feb   J,NN,WW           70.25   -                      -       1,5                   65.40 

                Mar   I,J,HH,SS,1       86.85   POL                    43.78   -                     - 

Michigan        Jan   H,Q,T,GG,MM       86.97   PNA                    50.38   1,6                   53.95 

                Feb   D,DD              68.26   -                      -       -                     -     
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Minnesota       Jan   P,FF,GG           77.62   -                      -       -                     - 

                Mar   Q,YY,3            78.43   -                      -       -                     -     

Missouri        Jan   O,Q,R,EE,SS       89.77   PNA                    51.55   2,3,8                 72.88 

                Feb   Q,U               58.85   -                      -       -                     -     

                Mar   L,JJ              62.77   -                      -       -                     - 

Mississippi     Jan   U,V,MM,XX         91.12   EAWR                   40.50   -                     - 

                Feb   J,NN              48.51   -                      -       -                     -     

                Mar   CC,FF,2           73.12   -                      -       -                     - 

Montana         Jan   L,V,FF,GG,VV      96.90   PNA                    60.08   2,3,5,6               83.23 

                Feb   M,O,P,BB          89.13   EAWR,PNA,POL           76.97   2,7                   71.83 

                Mar   B,H,M,Q,TT        85.62   -                      -       -                     - 

North Carolina  Jan   MM                41.15   WP                     38.98   -                     - 

                Feb   F,L,R,PP,YY       84.40   -                      -       -                     -     

                Mar   G,EE,PP           73.41   -                      -       -                     - 

North Dakota    Jan   C,D,L,HH          83.34   PNA                    46.70   -                     - 

                Feb   L,NN,WW           61.72   -                      -       -                     -     

                Mar   I                 45.35   -                      -       -                     - 

Nebraska        Jan   Q,EE,PP           75.86   -                      -       9                     39.98 

                Feb   M,V,WW,XX         84.34   SCA                    39.28   8,10                  52.02 

                Mar   FF,MM,NN          73.70   PNA                    44.77   -                     - 
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New Hampshire   Jan   Q,HH,WW,2         86.44   -                      -       5                     46.23 

                Feb   NN,WW,2           70.89   -                      -       -                     -     

                Mar   H,R,P,HH          85.74   POL                    48.57   -                     -     

New Jersey      Feb   E,P,U,JJ          77.32   EAWR                   40.68   -                     -     

                Mar   J,P,JJ,2          76.50   POL,SCA                56.52   -                     - 

New Mexico      Jan   O,EE,GG,LL        89.17   -                      -       9                     46.72 

                Feb   A,O,EE,RR,WW      78.08   -                      -       3,6                   51.96 

                Mar   Q,GG,SS           80.19   NAO,PNA                54.88   1,7                   55.52 

Nevada          Jan   U,LL,SS,YY        89.01   -                      -       1                     47.34 

                Feb   V,DD,RR,SS,XX     92.69   -                      -       -                     - 

                Mar   C,G,U,SS          72.82   EA,NAO                 58.09   -                     - 

New York        Mar   D,H,R,HH,NN       87.90   EPNP                   40.39   -                     - 

Ohio            Jan   U,BB,HH,MM        77.85   NAO,PNA,WP             75.39   1,6                   60.08 

                Feb   F,P,R,TT          95.79   EAWR                   39.45   7                     54.24 

                Mar   I,SS              62.83   -                      -       2,9                   55.29 

Oklahoma        Jan   D,L,EE,FF,UU      90.88   WP                     40.68   6,9                   68.73 

                Feb   YY                41.03   -                      -       1,6                   61.48 

                Mar   D,H,Q,II          86.85   -                      -       2,5                   62.77 

Oregon          Jan   D,GG,LL,XX,YY     99.59   EPNP,PNA,SCA           78.61   1,6,8,9               89.66 

                Feb   P,LL,3            72.36   EA,POL                 74.28   6                     45.18 

                Mar   I,V,FF            76.91   EA,NAO                 52.54   2                     44.54 
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Pennsylvania    Jan   J,P,U,MM          69.14   -                      -       -                     - 

