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Preface to Volume 1, Release 1 

Paul R. Yarnold, Ph.D. 
Optimal Data Analysis, LLC 

 

Manucripts published in Optimal Data 

Analysis (ODA) are parsed in sections, more of 

which will be added as new domains of inquiry 

are discovered.  Not every Release of every Is-

sue will present articles in every section.  Sec-

tions represented in this Release, and the articles 

they host, are briefly described below. 

Invited.  This section features articles 

written in response to the Editor’s invitation.  

The only manuscript in this section in the first 

Release is written by Fred Bryant (ODA’s Co-

Editor), a member of the faculty at Loyola Uni-

versity Chicago (LUC).  Outside the Optimal 

Data Analysis company laboratory, Fred has 

most experience in using ODA and CTA, and 

teaching these methods to colleagues and stu-

dents: he has been there from the beginning.  

Fred describes the ontogenesis and etiology of 

the use of optimal methods by faculty and stu-

dents in the Department of Psychology at LUC. 

Review.  This section offers reviews of 

theory, method, or empirical findings relating to 

the ODA paradigm.  The sole article in this sec-

tion is written by Paul Yarnold (ODA’s Editor) 

and Robert Soltysik (ODA’s Co-Editor), and 

presents an introductory review of crucial con-

cepts in the ODA paradigm, including both uni-

variate and multivariable ODA methods. 

Method.  This section presents articles 

discussing technical aspects of optimal and heu-

ristic algorithms and analytic processes.  Paul 

and Robert lead four of the five articles in this 

section in this Release.  The first manuscript 

discusses how to maximize the classification 

accuracy of any nonlinear model via a new op-

timal pruning methodology. 

The second paper offers a multivariable 

optimal data analysis (MultiODA) formulation 

we developed years ago and decided to publish 

now, which has proven extremely powerful in 

the laboratory in a wide domain of frontiers.  

The third article demonstrates that it is 

not necessary to “control” for “covariates” by 

forcing them into a classification model before 

entering the attributes of theoretical interest.  

Indeed, it is shown that such forced entry can 

result in a model that is substantially weaker in 

performance than another model—based on ex-

actly the same attributes, but arranged in a dif-

ferent (algorithm-determined) geometry. 

The fourth article, led by Barbara Maria 

Yarnold, discusses how UniODA may be used 

to maximize the accuracy of a model derived by 

probit analysis. 

The fifth and final article in this section 

is a research note exploring precision and con-

vergence properties of Monte Carlo simulation 

used to estimate exact Type I error. 

Versus.  This section features articles in 

which alternative methodologies (at least one of 

which is an optimal method) compete against 

each other.  Paul and Robert lead four of the 

five articles in this section in this Release (set-

ting the table, it is hoped, for interested others to 

add to the series). The first paper compares the 

use of aggregated (e.g., ethnicity) vs. referenced 

(e.g., white vs. African-American, white vs. His-

panic, etc.) categorical variables in CTA. 
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The second article is the first of a series 

comparing the findings of CTA performed man-

ually vs. using automated software.  The appli-

cation in this article involves predicting mortal-

ity from Pneumocystis carinii pneumonia, a 

topic which has been investigated via CTA 

more times and over a longer period of time 

than any other specific area of inquiry.  Dr. 

Charles L. Bennett, M.D., Ph.D., graciously 

offered Paul and Robert use of data which we 

previously published, generated from his NIH-

funded projects which completed approximately 

a decade ago, for expository purposes. 

The third article, led by Rachel Coakley, 

is the second article in the “Manual vs. Auto-

mated CTA” series.  The original manuscript 

was recently published, and used a manually-

derived CTA.  The original model is contrasted 

with a new model developed using automated 

CTA software. 

The fourth article uses Gen-UniODA to 

model discrimination in organizations, for an 

application which was problematic for log-lin-

ear model. 

The fifth and final manuscript in this 

section for this Release reveals how ordinal data 

are commonly misidentified as being categori-

cal, and incorrectly analyzed by chi-square. This 

paper demonstrates the appropriate, straightfor-

ward UniODA analysis. 

Application.  This section features arti-

cles using optimal statistical analysis methods to 

address applied topics in any academic disci-

pline.  The first manuscript in this section, led 

by Robert Soltysik, identifies and corrects para-

doxical confounding present in serial meteoro-

logical measurements, then uses automated 

weighted CTA to predict temperature and pres-

sure anomalies across the USA and the northern 

hemisphere.  A heretofore unexplained recent 

Artic ice flux event is also demystified. 

The second manuscript in this section, 

led by Jennifer Howard Smith, uses manually-

derived CTA to model college freshman attri-

tion.  The paper is based on her dissertation, 

which is believed to be the first to use CTA, and 

represents the first CTA conducted outside the 

Optimal Data Analysis company laboratory. 

The final paper in this section derives 

from Hideo Suzuki’s thesis, and uses manually-

derived CTA to model the development of juve-

nile delinquency.  Hideo has used UniODA soft-

ware to derive CTA models for many years, and 

is well-versed in traditional multivariate classi-

fication methodologies.  A member of ODA’s 

Board of Editors, Hideo agreed to be the emis-

sary of ODA to the nation of Japan.  We wish to 

transliterate all articles involving optimal meth-

ods and published in Japanese, and republish 

them in ODA to further dissemination and ac-

celerate progress in this area.  Japanese journals 

wishing to transliterate articles originally pub-

lished in ODA for republication should contact 

the Editor.  In all cases, citations will credit the 

original work. 

Software.  Articles in this section dis-

cuss design or operation of existing or theoreti-

cal software systems which explicitly maximize 

(weighted) classification accuracy, and subop-

timal heuristic systems which seek maximum 

accuracy.  The first manuscript, led by Robert, 

discusses the motivation, reporting and use of 

automated of the CTA software which is now 

commercially available, including a list of the 

control commands and example analyses.  The 

second article, a brief report written by Fred at 

the Editor’s request, discusses how to use a 

widely-available software system to produce a 

data file needed to optimize the classification 

accuracy of a logistic regression model. 

Integrated System.  This section fea-

tures articles which discuss theoretical or exist-

ing closed-system “black-box” or “robotic” ap-

plications which are engineered using optimal 

analytic methods.  The sole manuscript in this 

section in this Release is written by William 

Collinge, a member of ODA’s Editorial Board.  

The manuscript discusses the alpha test of a 

web-based, interactive, structured patient diary 

using CTA to identify targetable behavioral an-
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tecedents of symptoms for individual fibrom-

yalgia patients. 

Consulting.  This section features arti-

cles highlighting areas which constitute con-

sulting opportunities for application of optimal 

analytic methods.  The first manuscript in this 

section—and final manuscript in this release, is 

led by Fred and describes a now classic court 

case addressing paradoxical confounding. 

Other.  Finally, this section functions 

like a bulletin board.  This Release features 

links to author instructions; advertiser instruc-

tions; how to obtain optimal software; how to 

obtain bound copies and reprints; and seven 

Special Calls. 

Author Notes 

 Mail correspondence to the author at: 

Optimal Data Analysis, 1220 Rosecrans St., 

Suite 330, San Diego, CA 92106.  Send eMail 

to: Journal@OptimalDataAnalysis.com. 

 
  

mailto:Journal@OptimalDataAnalysis.com
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The Loyola Experience (1993-2009): 

Optimal Data Analysis in the Department 

of Psychology 
 

Fred B. Bryant, Ph.D. 
Loyola University Chicago 

 

This article traces the origins and development of the use of opti-

mal data analysis (ODA) within the Department of Psychology at 

Loyola University Chicago over the past 17 years.  An initial set of 

ODA-based articles by Loyola faculty laid the groundwork for a 

sustained upsurge in the use of ODA among graduate students 

which has lasted for more than a decade and a half.  These student 

projects subsequently fueled an increase in ODA-based publica-

tions by other Loyola Psychology faculty, who directly supervised 

the various student projects.  Thus, ODA initially trickled down 

from faculty to students, but later grew up in the opposite direc-

tion.  The most frequent use of ODA in Loyola’s Psychology De-

partment has been to conduct classification tree analysis, with less 

common uses of ODA including optimal discriminant analysis and 

the iterative structural decomposition of transition tables.  As more 

Loyola Psychology graduate students find academic jobs and con-

tinue using ODA in their research, we expect that they will repli-

cate the Loyola experience in these new academic settings. 

When you discover a new tool that you believe 

is superior to other tools you’ve used before, 

naturally you want not only to use the new tool, 

but also to tell others about it so they can enjoy 

its benefits too.  Such has been the case in the 

Department of Psychology at Loyola University 

Chicago since early 1993, when the first version 

of Optimal Data Analysis (ODA) 1.0 for DOS 

became publicly available.  The purpose of this 

brief article is to describe the 17-year process 

through which the use of ODA sprang up, took 

hold, and spread among graduate students and 

faculty in Loyola’s Psychology Department. 

The Early Days of ODA at Loyola 

I have known Paul Yarnold and Rob 

Soltysik since they first began working on the 

problem of optimal classification in the early 

1980s.  I served as a beta-tester for both the 

original DOS-based
1
 and more recent Windows-

based
2
 versions of the ODA software.  In late 

1992, I cheered from the sidelines as Paul and 

Rob put the finishing touches on ODA 1.0 for 

DOS.  And when ODA 1.0 for DOS appeared in 

print, I wrote the first published review of the 



Optimal Data Analysis     Copyright 2010 by Optimal Data Analysis, LLC 

2010, Vol. 1, Release 1 (September 17, 2010)  2155-0182/10/$3.00 

 

 

 

5 
 

new software
3
 and began using ODA in my 

research.  Later I also published the first review 

of ODA for Windows.
4
 

Having fallen in love with the power, 

versatility, and elegance of ODA, I began pub-

lishing research articles using ODA as a statisti-

cal tool in 1994.
5
  I first directly collaborated 

with departmental colleagues to use ODA in 

1996, in publishing an article using optimal dis-

criminant analysis as an alternative to Student’s 

t test with two Loyola clinicians in the Journal 

of Consulting and Clinical Psychology.
6
  At the 

same time, I continued publishing ODA-based 

research on my own, and began extolling the 

capabilities of the new ODA software to my 

graduate students.  Interestingly, it was the 

graduate students, rather than the faculty, who 

more eagerly embraced ODA as a statistical tool 

in their research. 

How Loyola Researchers Have Used ODA 

At Loyola, researchers have used ODA 

in multiple ways to address a wide variety of 

different research questions in clinical psychol-

ogy, social psychology, neuropsychology, be-

havioral medicine, and biochemistry.  Table 1 

summarizes the 12 faculty publications and 12 

graduate student projects (11 dissertations and 1 

master’s thesis) in Loyola’s Psychology De-

partment that have used ODA over the past 16 

years (1994-2009). 

 

TABLE 1: Published Journal Articles and Graduate Student Projects (Master’s Theses and 

Dissertations) in Loyola’s Psychology Department Using ODA by Year (1993-2009) 

Year        Student Projects             Published Journal Articles 

                                 1993        0          0 

                                 1994        0          1 

                                 1995        0          1 

                                 1996        0          3 

                                 1997        1          0 

                                 1998        0          0 

                                 1999        0          0 

                                 2000        2          0 

                                 2001        1          0 

                                 2002        0          0 

                                 2003        0          1 

                                 2004        1          1 

                                 2005        3          0 

                                 2006        2          1 

                                 2007        0          1 

                                 2008        2          1 

                                 2009        0          2 

                              TOTAL                  12         12 
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Figure 1 illustrates the cumulative num-

ber of faculty publications (red) and graduate 

student projects (blue) from 1993 to 2009. 

FIGURE 1: Loyola Psychology Department 

Publications (Red) and Dissertations/Theses 

(Blue) Using ODA From 1993-2009 

 

Note the patterns that emerge across the 

17-year span.  The Loyola Psychology Depart-

ment’s experience with ODA originated in the 

early publications by department faculty.  This 

initial set of articles laid the groundwork for a 

sustained upsurge in the use of ODA by Loyola 

graduate students over more than a decade and a 

half.  These graduate student projects subse-

quently fueled the increase in ODA-based pub-

lications by other Loyola Psychology faculty, 

who directly supervised the various student 

projects.  Thus, although ODA initially trickled 

down from faculty to students, it later grew up 

in the opposite direction. 

Classification Tree Analysis 

By far, the most frequent use of ODA at 

Loyola has been to conduct multiattribute classi-

fication tree analysis (CTA).  For example, 

Loyola graduate students have used CTA to 

identify predictive models for discriminating 

students who drop out versus return to college 

following the first year
7
, children’s emotional 

responsiveness versus unresponsiveness during 

psychotherapy
8
, child molesters versus non-

molesters
9
, positive versus nonpositive adapta-

tion to childhood
10

, convicted juvenile delin-

quents versus non-delinquent youth
11

, positive 

versus negative morbidity and mortality out-

comes following bone marrow transplant
12

, high 

versus low effect sizes in a meta-analysis of 

methodological and intervention characteristics 

associated with primary prevention programs 

for children and adolescents
13

, engaging versus 

not engaging in risky sexual behavior among 

minority adolescents
14

 and adult male homosex-

uals
15

, high versus low social competence 

among children with spina bifida
16

, and state 

mental health care agency decisions to commit 

children to residential treatment versus foster 

homes.
17

  In addition, department faculty and 

graduate students have jointly published journal 

articles using CTA to predict early sexual debut 

among adolescents
18

, positive adaptation to 

childhood
19

, psychiatric hospital admission de-

cisions for children in foster care
20

, malingering 

in forensic neuropsychological examinations
21

, 

change in job status following traumatic brain 

injury
22

, and clinically significant sexual con-

cerns in a child welfare population.
23

 

Optimal Discriminant Analysis 

The next most common use of ODA in 

Loyola’s Psychology Department has been to 

conduct optimal discriminant analysis, as an 

exact-probability alternative to parametric dis-

criminant analysis or Student’s t test.  For ex-

ample, Loyola faculty publications have used 

ODA in this fashion to discriminate Type As 

versus Type Bs using the Type A Self-Rating 

Inventory
5
 and the Students Jenkins Activity 

Survey
24

, males versus females in self-ratings of 

affective intensity
25

, high- versus low-quality 

child therapy sessions based on therapist dis-

course
6
, and physicians versus undergraduates 
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in levels of sympathy and empathy.
26

  Layden et 

al. used this form of discriminant analysis to 

identify an optimal cut-score for using psychiat-

ric ratings to assess toxicity in patients under-

going lithium treatment for bipolar depression.
27

 

Iterative Structural Decomposition 

Another Loyola dissertation in clinical 

psychology used ODA to conduct an analysis 

for which no alternative statistical test exists.  In 

this particular project, the student had couples 

discuss an area of disagreement in their mar-

riage for 15 minutes, and then used an estab-

lished interaction scoring system to code these 

interactions.  Based on existing theory, the stu-

dent predicted that couples having only one de-

pressed spouse would engage in the following 

sequence of behaviors: (a) depressive behavior, 

followed by (b) spouse’s supportive behavior, 

followed by (c) more depressive behavior, fol-

lowed by (d) spouse’s incongruent behavior, 

followed by (e) angry/defensive behavior, fol-

lowed finally by (f) spouse’s critical/rejecting 

behavior.  Following procedures outlined by 

Yarnold and Soltysik
2
 (pp. 209-222), the data 

were organized into transition tables represent-

ing the frequencies of various verbal exchanges 

between spouses over time.  Supporting the hy-

pothesized temporal model, an iterative struc-

tural decomposition of the transition tables re-

vealed that the data conformed to the predicted 

sequence of behaviors significantly more than 

would be expected by chance alone.
28

  It is un-

clear how one would test the hypothesized be-

havioral sequence using any other inferential 

statistical tool. 

The Future of ODA in Psychology 

If the past is any indication of the future, 

then ODA has a bright future, not only at Loy-

ola but elsewhere.  The recent availability of 

ODA-based software that automatically con-

structs classification tree models is likely to ac-

celerate the use of CTA across a wider variety 

of research disciplines.  In the future, enumer-

ated CTA models may well replace traditional 

hierarchically-optimal CTA models, particularly 

given the superior classification accuracy of the 

former.  The automated CTA software also of-

fers the ability to analyze class variables that 

have more than two levels, thereby enabling 

new forms of nonlinear optimal regression mod-

eling.  We can foresee a vast array of new appli-

cations for CTA, including meta-analysis, cross-

cultural tests of similarities and differences, and 

optimal path analysis. 

Obviously, it is relatively easy to export 

the Loyola Experience with ODA to other uni-

versities.  All that is needed is a faculty member 

to lay the groundwork through an initial set of 

ODA-based publications, along with graduate 

students who are seeking to analyze data for 

their dissertation or master’s thesis.  As more 

Loyola Psychology graduates find academic 

jobs and continue to use ODA in their research, 

we expect that they will replicate the Loyola 

experience in these new academic settings. 

I close by noting an unanticipated aspect 

of the Loyola experience with ODA.  Namely, 

some of the graduate students who have used 

ODA in their dissertation research have later 

had the opportunity to teach introductory statis-

tics in psychology at the undergraduate level, 

both at Loyola and at other colleges and univer-

sities.  Naturally, these graduate instructors have 

taught their students about ODA and its statisti-

cal advantages, and these undergraduates are 

now approaching faculty members in psychol-

ogy at Loyola and elsewhere to supervise inde-

pendent research projects and honors theses that 

use ODA.  Once again, the process of learning 

has come full circle, as the students themselves 

become teachers and disseminate statistical 

methods to students, faculty, and beyond. 
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Optimal Data Analysis: 

A General Statistical Analysis Paradigm 
 

Paul R. Yarnold, Ph.D., and Robert C. Soltysik, M.S. 
Optimal Data Analysis, LLC 

 

Optimal discriminant analysis (ODA) is a new paradigm in the 

general statistical analysis of data, which explicitly maximizes the 

accuracy achieved by a model for every statistical analysis, in the 

context of exact distribution theory.  This paper reviews optimal 

analogues of traditional statistical methods, as well as new special-

purpose models for which no conventional alternatives exist. 

Rarely does a technical report concerning an 

apparently focused and arcane classification 

methodology, such as optimal discriminant 

(data) analysis—ODA, stand a realistic chance 

of appealing to a diverse scientific community.  

Even more rarely, however, does one have the 

opportunity to report the emergence of a new 

paradigm in the statistical analysis of data.
1
  

ODA is a highly intuitive, powerful, and exact 

methodology for the general statistical analysis 

of data, and this paper reports on the emergence 

of this paradigm. 

ODA is the methodology that explicitly 

maximizes the accuracy of any type of statistical 

model for the training sample—that is, for the 

data upon which statistical analysis is per-

formed and upon which the statistical model is 

based.  An increasing awareness of the intuitive 

appeal of maximizing accuracy (and minimizing 

errors), and commercial availability of dedicated 

software, are fueling increasingly widespread 

application of ODA.
1
  Nevertheless, because 

ODA is relatively new, and therefore relatively 

few introductory and review resources covering 

the paradigm are yet widely available, this paper 

introduces many major concepts and methods of 

the ODA paradigm. 

Initial Assumptions 

An ODA model explicitly maximizes the 

number of correctly classified observations for a 

specific application.  Observations are consider-

ed correctly classified when the model assigns 

them to the class of which they are, in reality, a 

member, and are misclassified otherwise.  The 

number of misclassifications arising in a given 

analysis is referred to as the "optimal value."  It 

is clear that derivation of a distribution theory 

for ODA requires investigation of distributions 

underlying optimal values.  Using the simplest 

possible data structure to illustrate derivation of 

exact distribution theory, imagine a hypothetical 

application having the following three features. 

First, assume one binary class variable. 

In ODA, a class variable is what one is trying to 

predict, discriminate, or classify. Examples of 

binary class variables might include gender 

(male, female), therapy (drug, placebo), or out-

come (success, failure).  Class variables may of 
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course consist of more than two levels, but two 

levels is the simplest case. 

Second, assume one random continuous 

attribute.  In ODA, an attribute is a variable that 

will be employed in an effort to predict the class 

variable. The continuity assumption implies that 

every observation will achieve a unique score 

on the attribute (no ties).  Nothing is assumed 

about the shape of the distribution underlying 

scores on the attribute, but only that the scores 

are random—for example, uniform or normal.  

Single-attribute ODA analyses are referred to as 

univariable ODA, or UniODA.  Because the 

present case involves a continuous attribute, we 

are discussing a “continuous UniODA design”. 

Finally, assume three observations: two 

from one class, and one from the other class 

(three observations are required because with 

two the problem is trivial: the mean of two 

observations’ scores on a continuous attribute is 

a perfect discriminant classifier for those two 

observations).  Though it is arbitrary, refer to 

these as classes “1” and “0”, respectively.  

Hereafter, the total number of observations is 

referred to as n, and the number of observations 

in class c as nc. 

Note that only the continuity assumption 

is capable of being violated by “real-world” data 

(we return to this point later).  The first (binary 

class variable) and third (n in each class) 

assumptions can never be violated because they 

exactly define the structure of the design.  That 

is, we are considering a UniODA design with a 

binary class variable, and with n1=2 and n0=1: 

any deviation from this structure, such as more 

than two class levels or different sample sizes, 

simply defines another specific UniODA design. 

The UniODA Model 

For clarity we give an example of a two-

category continuous UniODA model. Imagine 

that a cardiologist wished to determine if heart 

rate variability (HRV)—the standard deviation 

of one's heart rate over a 24-hour period (the 

continuous attribute), can discriminate patients 

who die (class 0) versus live (class 1).  For a 

given sample UniODA would provide at least 

one optimal model, consisting of a cutpoint and 

a direction, which when used together explicitly 

maximize forecasting accuracy: percent accurate 

classification, or PAC. For example, a UniODA 

model could be: "if HRV score is greater than 

(direction) 12.2 (cutpoint), assign that person to 

class 0; otherwise, assign that person to class 1." 

A UniODA model is said to be optimal 

because the total number of misclassifications 

resulting from application of the model to the 

data is minimized, and the number of correct 

classifications is maximized.  In the example, no 

alternative combination of HRV cutpoint and 

direction would yield fewer misclassifications 

than the model which UniODA identified. 

Multiple optimal models which all yield 

the same maximum PAC may occur for a given 

data set.  For example, two different HRV cut-

points might result in the same overall number 

of misclassifications, yet one model may have 

greater sensitivity (ability to accurately classify 

members of class 1) and lower specificity 

(ability to accurately classify members of class 

0) than the other model.  In such cases, it is 

necessary to select one optimal model, prefer-

ably before conducting the analysis, using an 

appropriate decision heuristic.
1
  Examples of 

such selection heuristics include the sensitivity 

or specificity heuristic (select the model having 

greatest sensitivity or specificity, respectively), 

or the balanced performance heuristic (select the 

model with the smallest difference between 

sensitivity and specificity).
1
 

Exact Distribution Theory 

We are now ready to derive the theoreti-

cal distribution of optimal values for a two-

category continuous UniODA design with n1=2 

and n0=1.  First, it is necessary to determine the 

set of all possible outcomes that could occur if 

the attribute were continuous and random.  In 

order to differentiate the two observations from 

class 1, they will be called “1A” and “1B.”   
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There are six possible outcomes: one is 

that the value of the attribute for observation 1A 

is greater than that for observation 1B, which in 

turn is greater than that for the observation from 

class 0.  Symbolically, {1A > 1B > 0}.  The five 

other possible outcomes are: {1A > 0 > 1B}; 

{1B > 1A > 0}; {1B > 0 > 1A}; {0 > 1A > 1B}; 

and {0 > 1B > 1A}.  Because the attribute was 

random, each of these six possible outcomes is 

equally likely, with a probability of 1/6. 

Next, it is necessary to determine the 

optimal value for each of the six possible 

outcomes.  This, of course, means that UniODA 

must be performed for each of the six possible 

data configurations.
1
  Two of the six possible 

outcomes (those in which the attribute of the 

class 0 observation lies between the attributes of 

the two class 1 observations) have an associated 

optimal value of 1 misclassification, because at 

least one observation will be misclassified 

regardless of where the cutpoint is placed).  The 

other four possible outcomes (in which the two 

class 1 observations can be perfectly separated 

via a cutpoint from the class 0 observation) have 

an optimal value of 0 misclassifications.  Cumu-

lating optimal values over the set of possible 

outcomes gives the theoretical distribution of 

optimal values for this UniODA design: the 

probability of an optimal value of 0 is 4/6, and 

the probability of an optimal value of 1 is 2/6. 

Enumerating in this manner the theor-

etical distribution of optimal values for balanced 

(equal number of class 0 and 1 observations), 

continuous, two-tailed (no a priori hypothesis 

was specified) UniODA designs required a 

CRAY-2 supercomputer—which only achieved 

results for n<30 due to exponential increases in 

the number of combinations.
2
 Examination of 

the resulting table of optimal values for post hoc 

UniODA revealed organization which motivated 

discovery
3
 and proof

4
 of a closed-form solution 

for one-tailed confirmatory UniODA. 

 

 

Inexact Measures 

What if data aren’t continuous, and there 

are ties—violating the continuity assumption?  

Discontinuity in empirical data is thought to 

reflect imprecise measurement, and not as com-

promising of theoretical probabilities
5
, but this 

begged the question of exactly how imprecise 

can measurement become before the theoretical 

probabilities become compromised? This line of 

thinking naturally led to the question of what 

would occur for a binary attribute—and it was   

then that we understood that the binary attribute 

problem was the optimal analogue to chi-square 

analysis, and the continuous attribute problem 

was the optimal analogue to t-test.  Proceeding 

with binary enumeration we found the binary 

and continuous distributions differ.  This finding 

motivated two important insights. 

First, there is a theoretical dimension—

which we call precision—which may be used to 

describe the metric underlying the attribute for 

any specific UniODA problem.  The precision 

dimension is bounded at the extremes by binary 

data (least precise) versus continuous data (most 

precise).  Just as specific distribution theory can 

be derived for the extreme poles of the precision 

dimension, so too can exact distribution theory 

be derived for every specific attribute measure 

metric: for example, if the attribute is measured 

using a 7-point Likert scale, then derive distri-

bution theory by assuming a 7-point Likert scale 

was used.  As it is possible to derive distribution 

theory that assumes that the specific measure 

metric actually used in a given application was 

in fact used, distribution theory for ODA can be 

based strictly on structural features of a prob-

lem, and such distribution theory will never be 

violated by data for a given application. 

The second insight is that UniODA is an 

optimal alternative to common conventional 

statistical methods: Student's t-test is often used 

to analyze data involving a binary class variable 

and a continuous attribute, and chi-square is 

often used to analyze data involving a binary 

class variable and a binary attribute.  UniODA 
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may also be used, and exact distributions may 

be determined for, designs that lie anywhere on 

the precision dimension—anywhere between the 

binary and continuous polar extremes.  This is 

not true for conventional statistical procedures. 

ODA as an Alternative to Conventional 

Statistical Methodologies 

Encouraged by early success, we began 

programmatic research to assess the domain of 

experimental designs and data configurations 

that may be addressed using UniODA.  We next 

investigated multicategory problems involving 

class variables with more than two levels.  For a 

continuous attribute, multicategory UniODA is 

analogous to oneway analysis of variance, and 

for a binary attribute it is analogous to log-linear 

analysis.
6,7

 

UniODA, and other models within the 

ODA paradigm, clearly can be used to analyze 

different data configurations that are evaluated 

using a host of different conventional statistical 

methods.  Why should ODA be used rather than 

a host of conventional methods? 

     First, only ODA explicitly maximizes 

(weighted) classification accuracy and provides 

a forecasting model for every application.  Not 

only do conventional methods fail to explicitly 

maximize PAC, but many, such as t-test or chi-

square, also fail to provide a forecasting model. 

Second, no matter what the nature of a 

particular data configuration might be—for 

example, the number of class levels, attribute 

metrics, or class sample-size imbalances, the 

classification performance of every ODA model 

is summarized using a normed measure of effect 

strength, called effect strength for sensitivity, or 

ESS.
1
 On this index 0 represents the level of 

classification performance that is expected by 

chance, and 100 represents perfect, errorless 

classification. No such intuitive, universal index 

can be used to compare the effect strength of 

different conventional methods such as analysis 

of variance, logistic regression, and tau. 

Third, conventional methods require 

assumptions regarding the nature of the data.  

Unlike ODA—for which distribution theory is 

exact for every design, conventional methods 

are inappropriate when the data violate their 

assumptions.  Whereas the assumptions of ODA 

must conform to the data, data must conform to 

the assumptions of conventional methods. 

Finally, with ODA a single methodology 

may be optimally applied to analyze a host of 

problems, while with the conventional approach 

a host of methods may be suboptimally applied 

to analyze a single problem.  ODA is therefore 

simultaneously more unique and parsimonious 

than conventional methods. 

To illustrate the flexibility and power of 

ODA as a general statistics paradigm, below we 

describe different common data configurations 

and conventional methods often used in their 

analysis, and the corresponding ODA model. 

Binary Class Variable 

and BinaryAttribute 

The most common conventional method 

for analyzing data of this type is chi-square 

analysis: the ODA analogue is two-category 

binary UniODA.  Chi-square is an approximate 

statistic that should not be used when the 

expected value for a given cell (cells are formed 

by cross-tabulating the class variable with the 

attribute) is less than five.
8
  In contrast, binary 

UniODA is an exact statistic with no such 

restriction: one- and two-tailed estimated p by 

UniODA and Fisher’s exact test are isomorphic 

except in a hypothetical degenerate condition.
1
 

It is easy to show that UniODA may be 

particularly useful in small sample designs.  For 

example, imagine a problem with n = 6, three 

observations from class 0 all scoring 0 on the 

attribute, and three observations from class 1 all 

scoring 1.  Chi-square can’t be used to analyze 

this problem, as the expected value is less than 

five in all four cells.  When analyzed using two-

tailed binary UniODA, a single optimal model 

(if attribute < 0.5 then class = 0; else class = 1) 
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emerged that achieved 100% PAC, p<0.032.  

No systematic review/comparison of chi-square 

versus binary UniODA has yet been reported. 

Binary Class Variable 

and Multiple Binary Attributes 

The most common linear methods for 

analyzing data of this type include log-linear or 

logistic regression analysis.  Completely binary 

problems are easiest for ODA to solve, but can 

be problematic for conventional methods, with 

aspects including marginal imbalance, sparse 

cells, singularities, and structural zeros (some 

design cells don’t exist), for example, rendering 

binary data difficult or impossible to analyze.  

The optimal linear analogue is binary Multi-

ODA—a linear model which uses two or more 

attributes to explicitly maximize classification 

accuracy (discussed ahead). 

For example, we reanalyzed data from a 

study designed to predict if 120 persons with 

AIDS would require home care or structured 

long-term care (the class variable) on the basis 

of three binary attributes which assessed the 

attitudes of patient and physician towards long-

term care, and whether the patient had mental 

impairment.
9
  The data were “ill-condiioned” 

and thus could not be analyzed by log-linear or 

logistic regression methods.  MultiODA, how-

ever, found a two-attribute model that achieved 

93.3% PAC in <1/20 CPU second on a 33MHz 

386 microcomputer running a special-purpose 

ODA search algorithm (discussed ahead). 

Binary Class Variable 

and Continuous Attribute 

Among the most frequently reported of 

statistical tests, Student’s t-test is a common 

conventional procedure for analyzing data of 

this type.  The ODA analogue is two-category 

continuous UniODA. 

It is easy to construct a hypothetical 

problem for which t-test fails to find a signifi-

cant intergroup mean difference on the attribute, 

while UniODA detects nearly perfect intergroup 

discriminability.  Imagine that ten class A obser-

vations each score a value of 0 on the attribute; 

nine class B observations all score 1, and a tenth 

class B observation scores -9. Because the mean 

difference on the attribute between groups is 

zero, t-test would conclude that the groups can’t 

be discriminated whatsoever by the attribute.  

But, with UniODA, 95% of the observations are 

correctly classified—nearly perfect intergroup 

discriminability. Systematic research contrasting 

UniODA and t-test is not yet available. 

 

Binary Class Variable 

and Multiple Continuous Attributes 

Common linear methods for analyzing 

data in this configuration are linear discriminant 

analysis, logistic regression analysis, and one-

way multivariate analysis of variance.
6,7

  The 

linear ODA analogue is continuous MultiODA, 

but UniODA has been used with great success 

to maximize accuracy achieved by suboptimal 

models.
10,11

 

Monte Carlo research is often used to 

contrast continuous MultiODA versus conven-

tional statistical methods.
12,13

  A difficulty with 

such simulation research is that the experimental 

data are generated using idealized routines that 

meet criteria—such as normally distributed data 

and coincident covariance, which are important 

for conventional statistical methodologies but 

which are no substitute for “real-world” data 

collected by naturalistic empirical observation.  

Our strategy has been to analyze a variety of 

different applications using MultiODA, and then 

compare the performance against suboptimal 

methods such as Fisher's discriminant or logistic 

regression analysis, using training and validity 

data.  Early results are encouraging, but more 

research is needed to compare “in the field” 

classification performance of MultiODA versus 

conventional procedures.
9,14,15
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Binary or Multicategory Class Variable 

and Continuous and Binary Attributes 

Multinomial logistic regression analysis 

is a commonly employed conventional analysis 

for problems of this type.  The linear optimal 

analogue is MultiODA, with weights used to 

reduce problem size by eliminating redundant 

data profiles (discussed ahead).  Little research 

using either approach is available, and to our 

knowledge no prior research comparing these 

approaches has yet been published (until now). 

Analyzing credit screening data for a 

British bank, our objective was to develop a 

model to predict credit worthiness (the class 

variable) for a sample of 325 credit applicants.  

Attributes were two binary variables and a third 

4-point ordinal attribute. A nonparametric class-

ification methodology that performed sample 

stratification based on a recursive chi-square 

procedure identified four interaction terms used 

as attributes in follow-up analysis.  With these 

data logistic regression analysis and MultiODA 

both achieved 90.5% PAC in training analysis, 

but the latter model used one less term (and thus 

was more efficient and parsimonious) than the 

former model.  Comparing the two models using 

jackknife validity analysis revealed that PAC for 

the MultiODA model was stable, but regressed 

to 83.1% for the obviously over-determined 

logistic regression model. 

Multicategory Class Variable 

and Polychotomous Attribute 

Common conventional methodologies 

for analyzing these designs include chi-square, 

log-linear, or multinomial logistic regression 

analysis.  The optimal analogue is multicategory 

UniODA.  As was true for designs that involved 

one binary class variable and multiple binary 

attributes, issues such as structural zeros, sparse 

cells, imbalanced marginal distributions, small 

samples, and multicollinearity may spell disaster 

for conventional designs.  As discussed earlier, 

these are not problems for ODA. 

It is easy to construct an example for 

which conventional analyses are inappropriate, 

but for which multicategory UniODA is ideal.  

For example, imagine a problem with a three-

category (A, B, C) class variable, with each 

category having three observations.  Further 

imagine all three class A observations scored a 

value of 1 on the attribute; all three class B 

observations scored a 2, and all three class C 

observations scored a 3.  Although the small 

sample renders conventional methods  inappro-

priate, a multicategory UniODA achieved 100% 

PAC, two-tailed p<0.01. 

Multicategory Class Variable 

and Continuous Attribute 

The most common conventional analysis 

used for such designs is oneway analysis of 

variance, and the optimal analogue is multicate-

gory UniODA.  As for t-test, distribution theory 

for analysis of variance is highly sensitive to 

assumption violations.
5
  Such data can present 

insurmountable problems for multinomial logis-

tic regression, because of small samples, sparse 

cells, and marginal imbalance, particularly when 

polychotomous attributes are thrown in the mix: 

for example the analysis will fail if a degenerate 

attribute—which has fewer response categories 

than the class variable has levels—is included in 

the analysis. 

As an example of a three-category Uni-

ODA, imagine the following hypothetical data 

set, problematic for conventional methods due 

to the small sample, the presence of outliers, 

heterogeneity, the presence of zero variance for 

one group, and non-normality (in Table 1, X is 

the attribute). 
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TABLE 1: Hypothetical data set for three-category UniODA 

                                                  Class      X         Class      X        Class     X 

                                                  -------   -----       -------    -----     -------   ----- 

                                                     A       29            B         35          C        5  

                                                     A       30            B         35          C       42 

                                                     A       31            B         35          C       43 

                                                     A       50            B         35          C       50 

 

In this example the mean X of classes A, 

B, and C is exactly equal, so F=0.  However, the 

UniODA model (if X < 33 then class = A; if X  

> 38.5 then class = C; else class = B) correctly 

classified 10 of the 12 data points: overall and 

mean PAC over all three groups is 83.3%, two-

tailed p<0.05. 

Ordered Class Variable 

and Continuous and/or Binary Attributes 

Among the many types of nonparametric 

methods in use, Kendall's tau is arguably the 

least problematic procedure conventionally used 

to evaluate associations among ordinal (ranked) 

data.
16

  Tau is a computed index for evaluating 

the relationship between two ordered variables: 

collect data, compute tau, and “it is what it is.”  

Ahead we show that multicategory MultiODA 

can be used to determine criterion weights for 

two or more attributes to generate a summary 

score which explicitly maximizes tau. 

Receiver Operator Curve 

(Signal Detection) Analysis 

 Bayesian classification methods are 

commonly used to evaluate the discriminating 

power of attributes.
17

  Such procedures typically 

aim to maximize the sensitivity, specificity, or 

some combination of sensitivity and specificity 

achieved using an attribute.  Since ODA models 

may be derived which explictly maximize sensi-

tivity, specificity, or any weighted composite of 

sensitivity and specificity, either for individual 

attributes or for sets of attributes, we call this 

application “optimal signal detection analysis.” 

In summary, it is a common practice to 

employ multiple different statistical methods, 

each requiring data to satisfy different essential 

assumptions, to analyze a given sample of data 

in numerous “different” (actually related) ways.  

We recommend using a single statistical method 

to analyze data with one objective function in 

mind: maximizing accuracy.  The utility of this 

approach will undoubtedly receive increased 

attention as researchers learn more about the 

unrivaled generalizability and power of ODA 

across different data configurations. 

Fast MultiODA Solutions 

Early research was highly productive, 

and new applications for UniODA models were 

discovered routinely as new data structures were 

considered.
1
  As data configurations became 

increasingly complex, so did ODA models, and 

researchers began formulating and investigating 

optimal linear models for designs with a binary 

class variable and two or more ordinal and/or 

binary attributes: an optimal analogue of logis-

tic regression or Fisher’s discriminant analysis.  

These multivariable ODA models are called 

“MultiODA,” for short. 

Although UniODA problems can easily 

be solved for enormous samples, MultiODA 

problems may be computationally intractable 

for tiny samples, even on the fastest computers.  

Several procedures affording reductions of an 

order of magnitude or more in solution time for 
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MultiODA problems were recently developed, 

and analysis is feasible for enormous samples in 

favorable circumstances. Review of MultiODA 

here will be brief: so much work has focused on 

MultiODA models that a review is warranted. 

Below we review two fast new methods to solve 

MultiODA problems: MIP45 is a mixed integer 

formulation, and WARMACK a special-purpose 

search algorithm.  These methods are extended 

for nonlinear and multicategory MultiODA. 

MIP45 

The first approach to computing a Multi-

ODA solution that we shall discuss is a mixed 

integer linear programming formulation called 

MIP45, in which the discriminant function is 

normalized so the sum of the absolute values of 

the coefficients adds to one.
18

  This enables one 

to determine, for each constraint, a lower bound 

for the value of the problem parameter, M.  This 

is in distinction to previous formulations of this 

problem, where M is defined as “a very large 

number.”  Since the value of M can be kept low 

for each constraint, the branch-and-bound 

procedure can fathom branches more quickly 

than other formulations.  Also, fewer branches 

need to be stored in memory, and computation 

time is reduced. 

We compared computational resources 

needed to solve a problem in classification of 

medical residency applicants using MIP45 and a 

recent formulation that did not limit M.  The 

problem had 3 attributes and 49 observations.  

Running the SAS/OR optimization package on 

an IBM 3090/600 mainframe computer, MIP45 

solved the problem in 48 CPU seconds, versus 

268 CPU seconds using the other formulation: 

MIP45 analyzed 2,896 branches, versus 14,549 

branches using the other formulation. 

MIP45 can be extended to obtain Multi-

ODA solutions which maximize the weighted 

number of satisfied inequalities.  As for Uni-

ODA, this is useful in two different contexts. 

First, the weights may represent the 

return obtained in the correct classification of an 

observation.  For example, consider the problem 

of predicting whether the price of a stock will 

rise or fall over a given time horizon, given a 

series of market indicators and price measure-

ments.  If the prediction is for a rise in the stock 

price, the stock will be purchased.  Conversely, 

if a fall in the price is predicted, the stock will 

be sold short.  The weighted MultiODA solution 

of this problem would maximize the trading 

return over the set of observations. 

The other context in which the weighted 

criterion is useful occurs when the number of 

observations in each class differs.  In this case, 

the weighted MultiODA solution balances the 

number in each class by maximizing the mean 

PAC over the two classes. 

A useful extension of MIP45 involves 

fixing the sign of the discriminant coefficients 

(e.g., in a confirmatory design).  In fact, bounds 

or any linear constraints on the coefficients may 

be imposed.  Yet another type of constraint 

which can be modeled is any Boolean function 

of actual or predicted class membership among 

the observations.  One example of this would be 

forcing certain observations to be classified 

correctly in the MultiODA solution (if this is 

feasible).  Another example would be forcing 

observation A to be assigned to a certain class 

only if observation B is similarly classified.  

Finally, a method for reducing the prob-

lem size can be applied when multiple observa-

tions share identical values for all attributes.  In 

this case, these observations may be aggregated 

into a single observation, with a weight applied 

to the objective function.  This procedure is 

especially useful with binary attributes: we 

solved binary MultiODA problems having five 

attributes and one million observations in less 

than ten CPU seconds on an IBM 3090/600. 

WARMACK 

A second approach to obtaining fast 

solutions to MultiODA problems involves our 

adaptation of a fast search algorithm initially 

developed by Warmack and Gonzalez (hence 
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the origin of the name we use to refer to the 

method).
19

  With this method we obtained a 

reduction of an order of magnitude or more in 

computation time versus the MIP45 approach.   

We conducted Monte Carlo research to 

investigate the computer resources required by 

this algorithm as a function of n, the number of 

attributes, and the relative discriminability of 

the data.  Problems having 2 attributes and 700 

observations can be solved in less than one CPU 

minute on an IBM 3090/600.  This is also true 

for problems with 3 attributes and 200 observa-

tions, or 4 attributes and 100 observations.  Our 

findings show that the number of attributes 

exerts greater influence on computation time 

than n or relative discriminability of the data. 

Extension of MultiODA to Nonlinear and 

Multicategory Problems 

 MultiODA may be extended to a large 

class of nonlinear separating surfaces.  This is 

accomplished by defining attributes which are 

polynomial functions of the original attributes.  

Any nonlinear function which is linear in the 

parameters of the original attributes may be 

modeled in this manner. 

It is also possible to solve multicategory 

problems involving more than two class levels 

using either MIP45 or WARMACK.  There are 

two ways to accomplish this. If there are k class 

categories, the first method is to determine the 

ODA solution obtained with k-1 separating 

surfaces in parallel with each other.  From a 

computational standpoint, this is equivalent to 

adding an extra attribute for each additional 

class. 

The second method involves the deter-

mination of k different discriminant functions: 

an observation is assigned to the class for which 

the maximum value is obtained over these func-

tions.  If there are p original attributes, this is 

equivalent to a MultiODA problem with p times 

k attributes. 

In conclusion, MIP45 and WARMACK 

make feasible the solution of much larger Multi-

ODA problems than have been possible to solve 

previously, particularly for binary problems. 

Optimal analogues to conventional statistical 

methods are now available to researchers. How-

ever, ODA is far more than simply an optimal 

analogue to conventional statistics. 

Special-Purpose ODA Models 

The flexibility of the ODA methodology 

lends itself to special-purpose classification 

applications for which there are no alternative 

conventional statistical procedures.  Indeed, the 

number of different ODA models that may be 

created is limitless, due to the inherently infinite 

number of possible unique classification appli-

cations.  Nevertheless, below we describe some 

specialized ODA models that should be of great 

utility across a variety of applications.   

Minimizing the Number of Terms in a 

MultiODA Solution 

When performing an analysis, it is des-

irable to obtain a solution with as few terms as 

possible, in light of the principle of parsimony.  

This can be achieved in the context of the 

MIP45 formulation: an upper bound is set on the 

number of misclassifications, and the number of 

attributes used in the solution is minimized.  

This results in a more parsimonious model, with 

a corresponding increase in statistical power. 

Optimal Attribute Subsets 

A related problem is the determination 

of an optimal subset of attributes with exactly k 

members.  This also is an extension of MIP45.  

This procedure is useful when the ratio of 

number of attributes to number of observations 

is too high to yield a meaningful model, or when 

redundant (multicollinear) attributes are present. 

For example, we used this procedure to 

discriminate 15 Type A from 15 Type B (class 

variable) undergraduates using a subset of 20 

items (attributes) from the Bem Sex-Role Inven-

tory.  With k specified at 2 attributes, MultiODA 
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identified a single solution that achieved 93.3% 

PAC; with k specified at 3 attributes MultiODA 

identified a single solution with 100% PAC.  

These problems required 91.9 and 73.9 CPU 

seconds to solve on an IBM 3090/600 computer 

running SAS/OR.  When the attributes selected 

by MultiODA were evaluated using logistic 

regression analysis, 90% PAC was achieved for 

both the 2- and 3-attribute models.  The best 2-

attribute model identified using stepwise logistic 

regression achieved 90% PAC, and the best 3-

attribute model achieved 93.3% PAC. 

Integer-Valued Coefficients 

UniODA may be used to solve Multi-

ODA problems in which the model weights for 

the attributes (the discriminant coefficients) are 

constrained to take on a small set of values.  For 

example, in a problem having p attributes, the 

discriminant coefficients restricted to the values 

0, 1, or -1, and the threshold coefficient uncon-

strained, all optimal solutions may be found by 

solving 3
p
/2 UniODAs.  In general, for k pos-

sible coefficient values and p attributes, k
p
/2 

UniODAs are solved.  If k and p are relatively 

small, then few computational problems arise 

due to the fast speed of UniODA.  An additional 

benefit of this analysis is that optimal attribute 

subsets of every size are evaluated.  We solved a 

problem with 3 coefficient values, 8 attributes, 

and 900 observations in 716 CPU seconds on a 

33Mhz 386 microcomputer.
15

 

Optimal Selection of Observation Subsets 

with Unknown Class Membership 

In some problems, observations are 

available for which class membership is 

unknown.  Typically, exactly k of these observa-

tions are to be acted upon in some manner.  The 

initial phase of the MultiODA approach to this 

problem involves partitioning observations into 

two sets: the decision set, consisting of observa-

tions with unknown class membership, and the 

evaluation set, consisting of observations with 

known class membership. 

To illustrate this, consider the problem 

of selecting k job applicants from a pool of 

applicants.  The attributes may reflect measures 

of previous employment experience and skills 

required to perform the job task.  The evaluation 

set is comprised of previously hired individuals 

who have been measured on these attributes.  

Each individual in the evaluation set is weighted 

by a performance index, in this case a measure 

of job performance.  The decision set is compri-

sed of the pool of job applicants, k of whom are 

to be selected for employment, and all of whom 

have been measured on the attributes.  Multi-

ODA identifies a solution which maximizes the 

weighted number of inequalities in the eval-

uation set, such that exactly k inequalities in the 

decision set are satisfied.   

Or, consider the problem of selecting 

prisoners to be released under a court mandate 

which requires that exactly k must be released, 

due to overcrowding.  Here the decision set is 

the current population of prisoners, and the eval-

uation set are those prisoners who previously 

were released. The performance index, which is 

to be minimized, is a measure of mayhem pro-

duced by the previously released prisoners. 

Other interesting applications of this 

method lie in the areas of market research, 

investment selection, and pattern recognition. 

Ordered Class Variables 

Another fruitful area of investigation 

relates to the use of MultiODA in analysis of 

data which have been sorted into ordered 

(ranked) categories.  MultiODA is used to maxi-

mize the goodness of fit between the actual and 

predicted category assignments.  Kendall’s tau 

is a similarity index widely used for comparison 

of two ranked sequences, and is proportional to 

the number of satisfied inequalities between 

paired observations.  Thus, MultiODA finds a 

linear discriminant function which maximizes 

the value of Kendall’s tau.  It is worthwhile to 
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note that this situation differs from the multi-

category case in that the latter corresponds to 

the analysis of unordered categories. 

Optimal Nonparametric 

Linear Multiple Regression 

A distribution-free approach to multiple 

linear regression is available using the Kendall’s 

tau procedure.  Initially observations are ranked 

according to their values on the dependent 

measure.  MultiODA is then used to find the 

optimal predicted rank sequence.  As a final 

step, an inequality-constrained multiple linear 

regression problem is solved for each optimal 

rank sequence.  This quadratic program uses 

sum-of-squared-error as the objective function, 

and the inequalities corresponding to the paired 

observations as constraints.  The linear model 

produced by this procedure is the model with 

the highest R
2
 for which the value of Kendall’s 

tau is the maximum achievable overall.  If 

multiple optimal sequences exist, the solution 

with the highest R
2
 is selected.  We have solved 

such a problem with 3 independent variables 

and 22 observations in 49 CPU seconds on a 50 

MHz 486 microcomputer.  

Optimal Templates 

Another interesting application of Multi-

ODA lies in the design of optimal templates.  To 

illustrate this, imagine an individual is given a 

list of questions and set of possible responses 

for each question, one of which is to be selected 

as the individual’s answer to that question.  

Each question is answered by filling in a circle 

(e.g., on an “IBM answer form”) corresponding 

to a selected answer.  The class membership of 

each individual is known.  The objective of this 

MultiODA procedure is to produce a template, 

that is, a series of holes on an opaque sheet, so 

that overlaying the template on the answer sheet 

and counting the number of filled-in holes pro-

duces a discriminant score for the individual.  

This score is compared to the cutpoint obtained 

by MultiODA in order to assign class member-

ship to individuals.  This assignment minimizes 

the number of classification errors.   

This problem was formulated as a pure 

integer program.  As an example, consider the 

application of creating a template for personnel 

selection purposes.  A 38-item questionnaire, 

with each item answered as true or false, was 

completed by 107 employees of a corporation, 

70 of whom were known desirable workers, and 

37 of whom were known undesirable workers.  