                Feb   E,Q,II,TT,WW      90.24   EAWR                   40.56   2,7                   52.07 

                Mar   J,O,SS,XX         79.84   -                      -       3                     39.86 

Rhode Island    Jan   JJ,LL,NN,UU       83.11   -                      -       -                     - 

                Feb   E,P,U             86.15   EAWR                   42.14   -                     - 

                Mar   CC                39.63   EA,POL                 71.60   5,9                   53.42 

South Carolina  Jan   T,JJ              67.45   EA,WP                  74.40   6,8                   54.59 

                Feb   L,R,CC,PP         75.69   -                      -       -                     -     

South Dakota    Jan   Q,FF,TT           76.10   -                      -       -                     - 

                Feb   A,U,LL,ZZ         87.90   -                      -       -                     -     

                Mar   A,H,GG,WW         76.10   -                      -       5,10                  63.30 

Tennessee       Jan   E,P,V,HH,ZZ       90.65   PNA                    68.44   1,2,6                 80.42 

                Mar   I,M               58.27   -                      -       2                     42.02 

Texas           Jan   L,JJ              65.81   EAWR,POL,SCA           50.15   1,6,7,9               88.90 

                Feb   F,V,SS,TT,ZZ      89.95   -                      -       3,7                   59.15 

                Mar   D,J,R,XX,2        87.61   -                      -       5,7,9                 77.56 

Utah            Jan   J,SS,XX           77.32   PNA                    40.04   1                     43.13 

                Feb   B,F,M,DD,XX       91.93   -                      -       3                     49.56 

                Mar   NN,SS,WW          73.47   NAO                    40.33   2                     39.45 

Virginia        Jan   G,I               71.71   -                      -       -                     - 

                Feb   C,Q,NN            79.31   EA                     40.09   6,8                   71.42 

                Mar   F,K,CC,MM,PP,RR   96.08   -                      -       -                     - 
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Vermont         Jan   H,Q,V             77.15   -                      -       5                     49.74 

                Feb   C,J,K,M,FF        87.03   -                      -       -                     -      

                Mar   J                 40.74   EPNP,WP                60.43   -                     - 

Washington      Jan   J,GG,NN,2         90.65   EA,EAWR                52.78   1,9                   57.10 

                Feb   -                 -       EA,POL                 54.35   5,6                   61.84 

                Mar   I,FF              55.58   EA                     45.06   2,10                  60.90 

Wisconsin       Jan   A,MM,PP           76.97   PNA                    47.63   1                     48.39 

                Feb   G,J,P,R           85.33   -                      -       1,7                   59.61 

                Mar   Q,R,YY,1          83.69   -                      -       -                     -     

West Virginia   Jan   HH,MM,3           81.94   EA,NAO,PNA             73.64   1,6,8                 70.72 

                Feb   A,C,Q,R           81.77   -                      -       -                     -     

                Mar   D,G,L,M,JJ        94.16   SCA                    38.63   2                     41.26 

Wyoming         Jan   T,YY,1            85.86   EA,PNA,SCA,WP          79.60   2,9                   59.91 

                Feb   CC,JJ,RR,WW       74.40   SCA                    39.22   -                     - 

                Mar   D,G,BB,HH,TT      86.09   -                      -       6                     41.67 

---------------------------------------------------------------------------------------------------------- 
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 In January, ipsative mode models 

achieved greater WESS than correspond-

ing normative mode models 91.3% of 

the time (46 states had models based on 

January data). Similarly, in February the 

ipsative mode models almost always 

(93.3% of the time) achieved greatest 

WESS (45 states had models based on 

February data), and even as data aged 

substantially—in March, ipsative models 

almost always (93.5% of the time) 

achieved greatest WESS (46 states had 

models based on March data). 

 Using ipsative modes, for January data 

12 states had CTA models with WESS> 

90%, as did 6 states for February data 

and 4 states for March data.  Zero norm-

ative mode models achieved this level of 

WESS in any month modeled. 