MultiODA identified a template which resulted 

in 74.8% PAC, requiring 26 CPU minutes on an 

IBM 3090/600 running SAS/OR. 

MultiODA with Boolean Attributes 

The ODA approach of minimum error 

may also be applied to classification problems 

with purely logical attributes.  In this case, the 

decision rule involved in the assignment of an 

observation to a class is a Boolean function of 

logical attributes which have been measured for 

that observation.  We wish to find a Boolean 

function with at most k terms which minimizes 

the number of misclassifications.  Alternatively, 

we may look for a function with at most k mis-

classifications which minimizes the number of 

logical terms.  These problems can be formula-

ted as integer programs, or solved in crude brute 

force manner via exhaustive enumeration.   

Consider the following application as an 

example of this procedure.  A pair of emergency 

physicians independently diagnosed 51 patients 

with hip trauma for bony abnormality.  Each 

physician rated each patient as abnormal or 

normal based a measure of sound conduction, 

and also based on physical inspection.  Presence 

of bony abnormality (the class variable) was 

independently determined radiographically.  A 

Boolean MultiODA identified a single optimal 

solution that achieved 96% overall PAC.  The 

optimal decision rule was: if either physician 

rates either attribute as abnormal, then classify 

the observation as abnormal; else classify the 

observation as normal. 
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Classification Tree Analysis 

Hierarchically optimal classification tree 

analysis, or CTA, is an algorithm which chains 

UniODA analyses together so as to stratify the 

sample in a manner that explicitly maximizes 

ESS.
20

  As for MultiODA, discussion of CTA 

lies outside the domain of this manuscript: 

sufficient work using CTA has accumulated so 

that a comprehensive review is warranted. 

Summary 

Research described herein, indeed the 

sum total of all of the world’s knowledge in this 

field to date, merely scratches the surface of 

what ODA entails, what ODA offers.  Although 

we can only imagine what we must be missing, 

it is clear to see that ODA is a powerful new 

paradigm in the statistical analysis of data.  It is 

intuitively appealing, in the mathematical 

modeling of any process, that the model should 

make as few mistakes as possible.  This is the 

essence of the ODA approach.  Its fruitfulness, 

particularly in its application to the analysis of 

problems previously unanalyzable, is an indica-

tion of its value as a general-purpose problem-

solving tool.  Because ODA is inherently distri-

bution- and metric-free, it avoids the necessity 

of making distributional assumptions required 

by conventional parametric methods.  In ODA, 

powerful modeling capabilities of mathematical 

programming are joined with the inferential 

capabilities of statistics.  Furthermore, one may 

combine different ODA methods so that every 

problem can be formulated in terms of its own 

unique characteristics.  It thus seems appropriate 

to postulate that, in the area of optimal statistics, 

the best surely is yet to come. 
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Maximizing Accuracy of Classification 

Trees by Optimal Pruning 
 

Paul R. Yarnold, Ph.D., and Robert C. Soltysik, M.S. 
Optimal Data Analysis, LLC 

 

We describe a pruning methodology which maximizes effect strength for sensitivity                            

of classification tree models.  After deconstructing the initial “Bonferroni-pruned”                    

model into all possible nested sub-branches, the sub-branch which explicitly maximizes              

mean sensitivity is identified.  This methodology is illustrated using models predicting                           

in-hospital mortality of 1,193 (Study 1) and 1,660 (Study 2) patients with AIDS-related 

Pneumocystis carinii pneumonia. 

 

Classification tree models typically begin with a 

root variable which has two eminating branches 

and separates the sample into two partitions. In 

such applications the tree model may be said to 

consist of two parts: the left-hand side, and the 

right-hand side.  Extending this methodology to 

applications involving more than two eminating 

branches is straightforward: for example, with 

three eminating branches there are the left-hand, 

middle, and right-hand branches.  To facilitate 

clarity, this article considers applications having 

two eminating branches. 

        Identifying the tree model which explicitly 

maximizes mean sensitivity—and thus the effect 

strength for sensitivity (ESS), first necessitates 

identifying every possible sub-branch for every 

branch eminating from the root variable.  For 

example, imagine a left-hand branch consisting 

of three nodes: A (root), B (middle attribute) 

and C (at the end of the branch).  This branch 

has two nested sub-branches: one involves only 

nodes A and B (C collapsed into B), and the 

other involves only node A (C and B collapsed 

into A).  For clarity of exposition refer to the left 

branch with three attributes (A, B, C) as “L3”; 

to the trimmed left branch with two attributes 

(A, C collapsed into B) as “L2”; and to the 

trimmed left branch with one attribute (C and B 

collapsed into A) as “L1”.  Also imagine this 

hypothetical tree model had a right-hand branch 

consisting of two nodes: A (sides have the same 

root attribute) and D (at the end of the branch).  

The right branch involving two attributes (A, D) 

is called “R2”, and the trimmed right branch 

with one attribute (D collapsed into A) is called 

“R1”.  The first step of optimal pruning involves 

obtaining a confusion table (rows are the actual 

class category, columns are the predicted class 

category) for all (sub)branches of the original 

tree model: here, for L1, L2, L3, R1, and R2. 

        The second step in finding the tree model 

having maximum sensitivity involves obtaining 

every unique combination of left and right 

(sub)branch: in the present example the six 

unique combinations are L1-R1, L2-R1, L3-R1, 

L1-R2, L2-R2 and L3-R2.  Next, combine (or 

“integrate”) the confusion tables for each of the 

six different combinations.  Finally, the table 

with greatest mean sensitivity may be identified 

by direct observation.  The optimized model is 

the combination of (sub)branches with associa-

ted confusion table having maximum ESS. 
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An Example of Optimal Pruning: 

Predicting In-Hospital Mortality 

The major cause of hospitalization and 

death for people with HIV infection early in the 

AIDS epidemic, Pneumocystis carinii pneumo-

nia or PCP had in-hospital mortality rates as 

high as 60% in the 1980s.
1
 Here we demonstrate 

pruning to maximize ESS for a model obtained 

via classification tree analysis (CTA) to predict 

in-hospital mortality due to PCP.
2
  Analysis was 

performed for 1,193 patients (89% of the total 

sample) with complete data for model attributes, 

who were discharged alive (N=988) or who died 

in-hospital (N=205).  Derived manually using 

UniODA software
3,4

 the CTA model involved 

four attributes: alveolar-arterial oxygen gradient 

(AaPo2) is the difference in partial pressure of 

oxygen between the pulmonary system and the 

blood (elevated values indicate more severe 

pneumonia); body mass index is a measure of 

nutritional status that is predictive of poor short- 

and long-term survival rates; and prior AIDS 

indicates if the current episode of PCP is the 

first clinical evidence that full-blown AIDS has 

developed (at the time the data were collected, 

patients with prior history were more likely to 

be severely ill, develop multiple complications 

of AIDS, and die).  The CTA model (Figure 1) 

yielded ESS=21.2, a relatively weak effect. 

 
 

AaPo
2

Age

Body

Mass

Index

Prior AIDS

Age

8.1%

N = 602

43.8%

N = 16

8.8%

N = 34

23.1%

N = 359

33.3%

N = 69

35.4%

N = 113

p < 0.0001

p < 0.0005 p < 0.02

p < 0.008 p < 0.053

  > 49.5 mm Hg< 49.5 mm Hg

< 49.2 Yr

> 49.2 Yr No

 Yes

< 19.6 kg/m2 > 19.6 kg/m2

< 51.3 Yr > 51.3 Yr

 

      Figure 1: Initial Non-Pruned CTA Model of In-Hospital Mortality 

        The root variable of the initial non-pruned 

CTA model has two eminating branches and 

therefore left and right sides, and each side has 

three nodes.  For Step 1 of the optimal pruning 

procedure, Figure 2 gives schematic illustrations 
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of L1-L3 and R1-R3, and their corresponding 

confusion tables, respectively. 

                            Figure 2A: 

       L1 Sub-Branch and Confusion Table 

AaPo
2

9.0%

N = 652

  < 49.5 mm Hg

 
 

                            L1 Predicted        

                         Alive         Dead 

               Alive   593             0  

   Actual 

               Dead    59              0 

                            Figure 2B: 

       L2 Sub-Branch and Confusion Table 

AaPo
2

Age

20.0%

N = 50

8.1%

N = 602

  < 49.5 mm Hg

< 49.2 Yr > 49.2 Yr

 

                              L2 Predicted        

                           Alive         Dead 

                 Alive   553             40  

     Actual 

                 Dead    49              10 

Figure 2C: 

       L3 Sub-Branch and Confusion Table 

AaPo
2

Age

Body

Mass

Index

 8.8%

N = 34

43.8%

N = 16

8.1%

N = 602

  < 49.5 mm Hg

< 49.2 Yr > 49.2 Yr

< 19.6 kg/m2 > 19.6 kg/m2

 

 

                             L3 Predicted        

                          Alive         Dead 

                Alive   584              9  

     Actual 

                Dead    52               7 
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Figure 2D: 

R1 Sub-Branch and Confusion Table 

AaPo
2

27.0%

N = 541

> 49.5 mm Hg

 

                            R1 Predicted        

                         Alive         Dead 

                Alive     0             395 

     Actual 

                Dead     0             146 

Figure 2E: 

R2 Sub-Branch and Confusion Table 

AaPo
2

Prior AIDS

24.8%

N = 428

35.4%

N = 113

> 49.5 mm Hg

YesNo

 

                            R2 Predicted        

                         Alive         Dead 

                Alive   322             73 

     Actual 

                Dead   106             40 

Figure 2F: 

R3 Sub-Branch and Confusion Table 

AaPo
2

Prior AIDS

Age

 33.3%

N = 69

23.1%

N = 359

35.4%

N = 113

> 49.5 mm Hg

 < 49.2 Yr > 49.2 Yr

YesNo

 

                            R3 Predicted        

                         Alive         Dead 

                Alive   276           119 

     Actual 

                Dead    83             63 

Figure 2: All Possible Sub-Branches of the 

Initial Non-Pruned CTA Model, and 

Corresponding Confusion Tables 

For the final step of the optimal pruning 

procedure, Table 1 gives integrated confusion 

tables for all nine possible combinations of left 

(L1-L3) and right (R1-R3) sub-branches, and 

their associated mean sensitivity and ESS.  As 

seen in Figure 3, the combination L1-R3 has the 

greatest mean sensitivity (66.9%), correspond-

ing to optimized ESS=33.7. 
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Table 1: Classification Results for Every Combination of Left (L1-L3) and Right (R1-R3) Sub-Branch 

Model            Confusion Table               Model            Confusion Table               Model            Confusion Table 

L3-R3                 Predicted                      L3-R2                 Predicted                      L3-R1                 Predicted 

                      Alive         Dead                                      Alive          Dead                                     Alive          Dead 

            Alive   860            128                            Alive   906              82                           Alive     584            404 

Actual                                                     Actual                                                      Actual 

            Dead   135              70                             Dead   158              47                           Dead       52             153 

                           ESS=21.2                                                ESS=14.6                                                ESS=33.7 

L2-R3                 Predicted                      L2-R2                 Predicted                      L2-R1                 Predicted 

                      Alive         Dead                                      Alive          Dead                                     Alive          Dead 

            Alive   829            159                            Alive   875             113                           Alive    553            435 

Actual                                                     Actual                                                      Actual 

            Dead   132              73                             Dead   155              50                            Dead     49              156 

                          ESS=19.5                                                 ESS=13.0                                               ESS=32.1 

L1-R3                 Predicted                      L1-R2                 Predicted                      L1-R1                 Predicted 

                      Alive         Dead                                      Alive          Dead                                     Alive          Dead 

            Alive   869             119                           Alive   915              73                           Alive     593            395 

Actual                                                     Actual                                                      Actual 

            Dead   142               63                            Dead   165              40                           Dead      59             146 

                          ESS=18.7                                                ESS=12.1                                                ESS=31.2 

 

AaPo
2

Age

Body

Mass

Index

27.0%

N = 541

8.1%

N = 602

43.8%

N = 16

8.8%

N = 34

> 49.5 mm Hg< 49.5 mm Hg

> 49.2 Yr< 49.2 Yr

> 19.6 kg/m2< 19.6 kg/m2

 

          Figure 3: Optimized CTA Model 

 

Compared to the initial CTA model, the 

pruned maximum sensitivity version of the CTA 

model (L1-R3) provided 10.4% greater mean 

sensitivity (60.6% versus 66.9%, respectively),  

corresponding to ESS values of 21.2 (relatively 

weak effect) versus 33.7 (moderate effect) res-

pectively, and reflecting a 59.9% improvement 

in ESS for the optimized model.  The optimized 

model used one fewer node than the non-pruned 

model, rendering it 98.7% more efficient than 

the initial model (i.e., averaging 8.4 versus 4.24 

ESS-units-per-attribute, respectively). 

A Second Example of Optimal Pruning: 

Predicting In-Hospital Mortality 

The years 1995 to 1997 witnessed early 

adoption of highly active antiretroviral therapy 

for HIV, and the in-hospital morality rate from 

PCP had fallen to approximately ten percent.  
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Here we demonstrate pruning to maximize ESS 

for a model obtained CTA) to predict in-hospital 

mortality due to PCP during this time period.
1
  

Analysis was performed for 1,194 patients (72% 

of the total sample) with complete data for 

model attributes, who were discharged alive 

(N=1,054) or who died in-hospital (N=140).  

Derived manually using UniODA software, the 

CTA model involved four attributes: AaPo2, 

albumin, and wasting (rapid decline of 20% or 

more in overall body weight).  The non-pruned 

CTA model (Figure 4) yielded ESS=21.2, a rel-

atively weak effect. 

AaPo2

Albumin

Wasting

AaPo
2

3.7%

N = 589

23.3%

N = 60

49.1%

N = 57

8.5%

N = 189

16.1%

N = 299

YesNo

p<0.0001

p<0.0001

p<0.0001p<0.0001   <53.4

   mm Hg

>53.4

mm Hg

 <52.6

 mm Hg

>52.6

mm Hg

<2.55 g/dl >2.55 g/dl

 

Figure 4: Initial Non-Pruned CTA Model 

of In-Hospital Mortality from PCP 

Shown in Figure 5, the optimized model 

achieved 53.8% sensitivity (correct prediction of 

dead patients) and 84.3% specificity (correct 

prediction of live patients), and has much more 

robust endpoint denominators than did the origi-

nal model.  The moderate ESS=45.2 achieved 

by the optimized model represents a 36.6% 

improvement versus the ESS for the non-pruned 

model.  And, by averaging 22.6 ESS units-per-

attribute, the optimized model is 173% more 

efficient than the original model. 

Wasting

AaPo
2

22.9%

N = 306

3.7%

N = 589

16.1%

N = 299

p < 0.0001

p < 0.0001
YesNo

< 53.4 mm Hg > 53.4 mm Hg

 

Figure 5: Optimized CTA Model of 

In-Hospital Mortality from PCP 

Table 3 is used for assigning a severity-

of-illness score to patients based on the findings 

of the optimized CTA model: rows are model 

endpoints reorganized in increasing order of 

percent of class 1 (dead) membership.  Stage is 

an ordinal index of severity of illness, and pdeath 

a continuous index: increasing values on these 

indices indicate worsening disease. Compared to 

Stage 1, pdeath is 4.4-times as high in Stage 2, and 

6.2 times as high in Stage 3. 

        Table 3: Staging Table for Predicting 

           In-Hospital Mortality From PCP 
    ------------------------------------------------------- 

    Stage    Wasting   AaPo2     N      pdeath     Odds 

    ------------------------------------------------------- 

       1          No      <53.4    589   0.037   1:26 

       2          No      >53.4    185   0.161   1:5 

       3         Yes       ------    306   0.229   2:7 
    ------------------------------------------------------- 

To use the table to stage disease severity 

for a given patient, simply evaluate fit between 

patient data and each stage descriptor.  Begin at 
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Stage 1, and work sequentially through stages 

until identifying the descriptor which is true for 

the data of the patient undergoing staging.  For 

example, consider a hypothetical patient with no 

signs of wasting, and with AaPo2=55.7 mm Hg.  

Stage 1 does not fit because the patient’s AaPo2 

exceeds 53.4 mm Hg. However, because the 

patient does not show signs of wasting, and has 

AaPo2>53.4 mm Hg, Stage 2 fits the data of this 

hypothetical patient. 

Discussion 

 While there is no doubt that the method-

ology described here will always maximize the 

mean sensitivity, and therefore the ESS, of any 

classification model, it remains unknown with 

what relative frequency, and to what extent, 

optimal pruning will return a model which has 

different structure than the original non-pruned 

model.  Furthermore, the advantage of optimal 

pruning has only been demonstrated for models 

derived using CTA, and should be generalized 

to models developed by other nonlinear means. 
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Two-Group MultiODA: Mixed-Integer 

Linear Programming Solution with 

Bounded M 
 

Robert C. Soltysik, M.S., and Paul R. Yarnold, Ph.D. 
Optimal Data Analysis, LLC 

 

Prior mixed-integer linear programming procedures for obtaining 

two-group multivariable optimal discriminant analysis (Multi-

ODA) models require estimation of the value of a parameter, M.  A 

new formulation is presented which establishes a lower bound for 

M, which executes more quickly than prior formulations.  A suf-

ficient condition for the nonexistence of classification gaps and 

ambiguous solutions, optimal weighted classification, use of non-

linear terms, selecting an optimal subset of attributes, and aggre-

gation of duplicate observations are discussed.  When the design 

involves six or fewer binary attributes, MultiODA models may 

easily be obtained for massive samples. 

. 
 

Classification models derived via multivariable 

optimal discriminant analysis (MultiODA) are 

linear discriminant classifiers which explicitly 

maximize classification accuracy for a given 

sample.
1
  Mixed-integer linear programming 

formulations for two-group MultiODA models 

require estimation of the value of a parameter, 

M, commonly defined as “a prohibitively large 

number.”
2
 If the estimated value of M is too low 

then suboptimal solutions may occur, and exces-

sively large values of M will decrease computa-

tional efficiency and may introduce numerical 

(round-off) error.
3
  We present a goal program-

ming formulation which establishes a lower 

bound for M, and then we discuss a sufficient 

condition for the nonexistence of classification 

gaps and ambiguous solutions, weighted classi-

fication, the use of nonlinear terms, selection of 

optimal subsets of attributes, and aggregation of 

duplicate observations. 

MIP45 Methodology 

        In a two-group linear MultiODA problem 

with p attributes and m observations, a set of m 

row vectors ai is given, the components of 

which are p = n-1 observed values and a dummy 

value of unity.  Each observation i is a member 

of either class 0 or class 1.  A weight vector x is 

determined so that i is predicted to belong to 

class 0 when aix < 0, or to class 1 when aix > 0. 

Observation i is considered to be correctly 

classified if its predicted class membership is 

the same as its actual class membership, and 

misclassified otherwise.  Solutions of interest 

yield maximum classification accuracy, that is, 
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minimize the number of misclassified observa-

tions.  This is achieved by determining x* which 

satisfy the maximum number of inequalities in 

the system: 

     aix < 0  for observations in class 0,    

     aix > 0  for observations in class 1.            (1) 

This problem may be formulated as a 

mixed-integer linear programming model.  To 

accomplish this, the strict inequalities in (1) are 

replaced with aix < - or aix > , where  > 0.  

This is necessary due to the inability of simplex-

based algorithms for mixed-integer program-

ming to handle strict inequalities (mixed-integer 

techniques based upon interior-point algorithms
4
 

may not suffer this limitation). Letting  be 

strictly positive removes the ambiguity in the 

classification status of observations i for which 

aix = 0, but also introduces the possibility of a 

classification gap. It will be shown that there are 

conditions under which ambiguities can be re-

moved for  = 0.  Consider the following model: 

                                m 

     MIP45:  z = min  di                                  (2)                                                                                                                      

                               i=1 

subject to  

      n 

 aij (xj
+ - xj

-
) - Midi  -, i  I0                  (3)                                                                                             

     j=1 

      n 

 aij (xj
+ - xj

-
) + Midi  , i  I1                  (4)                                                                                            

     j=1 

      n 

 (xj
+ + xj

-
) = 1                                           (5)                                                                                                                 

     j=1 

     xj
+
 - gj  0, j=1,..., n                                    (6)                                                                                                           

     xj
-
 + gj  1, j=1,..., n                                    (7)                                                                                                       

     xj
+
, xj

-
  0, j=1,..., n                                     (8)                                                           

     gj  {0,1}, j=1,..., n                                    (9)                                                                                                                

     di  {0,1}, i=1,...,m                                  (10)                                                                                                    

where 

     aij is the jth component of observation ai 

     I0 is the set of observations belonging to 

     class 0 

     I1 is the set of observations belonging to  

     class 1 

     Mi = max aij +                                     (11)                                                                                                  

                 j 

     z is the number of misclassified observations. 

The weight vector x is obtained by 

     xj = xj
+
 - xj

-
, j=1,..., n.                                (12)                                                                                                          

Since constraints (6) and (7) ensure that not 

more than one of the xj
+
 and xj

-
 are positive for 

any j, we can think of these values as the "pos-

itive" and "negative" parts of xj, respectively.  

Note that gj = 1 when xj > 0 and gj = 0 when xj < 

0.  Also note that the gj, along with (6), (7), and 

(9), may be dropped when  > 0. 

        Constraint (5) normalizes x so that                    

      n 

 xj = 1 ;                                             (13)                                                                                                                       

     j=1  

that is, the sum of the absolute values of the 

discriminant weights is constrained to equal 

one.  This normalization prevents the trivial 

solution x = 0 (when  > 0), and allows us to 

establish a lower bound for the Mi. It is neces-

sary for the Mi to be large enough to force 

compliance of the constraints (3) and (4).  This 

is accomplished by (11).  To see this, consider 

constraint (4).  Since  xj = 1, it is clear that 

                                   j 
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     aix  - max aij                                       (14)                                                                                                     

                   j 

and 

     aix + max aij +   .                             (15)                                                                                                

                 j 

Therefore, when di = 1,  

     aix + Midi  .                                           (16)                                                                                                                  

Because the normalization (5) requires 

that all optimal weight vectors x* lie on a 45° 

properly rotated hypercube centered at the 

origin, this formulation is referred to as MIP45.  

It may be the case that more than one solution 

for d may be optimal for a problem.  This cor-

responds to the existence of multiple optimal 

dichotomies of predicted class membership.  It 

is also generally true that a solution space for x 

of positive volume exists for each dichotomy.  

The issue of selecting among optimal x* may be 

addressed by a number of methods, such as 

linear programming
5
 and a priori decision 

heuristics.
6
  

Resolving Classification Gaps 

and Ambiguities 

In the above formulation, at least n - 1 of 

the aix* are at zero when  = 0 is specified.  

From (1), it is seen that the criterion of strict 

separation of the classes should be met.  An 

optimal value z* > 0 in the solution of the 

following linear program guarantees that this 

separation is maintained. 

     LP:  max z = y 

subject to  

     n 

      aij (bj
+ - bj

-
) + y  0, i  I0 and aix*  0                                                                                  

    j=1 

                                                                       (17) 

 

     n 

      aij (bj
+ - bj

-
) - y  0, i  I1 and aix*  0                                                                                   

    j=1 

                                                                       (18) 

 

     n 

      (bj
+ - bj

-
) = 1                                         (19)                                                                                                                        

    j=1 

     bj
+
, bj

-
, y  0                                             (20)                                                                                                                    

     bj = bj
+
 + bj

-
 .                                            (21)                                                                                                                 

This LP may be executed for each optimal 

dichotomy.  If z* > 0 is obtained, b* is a new 

discriminant vector which optimizes criterion 

(1).  Otherwise, ambiguity remains in the class-

ification status of observations for which aib* = 

0: such observations should not be classified. 

        The advantage of establishing a lower 

bound for M is illustrated with an example in-

volving discriminating between excellent versus 

less than excellent medical residents using 

information obtained during their application for 

residency training.  Since rating applicants for 

residency training is a difficult, time-intensive 

decision-making task, a linear discriminant 

classifier that successfully predicts resident 

performance might be of great interest and 

utility to admissions committees. 

The sample was m = 49 residents 

enrolled in a three-year internal medicine 

residency program.
7
  The clinical performance 

(class) variable was based on the mean rating on 

an explicit 10-point scale made by residents' 

supervisors: a mean rating of nine or greater on 

this scale reflected “excellent” (or better) 

clinical performance (class = 1, m1 = 27), and a 

mean rating of less than nine reflected less than 

excellent clinical performance (class = 0; m0 = 

22).  The n - 1 = 3 application information 

variables (attributes) included medical board 

scores, faculty evaluations (a composite 

measure reflecting ratings of letters of recom-

mendation and medical school grading system), 
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and academic distinction (a composite measure 

reflecting honors attained in medical school and 

medical school status). 

        The computer resources required to solve 

this problem using MIP45 versus Stam and 

Joachimsthaler
8
 was compared (other prior for-

mulations were slower).  For MIP45,  was set 

at 0.  For Stam and Joachimsthaler, values of 1, 

10, 100, and 1000 were used for M, and a value 

of 1 for .9  All formulations were solved on an 

IBM 3090/300 computer running SAS/OR.
10

  

As seen in Table 1, except when M = 1, Stam 

and Joachimsthaler required more computa-

tional effort (CPU time, pivots, and integer 

branches) than did MIP45.  Using M = 1,  = 1 

in Stam and Joachimsthaler resulted in a useless 

solution, and using M = 10 or 100 resulted in 

suboptimal solutions of (3).  Since a decision-

maker using M = 10 or M = 100 would have no 

direct evidence that these solutions were sub-

optimal, it would also be unclear whether the 

solution attained by Stam and Joachimsthaler 

(or other unbounded formulations) using M = 

1000 was optimal.  In contrast, since the value 

of z* attained in LP was positive, a decision-

maker using MIP45 to solve this problem would 

be certain that the solution was unambiguously 

optimal: a clear advantage. 

 

TABLE 1 

Illustration of Computational Resources Needed by MIP45 Versus Stam and 

Joachimsthaler
8
 to Solve a Problem with 49 Observations and Three 

Attributes, Using SAS/OR run on an IBM 3090/300 Computer 

                                     Objective    CPU    Integer 

           Formulation     M          Value    Seconds  Branches  Pivots 
          -------------  ----  ----- ---------  -------  --------  ------  

             Stam           1    1       29        1.1         0       31 

             Stam          10    1       17      131.8     8,629   36,607 

             Stam         100    1       15      276.7    19,755   89,564 

             Stam        1000    1       14      268.4    14,549   57,351 

            MIP45          LB    0       14       48.0     2,896   15,333 

          --------------------------------------------------------------- 

                    Note: For MIP45 the Mi were set at their lower bounds (LB).  For solutions 

                              resulting in the optimal value of 14 misclassifications, model coefficients 

                              for board scores and faculty evaluation were positive, and the coefficient 

                              for academic distinction was negative. For MIP45, z* = .00439. 

 

Weighted Classification 

        Rather than weighting each observation 

equally, we consider weighting each case in (2) 

by a positive scalar ci.  This is significant for 

two reasons.  First, the ci may represent the cost 

of misclassifying observation i.  In this case an 

optimal solution would minimize the cost of 

misclassification (or, equivalently, maximize the 

return of correct classification) for the sample.  

Second, the ci may represent factors which 

balance the number of class 0 and class 1 obser-

vations when these are not equal.  In this case an 

optimal solution would maximize the number of 
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correct classifications weighted by population 

membership in each class.  An example would 

be ci = 1/m0 for observations in class 0, and ci = 

1/m1 for observations in class 1, where m0 and 

m1 are the number of observations in categories 

0 and 1, respectively.  This latter weighting 

scheme is particularly useful in badly 

imbalanced applications for which m0 >> m1, or 

visa versa: use of such “priors weights” forces 

the model to classify observations from both 

classes accurately, and inhibits the identification 

of degenerate models which classify all 

observations into a single class category.  

Adding Nonlinear Terms as Attributes 

        Here we generalize the notion of maximum 

pattern classification accuracy achieved by 

separating hyperplanes to sets of nonlinear 

separating surfaces.  For example, consider 

quadratic surfaces in p-measurement space of 

the form:  

 aij xj +         aikailxkl + ainxn            (22)                                                                                        

      j           k p  l < k 

for all i.  The MultiODA solution can be attain-

ed by augmenting the aj and x in the MIP45 

model by the interaction terms in (22).  This 

solution produces a weight vector x which 

yields the minimum number of misclassifica-

tions achievable by a quadratic separating 

surface.  This process may be applied to any 

nonlinear discriminant function which is linear 

in the parameters of the measurement space.  

Optimal Attribute Subset Selection 

        In the foregoing we have assumed that all p 

attributes are included in the MultiODA model.  

However, we may wish to select a subset of k < 

p attributes for the application of the model.  For 

example, imagine an application involving 50 

observations and ten attributes.  In order to 

identify a model that may generalize if used to 

classify independent random samples, we may 

wish to maintain a minimum observation-to-

attribute ratio of 10-to-1, so a maximum of five 

of the ten potential attributes may be used.  Of 

all possible 5-attribute models, which yields 

maximum accuracy?  Optimal attribute subset 

selection methodology can be incorporated in 

the MIP45 model by defining n zero-one var-

iables qj and including the following constraints: 

     xj
-
 - qj < 0, j=1,..., n,                                  (23)                                                                                                          

     gj + qj < 1, j=1,..., n,                                 (24) 

and                                                                                                                 

      n          n 

 gj +   qj = k.                                       (25)                                                                                                          

    j = 1      j = 1 

In an optimal solution to such a MultiODA 

model, measurement j is selected for inclusion 

only if gj + qj = 1.  The number of misclassifica-

tions obtained is the fewest achievable in any k-

dimensional subspace of the original p-dimen-

sional measurement space.                        

Aggregation of Duplicate Observations 

        If duplicate observations occur in the data 

set (i.e., two or more observations have the 

same value for every attribute measurement), 

the following procedure may be used to 

aggregate the duplicate observations into a 

single observation, reducing the size of the 

overall problem. The resulting problem is 

equivalent to the original one, with m’ observa-

tions, and objective value z + v.  

1. m’ := m : s0 = 0: s1 = 0: v := 0 

2. for each i = 1, …, m’ 

3.   for each j < i 

4.     if ai = aj then 

5.       if i  I0 then s0 := s0 + ci else s1 := s1 + ci  

6.       remove observation i from list : m’ := m’ - 1 

7.     end if 
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8. next j, i 

9. for each i = 1, …, m’ 

10.   if s0 > s1 then 

11.     wj := s0 - s1 : v := v + s1 

12.   else if s1 > s0 then 

13.     wj := s1 - s0 : v:= v + s0 

14.   else 

15.     v := v + s0 : remove observation i from list :   

                                                    m’ := m’ -1 

16.   end if 

17. next i 

        This procedure is particularly useful when 

aj is a zero-one vector (all attributes are binary).  

Here all the patterns lie on the vertices of the p-

dimensional unit hypercube.  If more than one 

pattern lies on some vertex, then by using the 

above procedure we may obtain a weighted 

MIP45 model equivalent to the original model, 

but with fewer constraints.  If the number of 

original patterns m is large relative to the 

number of attributes p, a significant reduction in 

the size of the model may be obtained.  For 

instance, regardless of the value of m, if p=8 

then we end up with no more than 2
8
 = 256 

constraints of type (6) in the model.  Since the 

number of constraints is independent of m, 

extremely large problems may be solved with 

this procedure, provided p is moderately small. 

        In order to illustrate the potential solution 

efficiency gained by using this special purpose 

algorithm for problems involving entirely binary 

data, we ran 30 Monte Carlo experiments.  In 

each experiment there were five binary 

attributes, such that the total possible number of 

different profiles was 2
5
 = 32.  Values on each 

attribute were determined separately for each 

observation on the basis of a random uniform 

number between 0 and 1: numbers < 0.5 were 

assigned the value of 0, and numbers > 0.5 were 

assigned the value of 1.  We ran five balanced 

(m0 = m1) experiments for each total sample size 

of 50, 100, 1000, 10
4
, 10

5
, and 10

6
 total observa-

tions.  All formulations were solved on an IBM 

3090/300 computer running SAS/OR.  As seen 

in Table 2, as the number of observations 

increased: (a) the number of distinct profiles 

increased toward its theoretical upper bound 

(the theoretical upper bound was achieved in all 

of the problems involving 10
6
 observations, and 

in four of the five problems involving 10
5
 

observations); (b) the misclassification rate 

increased towards its theoretical upper bound 

(i.e., for a balanced design with an even number 

of observations, the theoretical upper bound for 

the number of misclassifications is one less than 

one-half of the total number of observations); 

and (c) the mean number of CPU seconds 

required to solve the problem was approx-

imately twenty seconds for problems with 1000 

or more total observations. 

 

TABLE 2 

Results of Monte Carlo Experiments for Binary Data: Five Random Attributes 

                                       Number of       Number of       Number (%) of         CPU 

                                      Observations       Profiles       Misclassifications     Seconds 

                                              50                    19                    14 (28%)               4.5 

                                              50                    23                    13 (26%)               5.5 

                                              50                    20                    16 (32%)               8.4 
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                                              50                    23                    14 (28%)             12.5 

                                              50                    21                    12 (24%)               1.7 

 

                                             100                   30                    27 (27%)             14.2 

                                             100                   26                    34 (34%)               9.0 

                                             100                   25                    43 (43%)             10.5 

                                             100                   24                    37 (37%)               7.5 

                                             100                   20                    33 (33%)               3.0 

                                            1000                  32                   432 (43%)            17.8 

                                            1000                  30                   445 (44%)            25.1 

                                            1000                  31                   449 (45%)            16.4 

                                            1000                  31                   460 (46%)            24.3 

                                            1000                  31                   454 (45%)            19.2 

                                           10000                 29                 4870 (49%)            12.3 

                                           10000                 31                 4838 (48%)            23.8 

                                           10000                 31                 4842 (48%)            24.9 

                                           10000                 29                 4828 (48%)            11.9 

                                           10000                 31                 4839 (48%)              9.2 

                                          100000                32               49545 (50%)            14.5 

                                          100000                32               49532 (50%)            21.6 

                                          100000                31               49526 (50%)              6.3 

                                          100000                32               49475 (49%)            25.2 

                                          100000                32               49376 (49%)            16.8 

                                         1000000               32             498331 (50%)            24.3 

                                         1000000               32             498759 (50%)            17.2 

                                         1000000               32             498450 (50%)            32.5 

                                         1000000               32             497861 (50%)              4.5 

                                         1000000               32             498837 (50%)            16.8 

                                      ------------------------------------------------------------------------ 

Discussion 

MIP45 solves two problems common to 

prior goal programming formulations of two-

group MultiODA: M is automatically set at its 

lower bound, and it is possible to determine 

whether classification gaps or ambiguities exist.  

Collateral benefits of MIP45 include its greater 

computational efficiency and solution speed 

relative to prior formulations, particularly for 

applications involving binary attributes. 

This study contrasted the computational 

characteristics of the MIP45 formulation of the 

MultiODA problem to the formulation of 

Joachimsthaler and Stam (see Table 1).  Other 

mixed-integer programming formulations have 

appeared more recently.  Rubin developed a 

decomposition technique to solve the Multi-

ODA problem.
11

  Silva and Stam developed a 

partitioning method for MultiODA which was 

reported to compare favorably with MIP45.
12

  

Pfetsch developed a technique to optimize 
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irreducible inconsistent subsystems (IIS) of 

linear inequalities in order to determine a maxi-

mum feasible subsystem of these inequalities.
13

  

Finally, Bremner and Chen developed a MIP 

formulation for the halfspace depth problem 

which uses IIS cuts in a branch-and-cut algor-

ithm.
14

  We eagerly anticipate computational 

comparisons between these formulations. 
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Unconstrained Covariates  

in CTA 
 

Paul R. Yarnold, Ph.D. and Robert C. Soltysik, M.S. 
Optimal Data Analysis, LLC 

 

In traditional statistical covariate analysis it is common practice to 

force entry of the covariate into the model first, to eliminate the 

effect of the covariate (i.e., “equate the groups”) on the dependent 

measure. In contrast, in CTA the covariate is treated as an ordinary 

attribute which must compete with other eligible attributes for 

selection into the model based on operator-specified options.  This 

paper illustrates optimal covariate analysis using an application 

involving predicting patient in-hospital mortality via CTA. 

 

A study of 1,641 patients hospitalized 

for Pneumocystis cariini pneumonia (PCP) used 

logistic regression analysis to model in-hospital 

mortality: after forcing a measure of severity-of-

illness into the model first, PCP prophylaxis was 

the only attribute significantly associated with 

lower hospital survival.
1
  During development 

of an enumerated model involving only these 

two attributes, a non-pruned
2
 CTA model was 

identified which is analogous to the logistic reg-

ression analysis, in that both models initially 

adjusted for severity of illness.  CTA analyses 

were performed using automated software with 

a minimum endpoint denominator of N=25 to 

ensure sufficient statistical power.
3
  The optimal 

solution involved one parse of the root attribute 

(i.e., the first and second attributes entering the 

CTA model were both PCP severity-of-illness), 

so the model has three emanating branches (see 

Figure 1). 

Consistent with findings using logistic 

regression, this CTA model returned weak gain 

versus chance in predicting mortality:  97.9%  of 
 

PCP Severity

Score

PCP

Prophylaxis

50.8%

N = 61

20.8%

N = 72

5.9%

N = 892

13.8%

N = 616

p
1
 < 0.0001

p < 0.001

> 3

No Yes

2

1

p
2
 < 0.0001

 

Figure 1: Algorithmic CTA Model Predicting 

In-Hospital Mortality, Covariate Entered First 
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1,457 living and 16.8% of 184 deceased patients 

were correctly classified: ESS=14.8, efficiency= 

14.8/2 or 7.4 ESS units-per-attribute.  Though 

the CTA model is weak, the right-most endpoint 

indicates that the combination of a PCP severity 

score of three or greater, and PCP prophylaxis, 

predicted nearly 51% mortality for 61 patients.  

Thus, for applications in which it is important to 

identify particularly vulnerable strata, a variety 

of different CTA models should be examined in 

hopes of discovering one or more of such fruit-

ful branches (i.e., combinations). 

 In contrast, as illustrated in Figure 2, the 

enumerated CTA model obtained using the 

same two attributes has robust endpoint denom-

inators; correctly classified 67.9% of the 1,457 

living and 61.4% of the 184 dead patients; and 

obtained moderate strength (ESS=29.4) and eff-

iciency (9.8 ESS units-per-attribute).   

 

PCP

Prophylaxis

PCP

Severity

Score

PCP

Severity

Score

4.7%

N = 428

14.9%

N = 403

8.1%

N = 633

29.9%

N = 177

p < 0.04

p < 0.001 p < 0.001

No Yes

1 > 2 < 2 > 3

 

Figure 2: Enumerated CTA Model Predicting 

In-Hospital Mortality: Covariate Unconstrained 

 

Table 1 gives the staging table for the 

enumerated CTA model, used for predicting in-

hospital mortality from PCP.  Table rows are 

model endpoints reorganized in increasing order 

of percent of class 1 (“dead”) membership.  

Stage is an ordinal index indicating increasing 

severity of illness, and pdeath is a continuous 

index of disease severity.  The 1
st
 and 4

th
 strata 

reflect a 6.4-fold difference in likelihood of 

dying in-hospital: compared to Stage 1, pdeath is 

approximately two times higher in Stage 2, three 

times higher in Stage 3, and six times higher in 

Stage 4. 

 

        Table 1: Staging Table for Predicting 

           In-Hospital Mortality From PCP 
-------------------------------------------------------------- 

                  PCP         Severity 

Stage   Prophylaxis      Score      N       pdeath     Odds 

-------------------------------------------------------------- 

   1            No                    1       428     0.047     1:20 

   2           Yes               < 2       633      0.081      1:11 

   3           No                > 2       403      0.149      1:6 

   4           Yes                 > 3      177      0.299      3:7 

-------------------------------------------------------------- 

Although identical attributes were used 

by the two CTA models and the original linear 

logistic regression analysis, the attributes were 

arranged in different geometries in the different 

models.  Of course, an analyst’s imposition of 

attribute entry or sequence order in CTA, or any 

chained optimal analysis, should be performed 

on the basis of theory, that is, to directly address 

a priori hypotheses.
4
  However, the present case 

clearly indicates the need for caution regarding 

unchecked rigid adherence to methodological 

traditions which may actually impede progress 

achieved using emerging and new technologies.  

Automated CTA software makes the compara-

tive analysis of multiple theoretical perspectives 

feasible for most applications: challenging and 

defeating unfruitful traditions ought to make for 

interesting, if not exciting research. 
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Maximizing the Accuracy of Probit 

Models via UniODA 
 

Barbara M. Yarnold, J.D., Ph.D. and Paul R. Yarnold, Ph.D. 
Optimal Data Analysis, LLC 

 

Paralleling the procedure used to maximize ESS of linear models 

derived using logistic regression analysis or Fisher’s discriminant 

analysis, univariate optimal discriminant analysis (UniODA) is 

applied to the predicted response function values provided by a 

model derived by probit analysis (PA), and returns an adjusted 

decision criterion for making classification decisions.  ESS obtains 

its theoretical maximum value with this adjusted decision criterion, 

and the ability of the PA model to return accurate classifications is 

optimized.  UniODA-refinement of a PA model is illustrated using 

an example involving political science analysis of federal courts. 

 

Probit analysis (PA) has gained in popularity as 

research in political science seeks increasingly 

accurate models of court decision-making.
1-8

  

For applications having a binary class variable 

and at two or more attributes, PA allows assess-

ment of the independent relationship between 

class variable and attribute.  Parameter estimates 

are obtained by maximum-likelihood, and indi-

cate the amount of change in the cumulative 

normal probability function that is associated 

with a one-unit change in the attribute value.  

Goodness-of-fit of PA models was traditionally 

assessed using R
2
 and chi-square, but this was 

criticized.
9
  The supreme criterion for all class-

ification models is their ability to make accurate 

predictions.  PA does not explicitly maximize 

classification accuracy, but effect strength for 

sensitivity (ESS) yielded by PA models may be 

maximized by optimizing the models decision-

making criterion.
10,11

  This note illustrates the 

use of UniODA-refinement to optimize a model 

derived using PA. 

Federal Court Decisions 

in Asylum-Related Appeals 

 To illustrate this method we consider the 

asylum-related appeals to the federal courts 

covering the period of 1980-1987, constituting 

137 cases having complete data.  The class 

variable indicated whether aliens won (N=59) or 

lost (N=78) their appeal.  Six binary attributes 

used in PA included whether any organizations 

were involved in the appeal; the alien was from 

a country hostile to the USA; the alien was from 

Europe; the court was located in the Western 

USA; a high percentage of the judges involved 

in the appeal were appointed by a Democratic 

President; and whether there was a high level of 

immigrant-flow into the circuit. The resulting 

PA model correctly predicted 71.2% of the wins 

and 55.1% of losses, resulting in ESS=26.4. 
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 UniODA was then used to optimize the 

model: the PA model was first used to obtain Y* 

for every observation, and then UniODA was 

conducted on those Y* using the original class 

variable coding.
14

  The adjusted decision criter-

ion for the PA model was: if Y*>0.025 predict 

class=1 (win); otherwise predict class=0 (loss). 

The optimized PA model correctly predicted 

64.4% of the wins and 71.8% of losses, yielding 

ESS=36.2, representing a 37% improvement in 

this index relative to the non-refined model. 

Discussion 

       The objective of this note was to illustrate 

how UniODA-refinement can improve classifi-

cation performance obtained by a model derived 

by PA.  The example demonstrated a substantial 

increase in the level of training accuracy (ESS) 

achieved by the model, a finding which is com-

mon when the decision criteria of suboptimal 

models are optimized via UniODA-refinement. 

  

References 

1
Aldrich J, Cnudde, C.  Probing the bounds of 

conventional wisdom: comparison of regression, 

probit, and discriminant analysis.  American 

Journal of Political Science 1975, 19:571-608. 

2
Yarnold BM.  Federal court outcomes in asy-

lum-related appeals 1980-1987: a highly politi-

cized process.  Policy Sciences 1990, 23:291-

306. 

3
Yarnold BM.  Refugees without refuge: for-

mation and failed implementation of U.S. politi-

cal asylum policy in the 1980s.  University Press 

of America, Lanham, MD, 1990. 

4
Yarnold BM.  The Refugee Act of 1980 and 

de-politicization of refugee/asylum admissions: 

failed policy implementation.  American Politics 

Quarterly 1990, 18:527-536. 

5
Yarnold BM.  International fugitives: a new 

role for the International Court of Justice. 

Praeger, New York, NY, 1991. 

6
Yarnold BM.  The role of religious organiza-

tions in the sanctuary movement.  In: The role of 

religious organizations in social movements 

(BM Yarnold, Ed.), Praeger, New York, NY, 

1991. 

7
Yarnold BM.  Politics and the courts: toward a 

general theory of public law.  Praeger, New 

York, NY, 1992. 

8
Yarnold BM.  Abortion politics in the federal 

courts: right versus right.  Paragon, New York, 

NY, 1993. 

9
Hagle T, Mitchell G.  Goodness-of-fit measures 

for probit and logit.  American Journal of Politi-

cal Science 1992, 36:762-784. 

10
Yarnold PR, Soltysik RC.  Refining two-group 

multivariable models using Univariate optimal 

discriminant analysis.  Decision Sciences 1991, 

22:1158-1164. 

11
Yarnold PR, Hart LA, Soltysik RC. Optimi-

zing the classification performance of logistic 

regression and Fisher’s discriminant analyses.  

Educational and Psychological Measurement, 

1994, 54:73-85. 

12
Yarnold PR, Soltysik RC. Optimal data analy-

sis: a guidebook with software for Windows.  

APA Books, Washington, DC, 2005. 

Author Notes 

Mail correspondence to the authors at: 

Optimal Data Analysis, 1220 Rosecrans St., 

Suite 330, San Diego, CA 92106.  Send E-mail 

to: Journal@OptimalDataAnalysis.com. 

  

mailto:Journal@OptimalDataAnalysis.com


Optimal Data Analysis     Copyright 2010 by Optimal Data Analysis, LLC 

2010, Vol. 1, Release 1 (September 17, 2010)  2155-0182/10/$3.00 

 

 

 

43 
 

Precision and Convergence of Monte 

Carlo Estimation of Two-Category  

UniODA Two-Tailed p  
 

Paul R. Yarnold, Ph.D. and Robert C. Soltysik, M.S. 
Optimal Data Analysis, LLC 

 

Monte Carlo (MC) research was used to study precision and convergence 

properties of MC methodology used to assess Type I error in exploratory 

(post hoc, or two-tailed) UniODA involving two balanced (equal N) 

classes. Study 1 ran 10
6
 experiments for each N, and estimated cumula-

tive p’s were compared with corresponding exact p for all known             

p values. Study 2 ran 10
5
 experiments for each N, and observed the 

convergence of the estimated p’s.  UniODA cumulative probabilities 

estimated using 10
5
 experiments are only modestly less accurate than 

probabilities estimated using 10
6
 experiments, and the maximum ob-

served error (+0.002) is small.  Study 3 ran 10
5
 experiments for Ns 

ranging as high as 8,000 observations in order to examine asymptotic 

properties of optimal values for balanced designs. 
 

A recursive, closed-form solution for the theor-

etical distribution of optimal values for one-

tailed “confirmatory” UniODA of random data 

is discovered, and associated computation time 

is linear in N.
1
  In applications where an a priori 

alternative hypothesis has been specified, Type I 

error rate or alpha (p) can be computed for any 

combination of optimal value and N.  For two-

tailed “exploratory” applications, a closed-form 

solution for the distribution of optimal values 

has not yet been discovered.  For post hoc 

UniODA the enumerable open-form solution for 

the theoretical distribution of optimal values is 

computationally intractable for N>30, but the 

one-tailed solution can be used to determine the 

two-tailed distribution if overall classification 

accuracy is at least 75%.
1
 Other means are 

needed to estimate the two-tailed distribution if 

overall classification is less than 75%.  This 

study uses Monte Carlo (MC) research to assess 

precision and convergence properties of MC 

methods used to estimate p for UniODA. 

Precision 

      One million MC experiments were run for 

each balanced design of N<30.  A design is 

balanced if the number of class 1 and 0 obser-

vations is identical for even N, or differs by one 

for odd N.  In every experiment, the attribute 

was a uniform random number between zero 

and one.
2
  For even N experiments the first N/2 

observations were assigned to class 1, and  the 

rest to class 0.  For odd N experiments the first 

(N-1)/2 observations were assigned to class 1, 

and the rest to class 0.  For each experiment the 

optimal value was determined and stored. For 

each N the estimated UniODA distribution was 



Optimal Data Analysis     Copyright 2010 by Optimal Data Analysis, LLC 

2010, Vol. 1, Release 1 (September 17, 2010)  2155-0182/10/$3.00 

 

 

 

44 
 

cumulated after 10
6
 experiments were run. To 

compare estimated and known distributions, 

cumulative p>0.001 were rounded up to the 

nearest thousandth, and cumulative p<0.001 

were rounded up on the second significant digit. 

 The results suggest that MC experiments 

accurately estimated known post hoc UniODA 

distributions. Over all N and possible optimal 

values, 170 of 238 (71.4%) estimated cumula-

tive probabilities were identical to the exact 

value; 237 of 238 (99.6%) of the estimates were 

+0.001 of the exact value; and all estimates 

were +0.002 of the exact probability. 

 Estimated cumulative probabilities were 

most accurate when the exact probability was 

small.  For example, for optimal values with 

associated exact cumulative probabilities of 

0.05<p<0.001, 45 of 50 (90%) of the estimated 

probabilities were identical to the corresponding 

exact probability; 49 of 50 (98%) of estimated 

probabilities were +0.001 of exact probability; 

and all estimated probabilities were +0.002 of 

the exact probability. 

 MC experiments also provided accurate 

estimates of exact cumulative probabilities for 

statistically marginal (0.05<p<0.10) effects: 13 

of 15 (86.7%) of the estimated cumulative prob-

abilities were identical to their corresponding 

exact values, and all estimated probabilities 

were +0.001 of the exact probability. 