 We statistically contrasted the WESS of 

each pair of these three sets of modes. If 

no model was found, then WESS was 

assumed to be zero. We used ODA to 

determine which set of modes was better 

at predicting whether the mean precipita-

tion of the states exceeded the median, 

or not. The PTMP procedure
7
 was used 

to estimate the exact Type I error for 

each contrast.  Analyses of January data 

(March and February had comparatively 

sparse data) indicated that the ipsative 

mode model had significantly greater 

WESS than the normative mode models 

(p’s<0.0002), but computed and pub-

lished raw modes were indiscriminable 

(p<0.15). 

 Predicting Export of Arctic Sea Ice 

The export of Arctic sea ice through the 

Fram Strait off northeast Greenland is an impor-

tant factor in the freshwater balance of the North 

Atlantic Ocean, and affects the North Atlantic 

thermohaline circulation.  The January monthly 

ice export at fluxgate a of the Fram Strait
8
 

was studied using the ipsative modes found 

here.  The data consisted of sea ice area flux for 

the years 1979-2002.  Kendall's tau b statistic 

was used to determine the correlation of  modes 

with ice export, and the significant associations 

are shown in Figure 5. Negative associations 

were found with ipsative modes U (over Green-

land), CC (near Svalbard), 3 (near Franz Josef 

Land), XX (off the coast of northern Norway), 

and SS (eastern Pacific Ocean).  Positive assoc-

iations were found with ipsative modes UU 

(Mediterranean Sea south of France), WW 

(North Atlantic Ocean northwest of Spain), H 

(over Manchuria), and BB (east of Japan). 

An example of a pattern with high sea 

ice export is illustrated in Figure 6.  The 500 mb 

pattern in January 1983 yielded the maximal ice 

export for any January in the years of 1979-

2002.  Low 500 mb heights extend from Green-

land to Scandinavia and western Russia, and 

another area of low heights is found off of the 

Pacific coast of the USA.  Areas of high 500 mb 

heights are seen over southwest Europe and the 

western Mediterranean Sea, and over Mongolia 

and northeast China. 

 



Optimal Data Analysis    Copyright 2010 by Optimal Data Analysis, LLC 

2010, Vol. 1, Release 1 (September 17, 2010), 67-100  2155-0182/10/$3.00 

 

 

 

98 
 

 

 

                Figure 5: Ipsative modes and Kendall's Tau b Coefficients with Statistically Significant 

                        (p<.05) Associations with Ice Export at Fram Strait Fluxgate a, Indicated as * 

Recent research
9
 reported no correlation 

between SLP-based NAO and Arctic wintertime 

sea ice export over 1958-1977, and a positive 

correlation of 0.7 over 1978-1997.  An eastern 

shift in NAO centers of variability was sug-

gested to explain this phenomenon.  However, 

for the 500 mb level, ipsative mode U was a sta-

ble center over Greenland, for both sets of years, 

1948-1976 and 1977-2007.  Mode U represents 

the northern center of the NAO dipole at the 500 

mb level. Mode II (near Iceland) was also a sta-

ble center, coincident with the northern center of 

surface-level winter NAO variability: this does 

not support the idea of a shift at 500 mb.  

Furthermore, factors XX, CC and 3, located in 

this region, were stable in both eras and reliably 

associated with sea ice movement.  Mode 3 is 

coincident with the surface center of variability 

in the Kara Sea, previously found to be associ-

ated with sea ice export variability.
10 
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                   Figure 6: 500 mb GHA for January 1983, which Entailed the Maximal January 

   Ice Export for the Period 1979-2002: Ipsative modes are Prefixed by 

             the Sign of their Associated Kendall's Tau b Coefficient 

Epilogue 

 Preliminary results using uncounfounded 

climatic data in atmospheric prediction are very 

positive.  An important extension of the present 

research is obtaining GHA modes for all months 

of the year.  Further evaluation of optimal statis-

tical methods used with unconfounded climatic 

data is warranted.  Future research should use 

these data in applications such as, for example: 

predicting the ontogenesis, intensity, and path of 

hurricanes
11

, and the ontogenesis, intensity, and 

location of sudden stratospheric warmings
12,13

; 

modeling of seasonal energy consumption and 

management of climate risk for energy firms
14

; 

forecasting and understanding the ENSO cycle 

(El Niño)
15

, and development and evaluation of 

numerical weather prediction models.
16
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