 Cumulating 10
6
 MC experiments for a 

given N provides an accurate approximation of 

the UniODA distribution, but the computational 

cost is high.  Accordingly, Study 2 investigated 

convergence properties of MC methodology and 

was designed to determine the number of MC 

experiments that is sufficient to achieve stable, 

accurate estimates of UniODA distributions. 

Convergence 

 MC experiments were designed and data 

generated as in Study 1.  For each N between 3 

and 30 inclusive, 10
5
 experiments were run in 

successive blocks of 1,000 experiments, and the 

UniODA distribution was cumulated at each 

block.  Thus, 100 UniODA distributions were 

estimated for each N: the first based on 1,000 

experiments, the second based on 2,000 experi-

ments, and the 100
th

 based on 10
5
 experiments. 

Many (56.9 percent) of the estimated p's 

converged to their final value (i.e., their value at 

the end of the study) within 20,000 experiments, 

and most (86.3 percent) of the estimated p's 

converged to their final value within 70,000 

experiments. 

After 10
5
 experiments were completed, 

every estimated p in the range 0.001<p<0.10 

was identical to the corresponding estimated p 

based on 10
6
 experiments (precision study). 

Consistent with the first study, known 

UniODA distributions were accurately modeled. 

For probabilities in the range 0.001<p<0.05: 35 

of 50 (70%) estimated cumulative probabilities 

were identical to corresponding exact values; 49 

of 50 (98%) estimated probabilities were +0.001 

of exact; and all estimated probabilities were 

+0.002 of the exact value. 

Thus, UniODA cumulative probabilities 

estimated using 100,000 MC experiments are 

only modestly less accurate than probabilities 

estimated using one million experiments, and 

the maximum observed error (+0.002) is small. 

Asymptotic Convergence 

 A final study investigated convergence 

properties of interesting levels of classification 

performance for balanced two-category post hoc 

UniODA.  MC experiments were designed and 

data generated as in Study 1.  For all N between 

1,000 and 8,000 inclusive, in steps of 1,000, a 

total of 10
5
 MC experiments were run. Results 

of the simulation are presented in Table 1. 

Tabled for the indicated value of p and N 

are the optimal value and the corresponding per-

centage accuracy in classification or PAC (top 

and bottom row, respectively).  The optimal 

value is the maximum number of misclassifica-

tions possible to still achieve the p value.  For 

example, for N=1,000 observations and p<0.001 

a maximum of 438 misclassifications can be 
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made, corresponding to 562 correct classifica-

tions, and thus to PAC=(562/1,000)x100%, or 

56.2% (see Table 1).   

 Table 1: Maximum Optimal Value for 2-Tail 

         p in Balanced 2-Category UniODA 

---------------------------------------------------------- 

                                    Two-Tail p<     

    N           0.001         0.01         0.05         0.10 

---------------------------------------------------------- 

1,000          438           448          457          461 

                  56.2          55.2         54.3         53.9 

2,000          912           927          939          945 

                  54.4          53.6         53.1         52.8 

3,000        1393         1411        1425        1433 

                  53.6          53.0         52.5         52.2 

4,000        1876         1896        1913        1922 

                  53.1          52.6         52.2         52.0 

5,000        2361         2384        2403        2413 

                  52.8          52.3         51.9         51.7 

6,000        2849         2874        2894        2905 

                  52.5          52.1         51.8         51.6 

7,000        3336         3364        3386        3397 

                  52.3          51.9         51.6         51.5 

8,000        3825         3853        3878        3890 

                  52.2          51.8         51.5         51.4 

---------------------------------------------------------- 

For p<0.05 a maximum of 457 misclas-

sifications are possible, corresponding to PAC= 

(543/1,000)x100%, or 53.9%.  For N=5,000 and 

p<0.01, a maximum of 2,384 misclassifications 

are possible, corresponding to PAC=[(5,000-

2,384)/5,000]x100%, or 52.3%. 

In balanced designs involving as few as 

1,000 observations, a UniODA model perform-

ing only a modicum better than an unbiased flip-

ped coin (i.e., obtaining at least 55.2% “heads”) 

yields classification accuracy which is sufficient 

to achieve p<0.001.  Therefore, as N increases 

in magnitude the significance of p as an index of 

performance rapidly diminishes to trivial levels. 
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Aggregated vs. Referenced Categorical 

Attributes in UniODA and CTA 
 

Paul R. Yarnold, Ph.D. and Robert C. Soltysik, M.S. 
Optimal Data Analysis, LLC 

 

Multivariable linear methods such as logistic regression analysis,                       

discriminant analysis, or multiple regression analysis, for example,                                         

directly incorporate binary categorical attributes into their solution.                                           

However, for categorical attributes having more than two levels, 

each level must first be individually dummy-coded, then one level 

must be selected for use as a reference category and omitted from 

analysis. Selection of one or another level as the reference category 

can mask effects which otherwise would have materialized, if a 

different level had been chosen. Neither UniODA nor CTA require 

reference categories in analysis using multicategorical attributes. 

 

Using a categorical attribute with three or more 

levels in a linear multivariable analysis requires 

separately dummy-coding each level, selecting 

one level as a reference category, and omitting it 

from analysis.
1
  For example, imagine that a 

study assessed three ethnic categories: Navajo, 

Sumatran, and Inuit.  Preparing this attribute for 

linear analysis first requires creating three new 

binary attributes: [a] Navajo (1) vs. others (0); 

[b] Sumatran (1) vs. others (0); and [c] Inuit (1) 

vs. others (0).  Only two of the dummy-variables 

can be used as attributes in analysis, and one’s 

choice can mask an effect depending on which 

class is selected as reference category.  As an 

increasing number of polychotomous attributes 

are used, the associated design matrix becomes 

massive rapidly, increasing the likelihood of 

sparse or empty cells, imbalanced marginal dis-

tributions and nonnormality, toxic properties for 

linear methods.  In addition to possibly masking 

effects, inducing numerical instability, under-

mining assumptions underlying the validity of p, 

and contributing to overdetermined models, the 

use of reference categories is also antithetical to 

the axiom of parsimony.  Finally, in computer-

intensive methods such as CTA, a larger number 

of attributes increases both memory and time 

resources needed to obtain an optimal solution. 

 In contrast, UniODA
2
 and CTA

3
 use 

aggregated multicategory attributes.  Using the 

current example one “ethnicity” attribute having 

three levels (rather than three ethnicity attributes 

each having two levels) requires coding: Navajo 

(1), Sumatran (2), or Inuit (3). 

This paper illustrates some advantages 

of using aggregated attributes in both bivariate 

(UniODA) and multivariable (CTA) analyses, 

using an application involving predicting use of 

mechanical ventilation for hospitalized patients 

with Pneumocystis cariini pneumonia (PCP).
4
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UniODA 

The analysis selected for exposition con-

trasts intubation rate for a total sample of 1,211 

patients hospitalized for PCP in Chicago, Los 

Angeles, Miami, New York, and Seattle.  The 

first analysis used the aggregated attribute, arbi-

trarily using dummy-codes of 1-5 for cities, res-

pectively.  The resulting UniODA model was: if 

city=Los Angeles or Chicago then predict a 

higher ventilation rate; otherwise predict a lower 

ventilation rate.  This model correctly classified 

54.9% of 1,418 non-ventilated, and 61.9% of 

147 ventilated patients, yielding a relatively 

weak ESS=16.8 (p<0.0006), which was stable in 

jackknife validity analysis. 

Using the aggregated city attribute and 

therefore one test of a statistical hypothesis, 

UniODA determined three cities have a lower 

ventilation rate than two other cities, and even 

though the effect is statistically significant and 

likely to cross-generalize for an independent 

random sample, the effect is weak, reflecting 

only 16.8% of the gain in accuracy theoretically 

possible to achieve beyond chance. 

UniODA was next used to assess the 

ability of all five binary city attributes to predict 

ventilation: the test for Los Angeles (p<0.0006) 

alone achieved the criterion
2
 for statistical signi-

ficance with a weak effect of ESS=12.6.  This 

result indicates that Los Angeles had a higher 

ventilation rate than the other four cities.  Five 

tests of statistical hypotheses were conducted in 

reaching this conclusion, and must be accounted 

for in assessing the statistical significance of all 

hypothesis tests conducted within the study. 

CTA 

In the original research from which the 

example was drawn, ventilation was modeled by 

logistic regression analysis.
4
  Predictive factors 

which emerged included a PCP severity score 

developed previously via CTA
6
, location (Los 

Angeles), ethnicity (African-American), and a 

cytological confirmation of PCP diagnosis.  For 

clarity in exposition, the same attributes selected 

by logistic regression were modeled presently. 

Algorithmic CTA
3
 was run via ODA automated 

CTA software, using a minimum endpoint 

denominator of N=25 to ensure adequate statis-

tical power.
7
   

The first analysis used aggregated race 

and city attributes.  The “aggregated attributes” 

model selected three attributes, and correctly 

classified 66.4% of intubated and 68.1% of non-

intubated patients, yielding a moderate effect: 

ESS=34.5 (Figure 1). 

 
 

Figure 1: CTA Intubation Model using 

Aggregated Race and City Attributes 

The second analysis used individually 

dummy-coded race and city attributes, although 

unlike linear models which require omission of 

a reference attribute from analysis, with CTA all 

of the binary attributes compete for admission to 

the model.  The “separately coded attributes” 
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18.6%

N = 431

4.3%

N = 631

6.2%

N = 389

16.8%

N = 125

 > 3< 2

Los Angeles,

  Chicago

1 2

p < 0.0001

p < 0.02

p < 0.0001

New  York,

Seattle,

Miami



Optimal Data Analysis     Copyright 2010 by Optimal Data Analysis, LLC 

2010, Vol. 1, Release 1 (September 17, 2010)  2155-0182/10/$3.00 

 

 

 

48 
 

model selected five attributes and correctly 

classified 78.0% of intubated and 57.0% of non-

intubated patients, yielding a moderate effect: 

ESS=35.0 (Figure 2). 
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p < 0.003

p < 0.02

> 3< 2

YesNo

2    1

YesNo

No Yes

 
 

Figure 2: CTA Intubation Model using 

Separately Coded Race and City Attributes 

  

The models selected the same attributes 

except for one separately-coded race attribute. 

The aggregated attributes model employed one 

attribute to model city, and achieved an overall 

model efficiency=34.5/3 or 11.5 ESS units-per-

attribute.  In contrast, the separately-coded attri-

butes model used two attributes to model city, 

and achieved an overall model efficiency= 

35.5/5 or 7.1 ESS units-per-attribute).  Thus, the 

aggregated attributes model is 62% more effic-

ient than the separately-coded attributes model.  

Note that the final “Chicago” attribute in 

the separately-coded attributes CTA model was 

retained on the basis of model-wise Bonferroni 

criterion.
2
  However, had one additional test of a 

statistical hypothesis been conducted (e.g., as in 

any random typical published study), then the 

Chicago attribute would have been pruned from 

the model. 

Yet another advantage of parsimonious 

CTA models is that by having fewer endpoints 

into which observations are partitioned, the 

minimum endpoint denominators may be larger.  

Presently, the minimum endpoint denominator 

for the aggregated attributes model (N=125) is 

nearly three times larger than for the separately-

coded attributes model (N=42).  Estimates for 

the aggregated attributes model are thus more 

robust over sampling anomalies and likely to 

cross-generalize, especially for smaller samples. 

Using a 3 GHz Intel Pentium D micro-

computer, the separately-coded attributes model 

required 78 CPU seconds to solve, 34.5% more 

than the 58 CPU seconds required to solve the 

aggregated attributes model.  These problems 

were relatively simple for automated CTA soft-

ware to solve, so computing efficiency gained 

by using aggregated categorical attributes was 

relatively modest compared to gains obtained in 

complex analyses.  Presently, for example, enu-

merated CTA models (not shown) involving 

aggregated (1,394 CPU seconds) or separately-

coded (4,054 CPU seconds) attributes revealed a 

190.8% gain in computing efficiency. 
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Manual vs. Automated CTA: Optimal 

Preadmission Staging for Inpatient 

Mortality from Pneumocystis 

cariini Pneumonia 
 

Paul R. Yarnold, Ph.D. and Robert C. Soltysik, M.S. 
Optimal Data Analysis, LLC 

 

Two severity-of-illness models used for staging risk of in-hospital 

mortality from AIDS-related Pneumocystis cariini pneumonia 

(PCP) were developed using hierarchically optimal classification 

tree analysis (CTA), with models derived manually via UniODA 

software.  The first of the “Manual vs. Automated CTA” series, this 

study contrasts classification results between original models and 

corresponding new models derived using automated analysis.  

Findings provide superior staging systems which may be employed 

to improve results of applied research in this area. 

 

Software designed to conduct automated CTA 

became commercially available in the summer 

of 2010.
1
  Research conducted before this time 

obtained CTA models by a laborious manual 

process involving UniODA software.
2,3

  Beyond 

obvious savings in time and labor, two primary 

advantages of automated CTA involve pruning.   

First, Type I error for the CTA model is 

ensured at an investigator-specified level via a 

sequential Bonferroni procedure.
3
 When the 

CTA model is derived manually, the Bonferroni 

procedure is conducted as best as possible as the 

model is grown (this becomes increasingly diffi-

cult as the model gains in complexity), as well 

as after the model can no longer be expanded.  

Attributes in close proximity to the root variable 

and having p near 0.05, may be forced out of the 

model as an increasing number of attributes load 

on lower branches, disrupting the model and the 

modeling process.  When conducting automated 

analysis however, this recursive trimming and 

re-development process is user-transparent: the 

computer simply executes the algorithm. 

 Second, the automated software always 

conducts optimal pruning to explicitly maximize 

model accuracy, another process which becomes 

difficult to accomplish manually for complex 

models.
4
  This paper illustrates these advantages 

using data previously assessed by manual CTA. 

PCP in the Early AIDS Era 

Research with a sample of 1,339 patients 

hospitalized with HIV-associated PCP between 

1987 and 1990—when hospital mortality rates 
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ranged as high as 60%, is considered first.
5
 With 

five attributes (alveolar-arterial oxygen gradient, 

AaPo2; age—used twice; body mass index; and 

a binary indicator of whether a patient had prior 

history of AIDS) the manually-derived CTA 

model correctly classified 34.1% of 205 patients 

who died, and 87.0% of 988 living patients (146 

patients had missing data on some attributes in 

the model), yielding a relatively weak
2
 ESS= 

21.2.  This model offered an order-of-magnitude 

gain in ESS versus the best prior linear model 

(logistic regression), and more than doubled the 

ESS achieved by the best prior classification 

tree model (regression-based recursive partition-

ing).
5
 This CTA model was pruned to maximize 

ESS, correctly classifying 74.6% of dead and 

59.1% of living patients, and returning moderate 

ESS=33.7: a 59% improvement versus the non-

optimized model.
4
  Using three attributes, effic-

iency=11.2 ESS units-per-attribute, and thus the 

optimized model was 165% more efficient than 

the original model (4.2 ESS units-per-attribute). 

Automatic CTA software was used to 

obtain an enumerated CTA model using the 

same attributes and data available for prior lo-

gistic regression and recursive partitioning anal-

yses (see Figure 1). The enumerated CTA model 

had 69.5% sensitivity, 70.1% specificity, mod-

erate ESS=39.7 (17.8% greater than for the opti-

mized manual model), and efficiency=13.2 ESS 

units-per-attribute (17.9% greater than the opti-

mized manual model).  Analysis was completed 

in 278 CPU seconds using a 3 GHz Intel Pen-

tium D microcomputer (used in all analyses). 
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Figure 1: Enumerated CTA Model for Predicting PCP Inpatient Mortality Prior to 1995 

Research in the Highly Active 

Antiretroviral Therapy (HAART) Era 

Research investigating a sample of 1,660 

patients hospitalized with HIV-associated PCP 

between 1995 and 1997—the period marking  

early adoption of non-nucleoside reverse trans-

criptase and protease inhibitors as HIV therapy, 

is considered next.
6
  Using four attributes 

(wasting, AaPo2—used twice, and Albumin, the 

manually-constructed CTA model correctly 

classified 59.4% of 128 patients who died, and 
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73.7% of 1,066 patients who lived (466 patients 

had missing data for model attributes), yielding 

moderate ESS=33.1.  Pruned to maximize ESS, 

the two-attribute optimized model had 53.8% 

sensitivity (correct prediction of dead patients), 

84.3% specificity (correct prediction of living 

patients), and moderate ESS=45.2 (the optimi-

zed model trimmed two nodes previously eman-

ating from the right side of the root node).  The 

optimized model thus offers a 36.6% increase in 

ESS versus the original model, as well as 172% 

greater efficiency (22.6 vs. 8.3 ESS units-per-

attribute, respectively).
2,4

 

An enumerated CTA model was conduc-

ted via ODA automatic CTA software, allowing 

a jackknife-unstable attribute to enter the model 

if it met the Bonferroni criterion
2
 for statistical 

significance, and if its jackknife ESS exceeded 

training or jackknife ESS afforded by alternative 

attributes.  To facilitate a direct comparison of 

models, the three-attribute enumerated model 

was developed using the attributes selected by 

the manually derived model: wasting, AaPo2, 

and Albumin. The enumerated CTA model (see 

Figure 2) had 65.4% sensitivity, 88.2% specific-

ity, a relatively strong ESS=53.7 (19% greater 

than for the optimized manual CTA model), and 

efficiency=17.9 ESS units-per-attribute (20.8% 

lower than for the optimized manual model).  

Analysis was completed in 101 CPU seconds.  

In such “disease-staging research” it is 

customary to provide a staging table, such as in 

Table 1.
5
  Rows in the staging table are CTA 

model endpoints which have been reorganized 

in order of increasing percent of class 1 (dead 

patients) membership. Stage is an ordinal index 

of severity of illness, and pdeath is a continuous 

index: increasing values on either index indicate 

increasing (worsening) disease severity.  The 1
st
 

and 4
th

 strata reflect a 16-fold difference in like-

lihood of dying in-hospital: compared to Stage 

1, pdeath is about four times as high in Stage 2, 

fifteen times as high in Stage 3, and sixteen 

times as high in Stage 4. 
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< 2.25 g/dl  > 2.25 g/dl

 
Figure 2: Enumerated CTA Model for 

Predicting PCP Inpatient Mortality After 1995, 

Based on Three Attributes 

 

To use the table to stage disease severity 

for a given patient, simply evaluate fit between 

patient data and each stage descriptor.  Begin at 

Stage 1, and work sequentially through stages 

until identifying the descriptor which is true for 

the data of the patient undergoing staging. 

        Table 1: Staging Table for Predicting 

 In-Hospital Mortality From PCP, First Model 
-------------------------------------------------------------- 

Stage     Albumin       AaPo2      N       pdeath     Odds 

-------------------------------------------------------------- 

   1            > 3          ----      594     0.022    1:44 

   2          > 2.25     < 59.6   185     0.081    1:11 

   3          < 2.25     < 59.6     54     0.333     1:2 

   4            < 3        > 59.6     99     0.354    6:11 
-------------------------------------------------------------- 
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For example, imagine a patient was 54 

years of age, male, morbidly obese, with 

albumin of 2.47 g/dl and AaPo2 of 61.7 mm Hg.  

Here, age, gender and mass are immaterial to 

the staging process, because only attributes in 

the staging table are used in the staging process.  

Stage 1 does not fit, as the patient’s albumin 

level is less than 3 g/dl. Stage 2 does not fit 

because the patient’s AaPo2 is greater than 59.6 

mm Hg.  Stage 3 does not fit as the patient’s 

albumin is greater than 2.25 g/dl (when evaluat-

ing a descriptor, the first instance of inaccuracy 

immediately eliminates the Stage from further 

consideration).  Because the staging table has 

one degree of freedom, Stage 4 must fit: the 

patient’s albumin is less than 3 g/dl, and AaPo2 

is greater than 59.6 mm Hg—so Stage 4 indeed 

fits the data of this hypothetical patient. 

Albumin

Neurologic

Symptoms

Albumin

2.2%

N = 594

37.1%

N = 140

5.9%

N = 289

22.4%

N = 98

p<0.0001

p<0.0001

p<0.0001

   < 3 g/dl > 3 g/dl

YesNo

> 2.25 g/dl< 2.25 g/dl

 

Figure 3: Algorithmic CTA Model Predicting 

PCP Inpatient Mortality After 1995, Using 

Attributes From Prior Manual Analysis 

Using automated software we next ran 

automated algorithmic CTA (in which the CTA 

algorithm is performed with optimal parsing but 

without enumeration), using all of the attributes 

employed in original analysis.
6
  A model having 

three attributes was identified (Figure 3) with 

71.2% sensitivity, 83.9% specificity, a relatively 

strong ESS=55.0 (2.5% greater than for the 

optimized manual model), and efficiency=18.3 

ESS units-per-attribute (2.4% greater than for 

the optimized manual model).  Analysis was 

completed in 85 CPU seconds.  The correspond-

ing staging table is presented in Table 2. 

 

         Table 2: Staging Table for Predicting 

In-Hospital Mortality From PCP, Second Model 
-------------------------------------------------------------- 

                              Neurologic 

Stage   Albumin    Symptoms     N      pdeath     Odds 

-------------------------------------------------------------- 

   1         > 3           --------     594   0.022   1:44 

   2       > 2.25          No         289   0.059   1:16 

   3       < 2.25          No           98   0.224   2:7 

   4         < 3            Yes         140   0.371   3:5 
-------------------------------------------------------------- 

 An enumerated analysis was conducted 

next, and a CTA model emerged which yielded 

a relatively strong effect (ESS=61.4).  However, 

the model included six attributes (two repeated 

twice), and another attribute which involved a 

parse.  The added complexity, 100% increase in 

number of attributes employed in exchange for a 

11.6% gain in ESS, and 44.1% decrease in effic-

iency associated with use of the enumerated 

model, argued in favor of adopting the algorith-

mic model in this application. 

Discussion 

Because of inherent importance (having 

already been judged worthy of publication), and 

to assemble a literature which may eventually 

be tapped to assess the magnitude of the boosted 
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ESS offered by these methods in real-world 

applications, all published CTA models derived 

manually should minimally be optimized using 

UniODA to return maximum ESS, and the 

pruned models should be published, as is true 

presently.  Of course, all manually derived CTA 

models should be pruned to maximize ESS prior 

to consideration.
4
  However, current state-of-

the-art methodology for achieving maximum 

ESS involves conducting automated enumerated 

CTA, which is the optimal choice. 
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Manual vs. Automated CTA: 

Psychosocial Adaptation in Young 

Adolescents with Spina Bifida 
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                 Children's Hospital, Boston / Harvard Medical School                  Loyola University Chicago 

Fred B. Bryant, Ph.D., and Paul R. Yarnold, Ph.D. 
                                          Loyola University Chicago                          Optimal Data Analysis, LLC 

 

Compared to the manually-derived model, the enumerated CTA 

model was 20% more parsimonious, 3.6% more accurate and 30% 

more efficient, and was more consistent with a priori hypotheses. 

 

A prospective study of how individual- and 

family-level multimethod, multi-informant attri-

butes predict psychosocial adaptation (scholastic 

success, social acceptance, positive self-worth) 

in early adolescence was conducted for a sample 

of 68 families of children with spina bifida and 

68 comparison families of healthy children.
1
  

Manually-derived CTA indicated that intrinsic 

motivation, estimated verbal IQ, behavioral con-

duct, coping style, and physical appearance best 

predicted psychosocial adaptation in early ado-

lescence: health status was not a factor in the 

model.  The model correctly classified 77.8% of 

the total sample, yielding ESS=55.0. 

 An enumerated CTA model was obtain-

ed by automated software for the same data used 

in manual analysis.
2
  To be consistent between 

analyses, attributes were only  allowed to enter 

the model if their associated ESS was stable (did 

not diminish) in jackknife validity analysis.  The 

enumerated model is illustrated in Figure 1, and 

performance comparisons are given in Table 1. 

Behav ioral

Conduct:

Mother Report

Family -Lev el

Conf lict:

Father Report

Parent-Child

Conf lict: Child

Report

Attention:

Mother,

Father,

Teacher

Report

< 3.75 > 3.75

p < 0.007

p < 0.006 p < 0.0001

p < 0.036

< 0.83 > 0.83 < 52.5 > 52.5

< 1.92 > 1.92

N=30

N=21 N=13

N=25 N=20

23.1%
Positive

Adaptation

71.4%
Positive

Adaptation

88.0%
Positive

Adaptation

30.0%
Positive

Adaptation

16.7%
Positive

Adaptation

 

  Figure 1: Enumerated CTA Model Predicting 

Psychosocial Adaptation in Young Adolescence
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Table 1: Comparing Performance of Manually-Derived vs. Enumerated CTA Models 

------------------------------------------------------------------------------------------------------------------------------ 

                                           Predicted Class Status                              Predicted Class Status 

                                             Manual CTA Model                              Enumerated CTA Model 

                                         Non-Positive      Positive                          Non-Positive      Positive 

                                          Adaptation      Adaptation                        Adaptation      Adaptation 

                 Non-Positive            40                   16           71.4                   49                     9            84.5 

Actual       Adaptation 

Class 

Status        Positive                   10                    51           83.6                   14                   37            72.6 

                 Adaptation 

                                                80.0                76.1                                  77.8                80.4 

  

         Total N Classified                      117                                                          109 

                       PAC (%)                      77.8                                                         78.9 

                    Model ESS                     55.0                                                         57.0 

    Number of Attributes                        5                                                              4 

          Model Efficiency                     11.0                                                         14.3 

------------------------------------------------------------------------------------------------------------------------------ 
Note: Values given to the right of the Positive Adaptation columns are the specificity (for non-positive adaptation) and sensi-

tivity (for positive adaptation), and values given under the Positive Adaption row, beneath columns, are the negative (for 

non-positive adaptation) and positive (for positive adaptation) predictive values.
3
  Total N classified varies as a function of 

missing data.  PAC=percentage accuracy in classification=100% x (sum of correctly classified observations)/(total N classi-

fied).
3
  ESS=effect strength for sensitivity, a normed index on which 0 is the level of classification accuracy that is expected 

by chance, and 100 is perfect accuracy.
3
  The number of attributes in the CTA model is given, and model efficiency is de-

fined as model ESS divided by number of attributes; is expressed in terms of mean ESS-units-per-attribute; and is a measure 

of the mean level of explanatory power per attribute which is used in the model—commonly, as “bang-for-the-buck”.
3
   

 

The enumerated model used four attribu-

tes rather than five as used in the manual model, 

and thus it was 80% as complex, or 20% more 

parsimonious, than the manually-derived model.  

Compared to the manual model the enumerated 

model yielded greater ESS (3.6%), PAC (1.4%), 

efficiency (30%), specificity (18.3%), and posi-

tive predictive value (5.7%).  In contrast, the 

manual model had greater sensitivity (15.2%) 

and negative predictive value (2.8%) than the 

enumerated model. 

The enumerated model predicted 80.4% 

accurately that 42.2% of the sample would have 

a positive adaptation, and identified 72.6% of all 

subjects experiencing positive adaptation.  And, 

the enumerated model predicted 77.8% accu-

rately that 57.8% of the sample would have a 

non-positive adaptation, identifying 84.5% of all 

subjects experiencing non-positive adaptation. 

The size of sample strata identified by 

the enumerated model is relatively homogene-

ous: the largest strata (N=30, 27.5% of classi-

fied sample) is 1.3-times larger than the smallest 

strata (N=13, 11.9% of classified sample).  And, 
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all of the attributes loading in the model influ-

enced the classification decisions which were 

made for a substantial portion of the sample.  

The percentage of observations classified in part 

on the basis of their score on the attribute was: 

Behavioral Conduct (100% of sample); Family-

Level Conflict (58.7%), Attention (41.3%) and 

Parent-Child Conflict (31.2%). 

The automated CTA model has several 

important similarities to the manually-derived 

CTA model.  First, as with the manual model, 

neither health status (spina bifida vs. able-bod-

ied) nor socioeconomic status emerged as fac-

tors in the automated model.   This suggests that 

both CTA models were able to identify factors 

that were more predictive of psychosocial ad-

aptation than the group differences often identi-

fied in pediatric research.   Second, the factor 

“behavioral conduct in the classroom” emerged 

as being highly significant in both models.   

This demonstrates consistency between the 

models and reinforces the relationship between 

behavioral control in the classroom and psycho-

social adaptation. 

There were also important differences 

between the two models.  Counter to our origi-

nal hypotheses, the manually derived model did 

not identify any family-level variables, nor did 

it include any variables based on mother or 

father report.  In contrast, the automated CTA 

model supported our original hypothesis by 

identifying two family-level variables in the 

model and including three variables based in 

part on mother and father report.  Another dif-

ference between the two models is that in the 

manual model all of the factors were based on 

characteristics of the child and two of the factors 

represented more internalized child qualities 

(i.e., intrinsic motivation, coping style).  In 

comparison, only half of the automated model 

focused on child factors and these included only 

externalized or observable behaviors (i.e., con-

duct, attention).  

In summary, the automated model pre-

sents a more parsimonious way of classifying 

this sample and supports the researchers’ origi-

nal hypotheses by including family-level factors 

and information from multiple informants (par-

ents, teachers, child).  However, it identifies a 

substantially different constellation of factors in 

the classification of psychosocial adaptation as 

compared to the manual model.  Many theoreti-

cally important factors that emerged in the man-

ual model that are well supported in pediatric 

research on psychosocial adaptation (e.g., moti-

vation, IQ, coping style, and attractiveness) 

were not included in the automated model.   In-

stead, the automated model selected a narrower 

constellation of factors that was highly focused 

on behavioral presentation and family-level con-

flict.  These models likely represent two theo-

retically viable and empirically supported paths 

to psychosocial adaptation. 
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Gen-UniODA vs. Log-Linear Model: 

Modeling Organizational Discrimination 
 

Paul R. Yarnold, Ph.D. 
Optimal Data Analysis, LLC 

 

An application involving a binary class variable (gender), an 

ordinal attribute (academic rank), and two testing periods (sepa-

rated by six years) was troublesome for the log-linear model, but 

was easily analyzed using Gen-UniODA. 

 

Everett
1
 cross-tabulated gender and faculty rank 

(1=Instructor, 2=Assistant Professor; 3=Assoc-

iate Professor; 4=Professor) in 1978 and 1984 at 

the University of New South Wales (Table 1). 

 

    Table 1: Number of Faculty by Academic 

                  Rank, Gender, and Year 
      ------------------------------------------------------ 

                           1978                       1984 

      Rank      Male    Female       Male    Female 

      ------------------------------------------------------ 

         1           45          28             39          28 

         2         176          21           114          27 

         3         144            6            171          18 

         4         127            2            121            5 

      ------------------------------------------------------ 

      Note: Adapted from Everett (1990), tabled 

      are frequency counts. 

 Log-linear analysis was used to model 

the relative odds of men versus women at each 

academic rank level and across time.  Analysis 

also included additional putative determinants 

of rank (unavailable for this example), including 

academic degree, publication level, age.  Age 

and publication level were each split into three 

categories, and degree into two categories, in 

order to limit the number of cells in the design 

matrix: in light of the modest sample size, it is 

conceivable there could be empty cells in a 

complex design.  Five predictor variables dicta-

ted too many interaction terms (i.e., the design 

matrix would be too large for the sample), so the 

three putative determinants were combined into 

a single 18-level polychotomous variable which 

possessed no inherent order.  Examination of 

confidence limits suggested: “despite these sug-

gested trends across rank and across time, none 

of the direct discrimination values differ signifi-

cantly” (p. 383).  In the final analysis which was 

reported, all estimates obtained by collapsed 

contingency (CC) table odds ratio analysis fell 

outside of the range of odds estimated by other 

methods, indicating induction of Simpson’s Par-

adox
2
: “The underestimation is much more 

severe for the odds ratio CC derived from col-

lapsing fitted subtables, further underlining 

problems associated with collapsing across a 

non-independent variable” (p. 384). 

 Using UniODA, in contrast, the analysis 

is straightforward: the objective is to determine 

if the relative distribution of males and females 

(class variable is gender) differs on the ordinal 

academic rank measure (attribute is rank), and if 
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this relationship has changed across time (gen-

eralizability variable is year). 

 After year (1=1978, 2=1984) and gender 

(1=male, 2=female) were dummy-coded, data 

were analyzed using the following ODA
3
 code 

(commands are indicated in red; non-directional 

exploratory analysis is conducted as no a priori 

hypothesis regarding the direction of discrim-

ination was postulated): 

open data; 

output everett.out; 

vars rank gender year; 

data; 

1 1 1 (repeated 45 times) 

1 0 1 (repeated 28 times) 

2 1 1 (repeated 176 times) 

2 0 1 (repeated 21 times) 

3 1 1 (repeated 144 times) 

3 0 1 (repeated 6 times) 

4 1 1 (repeated 127 times) 

4 0 1 (repeated 2 times) 

1 1 2 (repeated 39 times) 

1 0 2 (repeated 28 times) 

2 1 2 (repeated 114 times) 

2 0 2 (repeated 27 times) 

3 1 2 (repeated 171 times) 

3 0 2 (repeated 18 times) 

4 1 2 (repeated 121 times) 

4 0 2 (repeated 5 times) 

end; 

class gender; 

attr rank; 

gen  year; 

mcarlo iter 25000; 

loo; 

go; 

 The resulting Gen-UniODA model was: 

if academic rank<2 then predict gender=female 

(77.0% correct), otherwise predict that gender= 

male (60.1%).  The omnibus test was statistic-

ally significant (p<0.0001), and the effect was 

of moderate strength (ESS=37.1), indicating the 

model generalized over year (UniODA models 

all were stable in jackknife validity analysis). 

 Applying the Gen-UniODA model to the 

1978 data: females were 86.0% correct; males 

55.1% correct; p<0.0001; ESS= 41.1.  Applying 

the model to the 1984 data: females were 70.5% 

correct; males 65.6% correct; p<0.0001; ESS= 

36.1.  Omnibus performance values were inside 

the domain defined by corresponding 1978 and 

1984 values: again, no evidence of potential 

paradoxical confounding.
2
 

Discussion 

Gen-UniODA found moderate evidence 

of gender discrimination: a greater proportion of 

females are Instructors or Assistant Professors, 

and of males are (Associate) Professors, than is 

expected by chance.  Eyeball analysis suggests 

the strength of the effect may be diminishing in 

time, because the percent of females classified 

correctly by the model, and ESS, fell in 1984. In 

addition, relative to 1978, in 1984 the number of 

male professors fell 4.6% while the number of 

women in this rank increased by 150%.  The 

rank of Associate Professor saw a 18.8% gain in 

males, compared to a 200% increase in females. 

There were 35.2% fewer male Assistant Profes-

sors compared with a 28.5% gain for females, 

and while male Instructors diminished by 

13.3%, there was no change in this rank for 

females.  Considered together these results 

suggest that not only is the relative standing of 

women increasing, but so too is the relative 

number of women on the faculty. 

Information beyond academic rank, sex 

and year was all that was available for analysis 

presently.  It will be interesting to model data 

such as considered presently—augmented by 

additional putative predictors, via MultiODA
4
 

(optimal analogue to log-linear model) or hier-

archically optimal classification tree analysis,
5
 

as well as to evaluate optimization of sub-
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optimal models identified in the present context 

using UniODA.
6
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UniODA vs. Chi-Square: Ordinal Data 

Sometimes Feign Categorical 
 

Paul R. Yarnold, Ph.D. 
Optimal Data Analysis, LLC 

 

Assessed using perhaps the most widely used type of measurement                    

scale in all science, ordinal data are often misidentified as being 

categorical, and incorrectly analyzed by chi-square analysis.  Three 

examples drawn from the literature are reanalyzed. 
 

Consisting of a relatively small number of 

graduated levels of the measured attribute, 

ordinal scales may be the most broadly 

employed type of measurement scale in all of 

science.  Likert-type scales, typically involving 

between three and ten levels, are perhaps most 

common.
1
  For example, one’s socioeconomic 

status is often assessed using a three-level 

ordinal scale, with categories corresponding to 

low, middle, and upper class.  Also widely used, 

ordinal categorical scales consist of a relatively 

small number of qualitative categories ordered 

with respect to some theoretical factor.
2
  For 

example, at the end of a clinical trial patients 

might be classified as being worse, unchanged, 

or better: the three qualitative categories are 

worse, unchanged, and better; the theoretical 

factor is quality of clinical outcome; and the 

categories are ordered from lowest (worse) to 

highest (better) with respect to quality of 

clinical outcome. 

Since the metric underlying the attribute 

is ordinal, neither chi-square (nominal data) nor 

t-test (interval data) is appropriate to assess if 

therapies can be discriminated on the basis of 

clinical outcome.  Traditional methods used for 

analysis of ordinal data include Mann-Whitney 

U test or the log-linear model, but excessive ties 

compromise U, and maximum likelihood-based 

methods require large samples.
3-5 

 Assuming 

neither the absence of ties nor the presence of 

large samples, univariate optimal discriminant 

analysis (UniODA) is ideal for such designs. 

Plaintiff Gender and Age 

Seaman and Hill
6
 analyzed data obtained by 

Cox and Key
7
 from court records of an Ohio 

county, involving the frequency of plaintiffs in 

divorce actions cross-classified by gender (wife 

or husband) and age (<25, 25-34, 35-44, >44). 

“The hypothesis that the proportion of plaintiffs 

that are husbands is the same, regardless of age” 

(p. 454) was tested using the traditional model, 

homogeneity of proportions.  All possible post 

hoc pairwise comparisons—involving 6 separate 

2-by-2 chi-square tests, were conducted to 

ascertain the specific reason the omnibus test 

was statistically significant.  Two pairwise 

comparisons were statistically significant: those 

comparing the >44 age category with the 25-34 

and 35-44 categories (p’s<0.05). Analysis via 

chi-square thus indicated a greater proportion of 

husband plaintiffs in the >44 age category, and a 

greater proportion of wife plaintiffs in the 25-34 

and 35-44 age categories. No statistically signi-
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ficant pairwise comparisons involved the <25 

age category, so this strata could not be assessed 

in relation to other strata in the study. 

 

      Table 1: Plaintiff Age in a Divorce Action 
      ------------------------------------------------------ 

      Age           <25         25-34       35-44      >44 

      ------------------------------------------------------ 

      Husband       8             8              6            16 

      Wife           18           48            22            10 

      ------------------------------------------------------ 

      Note: Adapted from Seaman and Hill (1996). 

      Tabled are frequency counts. 

 After gender (1=Husband, 2=Wife) and 

age (1=’<25’, 2=’25-34’, 3=’35-44’, 4=’>44’) 

were dummy-coded, data were reanalyzed using 

the following ODA
5
 code (commands indicated 

in red; non-directional exploratory analysis is 

conducted as no a priori hypothesis was made): 

open data; 

output seaman.out; 

vars gender age; 

data; 

2 4 (repeated 10 times) 

2 3 (repeated 22 times) 

2 2 (repeated 48 times) 

2 1 (repeated 18 times) 

1 4 (repeated 16 times) 

1 3 (repeated 6 times) 

1 2 (repeated 8 times) 

1 1 (repeated 8 times) 

end; 

class gender; 

attr age; 

mcarlo iter 25000; 

loo; 

go; 

 The resulting UniODA model was: if 

age<35-44 then predict class=wife, otherwise 

predict class=husband. The model achieved a 

moderate ESS of 31.9 (p<0.0001), and results 

were stable in jackknife validity analysis. The 

model classified 88 (90%) of 98 women 

correctly, versus only 16 (42%) of 38 men. All 

subjects were classified by the ODA model, 

including those younger than 25 years of age. 

Outcomes of Marital Therapy 

Snyder, Wills and Grady-Fletcher
8
 reported the 

following four-year termination outcomes of 

two different types of therapy for unhappily 

married couples. The expected value for both 

entries in the right-most column of the data table 

is less than five, invalidating the use of chi-

square with this sparse table.
9
  An omnibus chi-

square statistic was given for the 2-by-3 table, 

then eyeball interpretation of the omnibus effect 

was rendered: “a significantly higher percentage 

of (behavior therapy couples) had experienced 

divorce, p<0.01.” Although no explanation was 

provided—perhaps to defeat the aforementioned 

minimum expectation assumption violation, the 

No Change (“distressed”) and Improved classes 

were collapsed and chi-square reported higher 

divorce rates for behavior therapy, p<0.05. 

     Table 2: Outcomes of Marital Therapies 
----------------------------------------------------------- 

Type of 

Therapy        Divorced    No Change   Improved 

----------------------------------------------------------- 

Insight                3                 22                  4 

Behavior           12                 13                  1 

----------------------------------------------------------- 

Note: Tabled are frequency counts. 

 These data were analyzed by ODA code 

paralleling that used in the first example. The 

model was: if outcome=divorced then predict 

therapy=behavior, otherwise predict therapy= 

insight. The model correctly classified 90% in 

insight therapy, 46% in behavior therapy, and 

yielded a moderate ESS of 35.9 (p<0.006). 
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Strength of Gender Differences 

Hyde and Plant
10

 reported frequencies of five 

categories of Cohen’s d measure of effect 

strength for representative studies of gender 

differences, versus studies of other effects in the 

field of psychology.  An omnibus chi-square 

statistic was provided for the 2-by-5 table 

(p<0.0001): “The difference between the 

distributions of gender effect sizes and other 

effect sizes is highly significant.” Pairwise 

comparisons to disentangle the omnibus effect 

were not reported. Eyeball analysis suggested: 

“more gender differences fall in the close-to-

zero category than other effects in psychology.” 

       Table 3: Cohen’s d by Type of Study 
----------------------------------------------------------- 

Type of 

Study         <0.1     <0.35     <0.65     <1.0     >1.0 

----------------------------------------------------------- 

Gender         43         60          46         17         5 

Other            17         89         116        60        20 

----------------------------------------------------------- 

Note: Tabled are frequency counts. 

For these data the exploratory hypothesis 

that type of study could be discriminated on the 

basis of effect strength was tested using priors-

weighted UniODA, via ODA code paralleling 

that used in the prior examples.  The model was: 

if d<0.35 then predict gender study; otherwise, 

predict non-gender study. Thus, relative to other 

areas, gender studies have disproportionately 

more effect sizes in the close-to-zero (<0.1) and 

next-to-close-to-zero (0.11-0.35) categories.  By 

correctly classifying 60.2% of the gender 

difference studies, and 64.9% of other studies, 

the model yielded a moderate, jackknife-stable 

ESS=25.1 (p<0.0001). 

Discussion 

Initial study of the congruence between chi-

square and UniODA in analysis of real-world 

data suggests consistent findings may often be 

achieved, and instances of inconsistent findings  

may often accompany grossly imbalanced mar-

ginals.
11 

  Distinct advantages versus chi-square 

include that, for UniODA: directional tests of 

statistical hypotheses may be conducted; the 

validity of exact p is uncompromised by sparse, 

empty or missing cells, small samples or 

imbalanced marginal distributions; and use of 

the normed ESS index allows direct comparison 

of model performance across analyses differing 

in number of observations, marginal imbalance, 

and/or number of levels for categorical class 

variables and/or attributes. 

Optimal ordinal analysis may be 

generalized to designs involving class variables 

having more than two categories (Yarnold and 

Soltysik
5
 discuss degenerate designs involving 

fewer categories for attribute than class).  For 

example, imagine a design involving a three-

category class variable—such as therapies A, B, 

and C, and an ordinal categorical attribute with 

at least three ordinal improvement categories—

such as none, some, and much.  A UniODA 

model for such a design would be of the form: if 

improvement=none, predict therapy=A; other-

wise, if improvement=some, predict therapy=B; 

otherwise predict therapy=C.  As is true for all 

ODA applications, for three-category designs: 

exact p is obtained for performance achieved by 

the model; mean sensitivity across therapies is 

translated into the normed ESS scale of effect 

strength; and leave-one-out (LOO) “jackknife” 

validity analysis is used to assess the potential 

generalizability of the findings were the model 

used to classify independent random samples. 

Generalizing exact ordinal analysis to 

designs involving more than one assessment 

dimension is also straightforward, whether by 

linear or nonlinear methods.  Imagine an appli-

cation having two therapeutic strategies (class 

variable) and two ordinal categorical outcome 

scales (attributes)—one assessing degree of 

recovery (worse, unchanged, better), and the 

other assessing satisfaction (unhappy, neutral, 



Optimal Data Analysis        Copyright 2010 by Optimal Data Analysis, LLC 

2010, Vol. 1, Release 1 (September 17, 2010)          2155-0182/10/$3.00 

 

 

 

65 
 

happy).  Using an optimal multivariable linear 

approach with these data, one could obtain a 

main effects model including an intercept and 

separate coefficients for recovery and 

satisfaction; a saturated model additionally 

including a coefficient for the recovery-by-

satisfaction interaction; and a quadratic model 

additionally including coefficients for the 

squares (or higher exponents) of each main 

effect.
12-14

  Model coefficients may be real 

numbers, or may be constrained to any range, 

even binary.
15

 Structurally, these ODA models 

are similar to models developed via traditional 

multivariable techniques such as discriminant or 

logistic regression analysis.  Functionally, how-

ever—as is constitutionally true of all ODA 

analyses, these models would explicitly 

maximize (weighted) classification accuracy 

achieved for the sample.
5
 Using an optimal 

multivariable nonlinear approach with these 

data currently entails conducting hierarchically 

optimal classification tree analysis, or CTA.
16

   

Regardless of choice of (non)linear 

method, to ensure the validity of analytic 

findings it is recommended that variables which 

truly are measured using an ordinal scale are 

treated as though they were in fact measured 

using an ordinal scale. 
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The Use of Unconfounded Climatic Data 

Improves Atmospheric Prediction  

 

Robert C. Soltysik, M.S., and Paul R. Yarnold, Ph.D. 
Optimal Data Analysis, LLC 

 

This report improves measurement properties of data and analytic 

methods widely used in meteorological modeling and forecasting.  

Paradoxical confounding is defined and demonstrated using global 

temperature land-ocean index data.  It is shown that failure to add-

ress paradoxical confounding results in suboptimal atmospheric 

circulation pattern models, and correcting prior measurement and 

analytic deficiencies results in more accurate prediction of temp-

erature and precipitation anomalies, and export of Arctic sea ice.  

 

Simpson’s Paradox may be the single greatest 

threat to the validity of quantitative analysis in 

all empirical science.
1
  The Paradox can occur 

when data from two or more samples, groups or 

time periods are combined into a single sample: 

under such conditions, results obtained when 

analyzing the combined data may be different 

than when analyzing individual data sets separa-

tely. The following hypothetical example illus-

trates confounding for a simple correlation. 

Imagine we wish to correlate sea level 

pressure (SLP) with thunderstorm severity rated 

using a scale with greater values indicating 

greater severity, and data collected at two loca-

tions. Location A usually has relatively low SLP 

and short-lived, fast-moving storms: the lower 

the SLP the more severe the storm.  The hypo-

thetical correlation model (r=-0.8) relating SLP 

and severity is indicated using arrow “A” in 

Figure 1 (individual hypothetical data points 

from location A are indicated as “a”): data 

swarm A indicates strong negative association. 

Compared to A, Location B usually has 

relatively high SLP and long-lived slow-moving 

storms: the lower the SLP the more severe the 

storm.  The correlation (r=-0.8) relating SLP 

and severity is indicated in Figure 1 by arrow 

“B” (individual hypothetical data points from 

location B are indicated as “b”): data swarm B 

indicates strong negative association. 

When data from Locations A and B are 

combined, the resulting correlation model (r= 

0.7) relating SLP and severity is indicated by 

arrow “C” (individual hypothetical data points 

for combined sample are all “a” and “b”): data 

swarm C indicates strong positive association. 

In this hypothetical example, for two 

individual samples (Locations A and B) con-

sidered separately the analysis reveals that more 

severe storms are associated with decreasing 

SLP.  For the combined data, the same analysis 

reveals that more severe storms are associated 

with increasing SLP. 

 

 



Optimal Data Analysis    Copyright 2010 by Optimal Data Analysis, LLC 

2010, Vol. 1, Release 1 (September 17, 2010)  2155-0182/10/$3.00p 

 

 

 

68 
 

     Increasing Sea Level  |                   B                 

                 Pressure  |                          b             

|                          b b        C 

|                            b b  b 

|  A                          b  bb   

|     aaa                    

|      aa 

|         a a 

|_________________________________________ 

                                            More Severe Storm 

                     Figure 1: Hypothetical Illustration of Paradoxical Confounding 

 

Simpson’s Paradox threatens the validity of 

quantitative atmospheric science because 

nonstationarity is prevalent in longitudinal data 

series used in atmospheric science, such as 

temperature or pressure—and nonstationarity  

can induce Simpson’s Paradox.  For example, 

global surface temperature data clearly are 

nonstationary: in Figure 2, anomalies are 

computed relative to the period 1951-1980 

(http://data.giss.nasa.gov/gistemp/).

                           
Figure 2: Mean Global Temperature Land-Ocean Index Anomaly by Year 

http://data.giss.nasa.gov/gistemp/tabledata/GLB.Ts+dSST.txt
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Analysis was restricted to the time period 

that is the focus of most current quantitative 

atmospheric science, beginning in the year 1948.  

Eyeball inspection of Figure 2 suggests a relatively 

flat trajectory (“stationary series”) through 1976, 

versus a steadily increasing trajectory (“non-

stationary series”) across subsequent years.  

Regression analyses modeling temperature anomaly 

(dependent measure) as a function of year 

(independent measure), separately by month, are 

summarized In Table 1: findings confirm eyeball 

observations, and establish the generalizability of 

the phenomenon to a time period more granular 

than is afforded by annual measurements. 

Tabled for each model is the intercept as 

well as the value of the t-test for the two-tailed 

hypothesis that the value of the intercept is zero, 

and the associated Type I error rate.  For every 

model, in every month, the intercept is not 

significantly different than zero for the stationary 

series, but is significantly different than zero for the 

nonstationary and combined series.  Also tabled for 

each model is the slope (regression beta weight) and 

the value of the t-test for the two-tailed hypothesis 

that the value of the slope is zero, and the associated 

Type I error rate.  Consistent with findings for inter-

cept, for every model, in every month, the slope is 

not significantly different than zero for the 

stationary series, but is significantly different than 

zero for the nonstationary and combined series.  

Finally, Table 1 provides the percent of variance in 

temperature that is explained by the regression 

model as a function of year (R
2
), and p for the 

regression model. If model performance for the 

combined sample lies outside performance results 

for samples considered individually, then 

paradoxical confounding exists: this is indicated 

using red. 
 

           Table 1: Regression Modeling of Temperature Anomaly using Year, Separately by Month: 

                                                   Evidence of Paradoxical Confounding 
 

      Month      Time Period        Intercept, t, p         Slope, t, p          R
2
, p 

   -----------  --------------   ---------------------  -------------------  ------------ 

   January      Stationary         559.3   0.8  0.45    -0.29  -0.8  0.46     2.1  0.45 

                Non-Stationary   -3239.1  -5.3  0.0001   1.64   5.3  0.0001  49.4  0.0001 

                Combined         -2114.5  -7.9  0.0001   1.08   8.0  0.0001  52.2  0.0001 

 

   February     Stationary        -140.0  -0.2  0.87     0.07   0.2  0.87     1.0  0.87 

                Non-Stationary   -3842.6  -5.5  0.0001   1.95   5.6  0.0001  51.6  0.0001 

                Combined         -2451.3  -8.4  0.0001   1.25   8.5  0.0001  55.3  0.0001 

 

   March        Stationary        -550.5  -0.8  0.46     0.28   0.8  0.46     2.1  0.46 

                Non-Stationary   -3374.5  -5.9  0.0001   1.71   5.9  0.0001  54.9  0.0001 

                Combined         -2451.8 -10.0  0.0001   1.25  10.1  0.0001  63.8  0.0001 

 

   April        Stationary        -229.4  -0.4  0.71     0.12   0.4  0.72     0.5  0.72 

                Non-Stationary   -3216.2  -7.1  0.0001   1.63   7.1  0.0001  63.7  0.0001 

                Combined         -2159.7 -10.3  0.0001   1.10  10.4  0.0001  65.0  0.0001 

 

   May          Stationary        -197.5  -0.3  0.75     0.10   0.3  0.75     0.4  0.75 

                Non-Stationary   -2590.9  -4.9  0.0001   1.31   4.9  0.0001  45.4  0.0001 

                Combined         -1845.2  -8.6  0.0001   0.94   8.7  0.0001  56.7  0.0001 

 

   June         Stationary        -145.7  -0.3  0.75     0.07   0.3  0.75     0.4  0.75 

                Non-Stationary   -3291.0  -6.3  0.0001   1.67   6.4  0.0001  58.3  0.0001 

                Combined         -1918.6  -9.7  0.0001   0.98   9.7  0.0001  62.0  0.0001 

 

   July         Stationary        -111.3  -0.3  0.78     0.06   0.3  0.79     0.3  0.79 

                Non-Stationary   -2841.5  -4.7  0.0001   1.44   4.8  0.0001  43.8  0.0001 

                Combined         -1937.1  -9.5  0.0001   0.99   9.6  0.0001  61.3  0.0001 
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   August       Stationary         203.2   0.4  0.73    -0.10  -0.4  0.73     0.5  0.73 

                Non-Stationary   -3492.9  -6.5  0.0001   1.77   6.6  0.0001  60.0  0.0001 

                Combined         -1933.3  -8.5  0.0001   0.98   8.6  0.0001  55.8  0.0001 

 

   September    Stationary           3.9   0.0  0.99    -0.01  -0.0  0.99     0.1  0.99 

                Non-Stationary   -3359.2  -6.3  0.0001   1.70   6.4  0.0001  58.4  0.0001 

                Combined         -1888.2  -8.8  0.0001   0.96   8.8  0.0001  57.3  0.0001 

 

   October      Stationary         298.4   0.6  0.58    -0.15  -0.6  0.58     1.2  0.58 

                Non-Stationary   -4082.0  -8.5  0.0001   2.06   8.5  0.0001  71.4  0.0001 

                Combined         -1920.6  -8.5  0.0001   0.98   8.5  0.0001  55.7  0.0001 

 

   November     Stationary        -253.9  -0.5  .062     0.13   0.5  0.62     0.9  0.62 

                Non-Stationary   -3719.7  -6.1  0.0001   1.88   6.1  0.0001  56.3  0.0001 

                Combined         -2056.9  -9.1  0.0001   1.05   9.1  0.0001  58.9  0.0001 

 

   December     Stationary          41.4   0.1  0.95    -0.02  -0.7  0.95     0.1  0.95 

                Non-Stationary   -3076.1  -5.0  0.0001   1.56   5.1  0.0001  45.1  0.0001 

                Combined         -1998.4  -8.2  0.0001   1.02   8.3  0.0001  54.2  0.0001 

-------------------------------------------------------------------------------------- 

Note: Stationary=1948–1976; Non-Stationary=1977–2007; Combined=1948-2007.  

 

This exercise demonstrates that 

temperature does not increase between 1948 and 

1976, but does increase thereafter; funda-

mentally different “statistical infrastructure” 

(i.e., regression models) underlies the stationary 

and nonstationary series; and combining data 

from these two series typically results in 

paradoxical confounding.  What is the nature of 

the effect of this confounding?  In the initial 

hypothetical example, the effect of the 

confounding was one of “direction”: the result 

for the combined sample was opposite in 

direction to results obtained for individual 

samples.  For actual temperature data the effect 

of confounding is one of “magnitude”: the 

finding for the combined sample is in the same 

direction (indicating increase over time) as the 

finding for the nonstationary series, but the 

model for the combined sample misestimates 

the magnitude of the effect.  For any month, 

compared to the nonstationary series, the model 

for the combined sample has intercept and slope 

coefficients with lower absolute values: models 

for the combined data thus underestimate the 

rate of change in temperature for the nonstation-

ary series.  If Simpson’s Paradox confounds 

fundamental data, then models using those 

confounded data also are confounded. 

Measuring Atmospheric Circulation Patterns 

Seminal research conducted by Barnston 

and Livezey used orthogonally rotated principal 

components analysis (PCA) of monthly mean 

700 mb geopotential heights to identify the 

major modes of northern hemisphere upper-air 

variability.
2
  They used combined data from the 

years 1950 through 1984: measurements were 

taken on a 358-point grid covering latitudes 

from 20ºN to 85ºN, and ten “robust” modes 

(components) were identified which persisted 

throughout the year.  The Climate Prediction 

Center (CPC) performed a similar analysis of 

northern hemisphere 500 mb heights using data 

from 1950 to 2000: ten modes were identified 

and used to compute the values of the telecon-

nection indices (http://www.cpc.noaa.gov/data/ 

teledoc/telepatcalc.shtml).  Table 2 describes the 

ten modes of upper-air variability determined by 

the CPC analysis. 

         

 

 

http://www.cpc.noaa.gov/data/%20teledoc/telepatcalc.shtml
http://www.cpc.noaa.gov/data/%20teledoc/telepatcalc.shtml
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Table 2: Ten Modes of Upper-Air Variability Determined by the CPC Analysis 

 
CPC Mode    Abbreviation                Description 

--------    ------------    -------------------------------------- 

   1            NAO         North Atlantic Oscillation 

   2            EA          East Atlantic Pattern 

   3            WP          West Pacific Pattern 

   4            EP/NP       East Pacific / North Pacific Pattern 

   5            PNA         Pacific / North American Pattern 

   6            EA/WR       East Atlantic/West Russia Pattern 

   7            SCA         Scandinavia Pattern 

   8            TNH         Tropical / Northern Hemisphere Pattern 

   9            POL         Polar/ Eurasia Pattern 

   10           PT          Pacific Transition Pattern 

------------------------------------------------------------------ 

 

Figure 3 gives the total variance in 500 

mb height data that is explained by these ten 

modes each year.  In the Figure, blue shading 

indicates levels of explained variation that fall 

below the mean.  In 2003 the combined sample 

includes an equal number of data points from 

stationary (1950-1976) and nonstationary (1977-

2003) series, but data from the nonstationary 

series dominate the combined sample by 2004.  

Extrapolation of earlier results suggests that 

increasing domination will accelerate paradox-

ical confounding and resulting underestimation 

of magnitude of effect.  Note that after 2003, 

performance of the quantitative model used to 

identify major modes of northern hemisphere 

upper-air variability has never been lower. 

 
    Figure 3: Variance in 500mb Height Data Explained by 10 CPC Modes, by Year 
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It is simple to show that this accelerating 

failure of the current state-of-the-art is in part 

attributable to paradoxical confounding. We 

obtained January 500 mb geopotential height data 

from 1948-2007 from the NCEP/NCAR Reanalysis 

dataset, for the full 379-point grid used in research 

cited earlier, separating the data into stationary 

(1948-1976) versus nonstationary (1977-2007) 

series (http://www.cdc.noaa.gov/cgi-bin/Timeseries/ 

timeseries1.pl). We replicated prior varimax-rotated, 

ten-extracted-factor PCA of 500 mb height data (see 

Table 3).  The principal component column 

indicates successive eigenvector (mode).  For 

Sample, S is the stationary series, NS the non-

stationary series, and C the combined S and NS 

data.  Eigenvalue is given for each sample and 

mode, as is corresponding percent of total variance 

explained by the mode.  For example, the first mode 

for the stationary series had an eigenvalue of 68.1, 

thus explaining 18.0% of the total variance of 379 

measurements of 500 mb heights.  Indicated using 

red, paradoxical con-founding exists when the 

eigenvalue for the C sample falls outside of the 

domain defined by the S and NS samples.  Note that 

80% of the modes clearly reveal paradoxical 

confounding: in every case except mode number 2 

the effect was underestimation of explained 

variation. 

 

 Table 3: Replication of Prior Analysis of January 500 mb Geopotential 

                                  Height Data, Separately by Series 

Principal                      Percent of     Cumulative 

Component  Sample  Eigenvalue   Variance   Percent Variance 

---------  ------  ----------  ----------  ---------------- 

    1        S        68.1        18.0           18.0 

              NS       75.3        19.9           19.9 

              C        63.3        16.7           16.7 

 

    2        S        58.0        15.3           33.3 

              NS       50.2        13.3           33.1 

              C        60.0        15.8           32.5 

 

          3        S        42.0        11.1           44.4 

              NS       39.1        10.3           43.4 

              C        32.4         8.6           41.1 

 

    4        S        37.4         9.9           54.2 

              NS       34.2         9.0           52.5 

                C        29.5         7.8           48.9 

  

    5        S        24.8         6.5           60.8 

              NS       27.3         7.2           59.7 

              C        27.0         7.1           56.0 

  

    6        S        23.9         6.3           67.1 

              NS       22.7         6.0           65.7 

              C        21.0         5.5           61.5 

 

    7        S        18.6         4.9           72.0 

              NS       19.6         5.2           70.8 

              C        18.1         4.8           66.3 

 

 

 

http://www.cdc.noaa.gov/cgi-bin/Timeseries/%20timeseries1.pl
http://www.cdc.noaa.gov/cgi-bin/Timeseries/%20timeseries1.pl
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    8        S        16.1         4.2           76.2 

              NS       15.4         4.1           74.9 

              C        13.4         3.5           69.8 

 

    9        S        13.7         3.6           79.8 

              NS       15.3         4.0           78.9 

              C        12.5         3.3           73.1 

 

    10       S        13.2         3.5           83.3 

              NS       11.0         2.9           81.8 

              C        11.4         3.0           76.2 

----------------------------------------------------------- 

 

Table 3 also provides the cumulative 

percent of total variance (of 379 variables) 

explained by the modes for each sample, across 

successive modes.  Indicated using blue, para-

doxical confounding exists when the cumulative 

value of this performance index for the C 

sample falls outside of the domain defined by 

the S and NS samples.  All factors clearly reveal 

paradoxical confounding, and the effect was 

always underestimation of explained variation. 

In addition to examining omnibus 

performance results of the current ten-mode 

solution, it is instructive to examine internal 

measurement properties of the individual 

modes.  If the structure underlying the modes 

(reflected by the relationship of the 379 

measurements of 500 mb heights to the mode 

score) is parallel, then the mode scores for the S,  

 

 

 

NS and C samples will be internally consistent 

(i.e., measure the same underlying construct), 

and a one-factor PCA of the three mode scores 

should explain most of the variation (theoretical 

maximum=100%), coefficient Alpha (positively 

related to the mean item-total correlation and 

the number of measures in the index) for the 

resulting factor score should be high (theoretical 

maximum=1.0), and the root-mean-squared-

residual, or RMSR (an index of the average 

error in estimating the actual inter-measure 

correlation based on the mode structure) of the 

resulting factor score should be low (theoretical 

minimum=0).  Seen below, the ten confounded 

current modes have poor internal measurement 

properties even by social science standards—for 

example, for personality surveys with modes 

measured using a fraction as many measures.
3 

  Table 4: Internal Measurement Properties of Ten CPC Modes 

 Principal              Percent of      

 Component  Eigenvalue   Variance   Alpha    RMSR 

 ---------  ----------  ----------  -----   ------ 

     1        1.89        63.3      0.710   0.2772            

     2        1.82        60.5      0.674   0.2913            

     3        2.22        74.1      0.825   0.1749            

     4        1.71        57.1      0.625   0.2744            

     5        1.54        51.4      0.527   0.2771            
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     6        1.42        47.2      0.440   0.1812            

     7        1.45        48.5      0.469   0.3011            

     8        1.96        65.2      0.734   0.1805            

     9        1.63        54.2      0.577   0.2293            

     10       1.56        52.0      0.539   0.2404            

 ------------------------------------------------- 

 

Empirical results clearly demonstrate that 

current state-of-the-art models of modes of northern 

hemisphere upper-air variability are confounded by 

Simpson’s paradox, underestimate model 

performance and phenomenon effect strength, and 

produce modes having poor measurement 

properties.  Because data for only one month were 

used in this demonstration, these analyses represent 

a “best case scenario.”  Prior research first 

smoothed data over successive three month periods 

prior to conducting PCA: because the reliability of a 

composite exceeds the reliability of the constituents, 

smoothed scores will result in lower volatility (i.e., 

less extreme outliers) and weaker inter-measure 

correlations, eigenvalues, and measurement 

properties.   

Theoretical consideration of current state-of-

the-art models of modes also is not compelling.  

First, current modes are non-granular: postulating 

that a total of only ten modes underlie northern 

hemisphere upper-air variability is relatively 

simplistic compared with complexity underlying 

many large natural systems.  Second, current modes 

are nonparsimonious, because computing an 

omnibus mode score requires (in the scoring 

formula) the use of all geopotential height 

measures.  Third, low parsimony makes current 

mode scores robust: because many constituents 

(grid locations) are included in the scoring formula, 

positive changes in some constituents are offset by 

negative changes in others, so mode scores are 

insensitive.  Finally, by formulation PCA is 

designed to produce linear models (modes), yet the 

present results failed to reveal strong linear modes 

as indicated by modest eigenvalues: there is 

therefore discordance between methodology (PCA), 

data (paradoxically confounded), method (how PCA 

was conducted), and objective (identifying 

psychometrically sound measures of major modes 

of northern hemisphere upper-air variability). 

 

Unconfounded Measurement 

of Major Modes 

Theoretical and empirical limitations of the 

original solution motivated development of a new 

methodology for identifying superior modes, which 

eliminates problems discussed earlier.  Our 

proprietary method constitutes a theoretical shift in 

the way teleconnections are conceptualized, and a 

search algorithm.  The theoretical shift necessitates 

an ipsative standardization of geopotential height 

data prior to conducting PCA.
4
  The application of 

our algorithm involved searching for homogeneous 

spatial areas within which geopotential height 

measurements are highly related. Constraints 

included that independent application of PCA to the 

S, NS and C samples yields comparable, excellent 

macro performance (strong eigen-values) and 

internal measurement properties across samples, 

and that mode constituents are physically 

contiguous.  Manually applied to January data the 

algorithm yielded 46 new modes summarized below 

(labels are nominal placeholders), ordered by 

percent of variance explained (i.e., decreasing 

linearity) for the stationary sample.  For Sample, 

S=stationary, NS=nonstationary, and C=combined 

S and NS data.  M is the number of geopotential 
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height measures (grid locations) constituting the 

mode.  Eigen indicates the eigenvalue of the mode 

for a one-factor PCA solution, and Var is the 

associated variance explained (100%xEigen/M). 

The theoretical upper-bound for internal consis-

tency is Alpha=1, and the theoretical lower-bound 

for root-mean-square-error is RMSR=0.  Finally, 

cumulative total eigenvalue, number of height 

measures, and total variance explained are also 

provided across successive modes. 

 

               Table 5: Principal Components Analysis of Unconfounded January 500 mb 

                                     Geopotential Height Data, Separately by Series 

                                                    Cumulative Totals 

                                              -------------------- 

Mode  Sample  M  Eigen   Var   Alpha   RMSR   Eigen    M    Var 

 J      S     3  2.866   95.5  .977   .0331   2.866    3    95.5 

        NS       2.831   94.4  .970   .0386   2.831         94.4 

        C        2.844   94.8  .973   .0364   2.844         94.8 

  

 H      S     3  2.840   94.7  .972   .0412   5.706    6    95.1 

        NS       2.819   94.0  .968   .0471   5.650         94.2 

        C        2.827   94.2  .969   .0445   5.671         94.5 

 

 PP     S     3  2.826   94.2  .969   .0360   8.532    9    94.8 

        NS       2.641   88.0  .932   .0685   8.291         92.1 

        C        2.761   92.0  .957   .0476   8.432         93.7 

 

 MM     S     3  2.803   93.4  .965   .0337   11.335   12   94.5 

        NS       2.743   91.4  .953   .0433   11.034        92.0 

        C        2.773   92.4  .959   .0380   11.205        93.4 

 

 P      S     4  3.731   93.3  .976   .0404   15.066   16   94.2 

        NS       3.575   89.4  .960   .0608   14.609        91.3 

        C        3.651   91.3  .968   .0499   14.856        92.8 

 

 L      S     3  2.795   93.2  .963   .0558   17.861   19   94.0 

        NS       2.729   91.0  .950   .0735   17.338        91.3 

        C        2.790   93.0  .962   .0568   17.646        92.9 

 

 NN     S     3  2.793   93.1  .963   .0406   20.654   22   93.9 

        NS       2.676   89.2  .939   .0562   20.014        91.0 

        C        2.748   91.6  .954   .0464   20.394        92.7 

 

 M      S     4  3.724   93.1  .975   .0416   24.378   26   93.8 

        NS       3.551   88.8  .958   .0603   23.565        90.6 

        C        3.604   90.1  .963   .0575   23.998        92.3 

 

 Q      S     3  2.789   93.0  .962   .0541   27.167   29   93.7 

        NS       2.613   87.1  .926   .0992   26.178        90.3 

        C        2.707   90.2  .946   .0750   26.705        92.1 

  

 YY     S     3  2.788   92.9  .962   .0411   29.955   32   93.6 

        NS       2.663   88.8  .937   .0566   28.841        90.1 

        C        2.729   91.0  .950   .0474   29.434        92.0 
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 I      S     3  2.785   92.8  .961   .0511   32.740   35   93.5 

        NS       2.725   90.8  .950   .0720   31.566        90.2 

        C        2.755   91.8  .955   .0612   32.189        92.0 

 

 CC     S     3  2.775   92.5  .960   .0492   35.515   38   93.5 

        NS       2.653   88.4  .935   .0677   34.219        90.1 

        C        2.717   90.6  .948   .0577   34.906        91.9 

 

 G      S     3  2.773   92.5  .959   .0586   38.288   41   93.4 

        NS       2.802   93.4  .965   .0540   37.021        90.3 

        C        2.788   92.9  .962   .0563   37.694        91.9 

 

 K      S     3  2.773   92.4  .959   .0561   41.061   44   93.3 

        NS       2.672   89.1  .939   .0875   39.693        90.2 

        C        2.703   90.1  .945   .0764   40.397        91.8 

 

 JJ     S     6  5.544   92.4  .984   .0348   46.605   50   93.2 

        NS       5.236   87.3  .971   .0685   44.929        90.0 

        C        5.360   89.3  .976   .0568   45.757        91.5 

    

 WW     S     3  2.770   92.3  .959   .0547   49.375   53   93.2 

        NS       2.675   89.2  .939   .0581   47.604        89.8 

        C        2.722   90.7  .949   .0483   48.479        91.5 

 

 R      S     3  2.769   92.3  .958   .0617   52.144   56   93.1 

        NS       2.869   95.6  .977   .0358   50.473        90.1 

        C        2.843   94.8  .972   .0422   51.322        91.6 

 

 O      S     3  2.764   92.1  .957   .0646   54.908   59   93.1 

        NS       2.864   95.5  .976   .0373   53.337        90.4 

        C        2.828   94.2  .970   .0468   54.150        91.8 

 

 XX     S     3  2.763   92.1  .957   .0453   57.671   62   93.0 

        NS       2.730   91.0  .951   .0498   56.067        90.4 

        C        2.744   91.5  .953   .0474   56.894        91.8 

   

 T      S     3  2.756   91.9  .956   .0613   60.427   65   93.0 

        NS       2.694   89.8  .943   .0801   58.761        90.4 

        C        2.715   90.5  .948   .0731   59.609        91.7 

 

 F      S     5  4.585   91.7  .977   .0437   65.012   70   92.9 

        NS       4.393   87.9  .965   .0742   63.154        90.2 

        C        4.471   89.4  .970   .0612   64.080        91.5 

 

 EE     S     3  2.749   91.6  .954   .0426   67.761   73   92.8 

        NS       2.529   84.3  .907   .0898   65.683        90.0 

        C        2.658   88.6  .936   .0608   66.738        91.4 

 

 2      S     3  2.743   91.4  .953   .0609   70.504   76   92.8 

        NS       2.599   86.6  .923   .0844   68.282        89.8 

        C        2.627   87.6  .929   .0824   69.365        91.3 

 

 B      S     6  5.472   91.2  .981   .0535   75.976   82   92.7 

        NS       5.352   89.2  .976   .0773   73.634        90.0 

        C        5.399   90.0  .978   .0654   74.764        91.2 
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 ZZ     S     3  2.727   90.9  .950   .0464   78.703   85   92.6 

        NS       2.787   92.9  .962   .0422   76.421        89.9 

        C        2.738   91.3  .952   .0450   77.502        91.2 

 

 E      S     4  3.634   90.8  .966   .0511   82.337   89   92.5 

        NS       3.526   88.2  .955   .0697   79.947        89.8 

        C        3.567   89.2  .960   .0606   81.069        91.1 

 

 RR     S     3  2.723   90.8  .949   .0555   85.060   92   92.5 

        NS       2.611   87.0  .925   .0813   82.558        89.7 

        C        2.658   88.6  .936   .0694   83.727        91.0 

 

 D      S     3  2.721   90.7  .949   .0782   87.781   95   92.4 

        NS       2.807   93.6  .966   .0521   85.365        89.9 

        C        2.724   90.8  .949   .0758   86.451        91.0 

 

 C      S     4  3.605   90.1  .964   .0566   91.386   99   92.3 

        NS       3.667   91.7  .970   .0500   89.032        89.9 

        C        3.637   90.9  .967   .0537   90.088        91.0 

 

 U      S     3  2.703   90.1  .945   .0648   94.089   102  92.2 

        NS       2.746   91.5  .954   .0624   91.778        90.0 

        C        2.727   90.9  .950   .0631   92.815        91.0 

 

 LL     S     3  2.695   89.8  .943   .0603   96.784   105  92.2 

        NS       2.599   86.6  .923   .0832   94.377        90.0 

        C        2.680   89.3  .940   .0646   95.495        90.9 

 

 TT     S     3  2.687   89.6  .942   .0565   99.471   108  92.1 

        NS       2.840   94.7  .972   .0271   97.217        90.0 

        C        2.780   93.3  .964   .0345   98.275        91.0 

 

 V      S     3  2.687   89.6  .942   .0845   102.158  111  92.0 

        NS       2.659   88.6  .936   .0922    99.876       90.0 

        C        2.662   88.7  .937   .0914   100.937       90.9 

 

 HH     S     3  2.683   89.4  .941   .0567   104.841  114  92.0 

        NS       2.567   85.6  .916   .0994   102.443       89.9 

        C        2.615   87.2  .926   .0797   103.552       90.8 

 

 UU     S     3  2.681   89.4  .941   .0536   107.522  117  91.9 

        NS       2.638   87.9  .931   .0757   105.081       89.8 

        C        2.667   88.9  .938   .0623   106.219       90.8 

 

 GG     S     3  2.675   89.2  .939   .0627   110.197  120  91.8 

        NS       2.723   90.8  .949   .0540   107.804       89.8 

        C        2.714   90.5  .947   .0525   108.933       90.8 

 

 1      S     3  2.673   89.1  .939   .0603   112.870  123  91.8 

        NS       2.771   92.4  .959   .0438   110.575       89.9 

        C        2.747   91.6  .954   .0473   111.680       90.8 

 

 II     S     3  2.672   89.1  .939   .0578   115.542  126  91.7 

        NS       2.745   91.5  .954   .0427   113.320       89.9 

        C        2.706   90.2  .946   .0502   114.386       90.8 
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 DD     S     4  3.562   89.1  .959   .0616   119.104  130  91.6 

        NS       3.540   88.5  .957   .0588   116.860       89.9 

        C        3.547   88.7  .957   .0595   117.933       90.7 

  

 VV     S     3  2.656   88.5  .935   .0715   121.760  133  91.5 

        NS       2.728   90.9  .950   .0479   119.588       89.9 

        C        2.717   90.6  .948   .0547   120.650       90.7 

 

 Y      S     3  2.652   88.4  .934   .0941   124.412  136  91.5 

        NS       2.791   93.0  .962   .0555   122.379       90.0 

        C        2.680   89.3  .940   .0864   123.330       90.7 

 

 3      S     4  3.530   88.3  .956   .0733   127.942  140  91.4 

        NS       3.623   90.6  .965   .0539   126.002       90.0 

        C        3.559   89.0  .959   .0671   126.889       90.6 

 

 FF     S     3  2.646   88.2  .933   .0987   130.588  143  91.3 

        NS       2.701   90.0  .945   .0835   128.703       90.0 

        C        2.649   88.3  .934   .0972   129.538       90.6 

 

 A      S     5  4.357   87.1  .963   .0777   134.945  148  91.2 

        NS       4.538   90.8  .975   .0706   133.241       90.0 

        C        4.414   88.3  .967   .0770   133.952       90.5 

 

 

 SS     S     3  2.603   86.8  .924   .0778   137.548  151  91.1 

        NS       2.755   91.8  .955   .0471   135.996       90.1 

        C        2.652   88.4  .934   .0676   136.604       90.5 

 

 BB     S     4  3.473   86.8  .949   .0656   141.021  155  91.0 

        NS       3.612   90.3  .964   .0566   139.608       90.1 

        C        3.514   87.8  .954   .0645   140.118       90.4 

------------------------------------------------------------------ 

 

There is no evidence of paradoxical 

confounding (performance results for C always fall 

between results for S and NS), and the percentage 

of variance explained, Alpha, and RMSR meet 

psychometric criteria for “good to excellent” fit for 

exploratory PCA models.
1,3

  We also examined 

internal measurement proper-ties of the individual 

modes via one-factor PCA of the three sample 

scores (S, NS, C), and analysis revealed virtually 

perfect measurement: for every mode, percent of 

total variance (of M measures) explained > 99.9%; 

Alpha > 0.99, and RMSR < 0.0002.  We attempted 

to model the original ten modes using the new 46 

modes, and vice versa, using multiple regression 

analysis, but no satisfactory models were identified: 

the original ten modes and the new 46 modes are 

not related to each other. 

 

 

Considered together these findings clearly 

show that the 46 new and unique modes eliminate 

every empirical problem identified for the original 

ten modes: there is no evidence of Simpson’s 

paradox (S and NS data may be combined without 

inducing confounding); model performance and 

phenomenon effect strength are not erroneously 

misestimated (estimates from all samples are 

convergent); and mode scores exhibit ideal 

measurement properties. The new modes also 

address all theoretical concerns identified for the 

original ten modes: granularity increased 4.6-fold; 

the new modes are parsimonious (factor weighting 

coefficients are all approximately one in absolute 

magnitude, each grid location appears on only one 

mode); mode scores are sensitive (composed of six 

or fewer strongly related grid locations, small 
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changes in geopotential heights are easily 

detectable); and the modes are extremely well 

modeled by PCA, representing a set of nearly 

perfectly linear measures. 

Qualitative Interpretation of Ipsative Modes 

Figure 4 locates the ipsative modes on a 

polar projection map of the northern hemisphere.

 

 

 

                                 Figure 4: Polar projection Map of the Ipsative Modes  
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The principal-component-derived CPC 

modes of upper-air variability listed in Table 2 are 

highly consistent with the modes identified in the 

original principal components analysis
2
 of 700 mb 

height data, and have counterparts in the ipsative 

modes developed presently.   

The first mode, North Atlantic Oscillation 

(NAO), had strong positive coefficients for grid 

points over Greenland, corresponding to ipsative 

mode U.  NAO also had strong negative coefficients 

for grid points in the North Atlantic, west of the 

Azores (ipsative mode VV); Manchuria (ipsative 

mode H); and the central plains of the US (between 

ipsative factors EE and 1).  

  The second mode, East Atlantic Pattern 

(EA), had strong positive coefficients for grid points 

over North Africa (ipsative mode DD), and in the 

Atlantic east of Cuba (ipsative mode F).  EA also 

had strong negative coefficients for grid points in 

the North Atlantic, east of Labrador and south of 

Greenland (ipsative mode FF).  

 The West Pacific Pattern (WP) had strong 

positive coefficients for grid points in the Philippine 

Sea (ipsative mode D), and strong negative 

coefficients for grid points just east of Kamchatka 

(ipsative mode ZZ). 

 The East Pacific/North Pacific Pattern 

(EP/NP) had strong positive coefficients for grid 

points over southeast Alaska (between ipsative 

modes GG and 2).  EP/NP also had strong negative 

coefficients for grid points in the North Pacific 

south of the Aleutian Islands (ipsative mode TT), 

and near James Bay in Canada (ipsative mode M). 

 The Pacific/North American Pattern (PNA) 

had strong positive coefficients for grid points west 

of Hawaii (ipsative mode A), and in the Pacific 

Northwest of the US (ipsative mode LL).  PNA also 

had strong negative coefficients for grid points in 

the North Pacific southwest of the Aleutian Islands 

(ipsative mode O), and over the southeast US 

(ipsative mode EE). 

 The East Atlantic/West Russia Pattern 

(EA/WR) had strong positive coefficients for grid 

points near England (between ipsative factors II and 

UU), and in Siberia north of Manchuria (ipsative 

mode G).  EA/WR also had strong negative 

coefficients for grid points northeast of the Caspian 

Sea (ipsative mode JJ). 

 The Scandinavian Pattern (SCA) had strong 

positive coefficients for grid points in Central 

Russia (between ipsative modes G and P), and in 

the North Atlantic, northwest of Spain (ipsative 

mode WW).  SCA also had strong negative 

coefficients for grid points near Fin-land (between 

ipsative modes XX and JJ). 

 The Tropical/Northern Hemisphere Pat-tern 

(TNH) had strong positive coefficients for grid 

points in the North Pacific west of the Pacific 

Northwest of the US (ipsative mode SS), and near 

the Bahamas (ipsative mode MM).  TNH also had 

strong negative coefficients for grid points near 

James Bay in Canada (ipsative mode M). 

 The Polar/Eurasia Pattern (POL) had strong 

positive coefficients for grid points in eastern 

Mongolia (near ipsative modes G and H), and 

strong negative coefficients for grid points in the 

Arctic Ocean north of eastern Siberia (ipsative 

mode HH). 

Finally, the Pacific Transition Pattern 

(PT)—which did not materialize in either of the 

original principal component analyses for the month 

of January, had for the month of September strong 

positive coefficients for grid points over the 

northern plains of the US (ipsative mode 1), and 

west of Hawaii (ipsative mode A).  PT also had 

strong negative coefficients for grid points in the 

North Pacific south of Alaska (ipsative mode C), 

and over the eastern US (ipsative mode V). 

Predicting Temperature Anomalies 

To determine whether predictive validity is 

augmented by nonconfounded measurement, we 

assessed whether statistical models that use the 46 

newly discovered (vs. original ten) modes of 

northern hemisphere upper-air variability produce 

more accurate temperature forecasting.  We used 

classification tree analysis, or CTA
5
, to predict 

whether mean temperature in January, February, 

and March fell above or below the median 

temperature for the years 1950-2007, for 48 

contiguous US states.  Falling within the optimal 

data analysis paradigm, CTA explicitly maximizes 
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model accuracy when applied to a given sample or 

series.
6
  Proprietary software was used to 

automatically identify CTA models that weighted 

more heavily observations having greater deviations 

from the median temperature: of course, depending 

on the application, “natural weights” such as inches 

of rain, may be used instead of, or in conjunction 

with, “tailored weights” such as we used.
6
  The 

weighted CTA algorithm was performed using three 

sets of attributes: ipsative modes (46 modes 

discovered presently); published normative modes 

obtained from the CPC, with PT omitted due to 

inactivity in January; and computed normative 

modes obtained from our replication of the CPC 

analysis using only January data. 

The findings of these analyses are 

summarized in Table 6.  Tabled are modes (see 

Table 5 for coding) emerging with p<0.05 in the 

weighted CTA model.  The weights were deter-

mined by sorting the observations by monthly mean 

temperature, and adding 1.5 for every position 

above or below the median.  WESS is a 

standardized measure of weighted effect strength, 

on which 0 is the level of weighted predictive 

accuracy that is expected by chance, and 100 

represents errorless (perfect) weighted predictive 

accuracy.
6
  A dash (-) indicates no solution was 

identified having p<0.05 for any mode; a missing 

row indicates no solution was identified for any data 

type (ipsative, published, or computed); and an 

asterisk (*) indicates that results for the indicated 

modes were identical to findings for the ipsative 

modes. 

Models derived using ipsative modes to 

predict temperature anomalies in the United States 

convincingly and broadly outperformed 

corresponding models derived with normative 

modes, when considered from the perspective of 

predictive accuracy, and quantified using the 

standardized WESS metric: 

 For a given state and month (corresponding 

to individual rows in Table 6), the ipsative 

mode model yielded the greatest WESS 117 

times (91.4%), versus 5 and 6 (3.9% and 

4.7%) times for published and computed 

normative mode models, respectively. 

 In January the ipsative mode models always 

achieved greater WESS than the 

corresponding normative mode models.  In 

February the ipsative mode models almost 

always (93.2% of the time) achieved 

greatest WESS (44 states had models based 

on February data), and even as the data aged 

substantially—for March, ipsative models 

usually (78.1% of the time) achieved 

greatest WESS (32 states had models using 

March data). 

 For January data, using ipsative modes, all 

48 states had CTA models with 

WESS>90%, versus two states with CTA 

models involving published normative 

modes, and one state CTA model involving 

computed normative modes. For February 

data, using ipsative modes, a dozen states 

had CTA models with WESS>90% (and 

three for March data), versus none using 

normative modes. 
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Table 6: Temperature Prediction via Weighted CTA by US State, for January, February, and March of 2008, 

            Using Ipsative mode Scores, and Published and Computed Raw Mode Scores 

                                                     Published                      Computed 

   State       Month  Ipsative Modes    WESS       Normative Modes     WESS       Normative Modes    WESS 

-------------  -----  ----------------  -----   ---------------------  -----   --------------------  ----- 

Alabama         Jan   B,EE,JJ,MM,2      97.43   EAWR,NAO,PNA           71.30   2,3,9                 68.44 

                Feb   A,C,I,EE,PP       93.80   NAO,SCA                57.74   3,6                   62.59 

                Mar   DD,GG             51.55   -                      -       -                     - 

Arkansas        Jan   C,R,EE,MM,XX,2    98.54   EPNP,PNA,WP            74.63   3,5,8                 80.36 

                Feb   CC,DD,RR,VV       88.90   EPNP,NAO               63.35   3,5,10                79.31 

                Mar   II                38.63   -                      -       -                     - 

Arizona         Jan   C,H,U,YY,1        93.22   NAO,POL,WP             75.80   2,6                   84.40 

                Feb   F,II,PP           72.65   -                      -       -                     - 

California      Jan   C,BB,GG,VV,WW,YY  98.89   PNA,WP                 52.83   2,6                   77.79 

                Feb   RR,TT             74.87   EAWR,EPNP,PNA          76.04   -                     - 

Colorado        Jan   I,V,T,SS,WW       95.62   -                      -       2,6                   79.60 

                Feb   M,O,P,Q,BB,3      91.70   -                      -       -                     - 

                Mar   J,SS,1            72.76   NAO                    39.74   1,5                   57.69 

Connecticut     Jan   E,K,LL,2          96.43   EA,EAWR,EPNP,NAO,WP    86.62   3,4,5                 74.52 

                Feb   PP,2              50.44   -                      -       -                     -     

Delaware        Jan   V,EE,MM,2         95.15   EAWR,EPNP,NAO,WP       84.63   3,5,7                 71.71 

                Feb   HH,JJ,PP,SS       73.41   NAO                    42.84   3                     44.89 

                Mar   J                 37.97   -                      -       -                     - 
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Florida         Jan   A,G,O,MM,PP,YY    98.95   EAWR,EPNP,PNA          89.19   2,3,6                 82.23 

                Feb   D,Q,CC,LL,RR      93.22   NAO                    40.50   5                     63.06 

                Mar   K,DD,EE,GG        75.80   -                      -       -                     - 

Georgia         Jan   P,EE,MM,PP,2      98.13   EAWR,EPNP,PNA          84.04   2,3,9                 70.66 

                Feb   A,C,H,EE,PP       92.34   NAO,SCA                57.16   3,5                   73.47 

Iowa            Jan   H,L,V,2           93.51   EPNP,SCA,WP            76.74   3,4,7,8               84.57 

                Feb   D,DD,JJ           80.95   EAWR                   49.09   3,7                   44.18 

                Mar   J,HH,LL,PP,1      87.26   PNA                    41.15   -                     - 

Idaho           Jan   C,I,MM,SS,ZZ      94.56   -                      -       2,3,6                 81.59 

                Feb   D,Q,R,BB          86.91   PNA                    60.78   -                     -     

                Mar   D,R,Y,RR          93.86   NAO,PNA,SCA            83.99   1,5                   63.82 

Illinois        Jan   B,D,E,V,EE,WW,2   99.36   EPNP,PNA,WP            83.52   3,4,8                 86.62 

                Feb   D,DD,GG,PP        83.40   EAWR,NAO,SCA           66.04   -                     - 

                Mar   -                 -       PNA                    39.86   -                     - 

Indiana         Jan   D,E,K,V,EE,WW     96.61   EPNP,PNA,WP            82.70   3,5,8                 82.35 

                Feb   K,U,NN,RR         71.01   EAWR,NAO,POL           73.58   3                     40.44 

                Mar   L,II              57.04   PNA                    39.39   1,10                  57.22 

Kansas          Jan   F,Q,GG,WW,1       96.73   EPNP,WP                59.44   1,3,6,9               69.43 

                Feb   V,CC,FF,UU        80.19   EAWR,NAO               60.55   3,6,7,9               82.82 

                Mar   D,H,FF            73.00   -                      -       -                     - 
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Kentucky        Jan   E,J,V,PP,2        96.20   EAWR,EPNP,NAO          79.37   3,5                   73.82 

                Feb   F,I,Q,U,RR        96.55   NAO                    53.36   3,6                   60.14 

Louisiana       Jan   U,V,EE,LL,3       96.20   NAO,PNA                69.37   1,2,6                 84.22 

                Feb   A,C,EE,PP         79.37   NAO                    53.71   3,5,6,10              79.19 

                Mar   D,DD              52.95   -                      -       -                     - 

Massachusetts   Jan   E,I,K,LL,2        97.72   EA,EAWR,EPNP,NAO,WP    90.06   3,4,5                 73.70 

                Mar   -                 -       -                      -       2                     38.92 

Maryland        Jan   E,G,L,V,RR,UU     98.54   EAWR,EPNP,WP           84.28   3,5,8                 71.30 

                Feb   Y,RR,XX           69.96   NAO,POL                55.00   3                     46.41 

Maine           Jan   E,O,LL,2          95.21   EPNP,WP                61.60   3,8                   65.81 

                Feb   Q,RR,1            76.04   -                      -       7                     39.63 

                Mar   Q                 39.10   -                      -       -                     - 

Michigan        Jan   D,E,GG,II         97.37   EAWR,EPNP,WP           81.71   3,5,7,8               86.56 

                Feb   I,DD,GG,HH        82.76   EAWR,NAO               53.65   3,7                   51.43 

                Mar   J,L               57.51   PNA,SCA                59.73   2                     44.18 

Minnesota       Jan   C,E,CC,1,2        95.73   EAWR,EPNP,PNA,WP       88.49   4,5,8                 79.78 

                Feb   F,Q,NN,RR         78.08   EAWR                   44.71   7,10                  61.19 

                Mar   J,O,1             82.70   PNA,WP                 56.81   2                     40.68 

Missouri        Jan   D,E,F,EE,GG       94.92   EPNP,PNA,WP            85.74   3,4,7,8               93.98 

                Feb   EE,RR,SS,TT,VV    93.44   EAWR,EPNP,NAO,POL      77.93   3,5,7                 76.52 
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Mississippi     Jan   I,V,EE,2          96.20   EPNP,NAO,PNA           86.91   1,2,6                 78.73 

                Feb   A,C,EE,PP         79.54   NAO                    52.78   3,6,10                71.95 

                Mar   DD,GG             51.32   -                      -       -                     - 

Montana         Jan   E,F,L,ZZ,2        96.67   EPNP,PNA,SCA,WP        84.04   2,6,9                 75.45 

                Feb   A,G,Q,R           85.62   PNA                    47.05   7                     49.80 

                Mar   CC,GG,TT,3        80.60   PNA                    45.35   1                     39.22 

North Carolina  Jan   E,Y,MM,XX         95.38   EAWR,EPNP,PNA          86.15   3,5                   71.60 

                Feb   D,T,Y,RR,VV       89.83   NAO,SCA                54.94   3,9                   56.52 

North Dakota    Jan   C,E,L,WW          96.90   EPNP,PNA,SCA,WP        91.41   1,3,5,7               80.89 

                Feb   D,Q,II,RR         94.21   EAWR,PNA               61.84   7                     45.35 

                Mar   J,GG,1            77.91   PNA                    43.83   -                     - 

Nebraska        Jan   A,V,DD,1,2        95.56   EPNP,WP                57.10   1,3,9                 70.19 

                Feb   Q,DD,RR,TT        86.44   EAWR                   43.83   -                     - 

                Mar   D,LL              74.81   -                      -       -                     - 

New Hampshire   Jan   E,K,JJ,LL,2       97.49   EA,EPNP,WP             71.89   3,5,7                 70.72 

                Feb   -                 -       -                      -       7                     39.28 

                Mar   -                 -       -                      -       2                     40.56 

New Jersey      Jan   E,K,H,LL          98.48   EA,EAWR,EPNP,NAO,WP    87.38   3,4,5                 76.74 

                Feb   Y,RR,1            70.72   -                      -       3                     40.68 
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New Mexico      Jan   G,T,RR,UU,ZZ      97.84   EA,NAO                 64.64   1,6                   84.16 

                Feb   F,G,RR,VV,1       88.43   NAO                    43.25   6                     42.84 

                Mar   G,Y,3             73.52   -                      -       -                     - 

Nevada          Jan   C,I,V,SS,ZZ       96.43   -                      -       2,3,6                 86.62 

                Feb   RR,TT,WW          76.62   EA,PNA                 60.43   -                     - 

                Mar   1                 38.81   NAO                    41.44   -                     - 

New York        Jan   II,MM,XX,2        97.02   EA,EAWR,EPNP,NAO,WP    89.42   3,4,5                 77.79 

                Mar   L                 38.98   -                      -       -                     - 

Ohio            Jan   E,L,V,RR          96.67   EAWR,EPNP,WP           80.65   3,5,8                 79.43 

                Feb   D,GG,HH,PP        81.71   NAO,POL                59.03   3                     39.98 

                Mar   L,II              56.22   -                      -       1,10                  55.93 

Oklahoma        Jan   F,K,Q,DD,E,2      96.90   EA,EPNP                59.15   8                     63.35 

                Feb   H,EE,RR,TT,VV     85.86   EPNP,NAO               67.15   3,6,7                 74.17 

                Mar   D,J               49.09   -                      -       -                     - 

Oregon          Jan   C,I,EE,MM,PP      91.88   NAO,PNA,WP             83.99   2,3,5                 81.18 

                Feb   Q,R,NN,3          86.15   PNA                    61.72   1,3,7                 63.35 

                Mar   F,R,V,SS,2        82.58   NAO,PNA,POL            69.08   -                     - 

Pennsylvania    Jan   E,J,HH,YY         96.96   EAWR,EPNP,NAO,WP       85.80   3,5,8                 72.36 

                Feb   Q,RR              58.45   NAO                    43.42   3,7                   56.81 

                Mar   L                 39.80   -                      -       -                     - 
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Rhode Island    Jan   E,K,LL,2          96.84   EA,EAWR,EPNP,NAO,WP    86.50   3,4,5                 75.34 

                Feb   G,K,2             73.52   -                      -       -                     - 

                Mar   J,Q,CC,EE,XX      71.54   -                      -       -                     - 

South Carolina  Jan   Q,R,MM,RR         96.73   EAWR,EPNP,PNA          85.91   2,3,9                 70.89 

                Feb   D,Q,JJ,RR         90.01   NAO,SCA                55.29   3,6                   62.01 

South Dakota    Jan   C,E,L,2           97.25   EPNP,SCA,WP            88.02   5,8                   62.30 

                Feb   D,Q,II,RR         92.69   EAWR                   47.69   7                     42.20 

                Mar   D,J,DD,1          87.67   -                      -       -                     - 

Tennessee       Jan   I,Q,V,EE,3        94.86   EAWR,EPNP,NAO,PNA      77.85   3,5                   69.02 

                Feb   D,T,U,RR,TT       87.38   NAO                    53.13   3,6                   56.75 

Texas           Jan   C,EE,GG,NN,RR     92.17   NAO,PNA,POL            68.73   1,2,6                 82.99 

                Feb   A,M,JJ,RR,WW,3    94.62   NAO                    51.96   3,5,10                74.34 

                Mar   Y,FF,LL,PP        72.36   -                      -       -                     - 

Utah            Jan   C,I,V,BB,SS,ZZ    96.32   -                      -       1,2,6                 84.34 

                Feb   Q,CC,DD,NN        80.25   PNA                    44.59   -                     - 

                Mar   1                 41.61   NAO                    43.13   1,5                   58.62 

Virginia        Jan   E,H,L,V,RR        97.37   EAWR,EPNP,PNA          85.68   3,5                   72.06 

                Feb   A,H,Y,RR,VV       92.87   NAO                    49.50   3,5,9                 56.98 

Vermont         Jan   E,CC,JJ,LL,2      99.12   EA,EPNP,NAO,WP         73.41   3,5,7                 71.30 

                Mar   Q                 42.72   -                      -       -                     - 

 



Optimal Data Analysis    Copyright 2010 by Optimal Data Analysis, LLC 

2010, Vol. 1, Release 1 (September 17, 2010)  2155-0182/10/$3.00p 

 

 

 

88 
 

Washington      Jan   L,O,CC,EE,VV      97.78   EA,NAO,PNA,WP          91.06   2,5,6                 76.68 

                Feb   M,R,EE,WW         88.37   PNA                    67.45   1,7                   58.56 

                Mar   D,H,PP,TT,XX,2    92.93   PNA                    57.39   -                     -     

Wisconsin       Jan   E,M,GG,UU,ZZ      97.84   EAWR,EPNP,PNA          79.31   3,5,8                 75.04 

                Feb   Q,RR,ZZ,1         74.87   EAWR                   44.54   7                     48.39 

                Mar   L,T,CC,GG,NN      93.10   PNA,SCA                65.81   2                     43.60 

West Virginia   Jan   E,H,V,EE,LL       98.19   EAWR,EPNP,PNA,SCA      83.46   3,5                   76.74 

                Feb   D,T,U,LL,RR,TT    95.91   NAO                    52.54   3                     42.31 

Wyoming         Jan   K,DD,MM,YY,ZZ     92.11   -                      -       2,3,5                 77.50 

                Feb   C,G,Q,DD          84.57   -                      -       -                     - 

                Mar   D,F,LL,SS         89.89   NAO                    43.37   1                     41.03 

---------------------------------------------------------------------------------------------------------- 
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 We statistically contrasted the WESS of 

each pair of these three sets of factors.  If no 

model was found, WESS was assumed to be 

zero. ODA was used to determine which set 

of modes was better at predicting whether or 

not the mean temperature of the states 

exceeded the median. The PTMP pro-

cedure
7
 was used to estimate the exact Type 

I error of each contrast. Analyses indicated 

that ipsative mode models had significantly 

greater WESS than the published or 

computed normative mode models for all 

three months (p’s <0.0001), and that 

normative models could never reliably be 

discriminated from each other by WESS 

(p’s>0.17). 

 As a test of cross-sample generalizability we 

also evaluated a larger field of northern 

hemisphere data.  In the crutem3v dataset 

are 217 locations which have no missing 

data for January, February or March, for the 

years 1948-2007.   As a test of cross-method 

generalizability, temperature predict-ions for 

each location and month were obtained 

using stepwise multiple regression analysis: 

the independent variables were the January 

data, and ipsative, published raw, or 

computed raw modes were used as 

dependent variables. The R
2
 value for each 

model was determined: if no model was 

found, R
2
 was assumed to be zero. Statistical 

comparison via the PTMP procedure 

showed that ipsative modes clearly 

outperformed the other modes (p’s<0.0001).  

Computed raw modes outperformed 

published raw modes in all cases: contrasts 

were statistically significant for January and 

February (p’s<0.0001), but not March 

(p<0.27). 

 

 

 

Predicting Precipitation Anomalies 

As a second investigation of predictive validity we 

assessed whether statistical models that use the 

ipsative modes produce more accurate precipitation 

forecasting.  We used CTA to predict whether mean 

precipitation in January, February, and March fell 

above or below the median precipitation for the 

years 1950-2007, for 48 contiguous US states.  As 

for temperature modeling, the weighted CTA 

algorithm was performed using three sets of 

attributes: the 46 newly discovered ipsative modes; 

published normative modes (obtained from the 

CPC, with PT omitted due to inactivity in January); 

and computed normative modes (obtained from our 

replication of CPC analysis using only January 

data). The findings of these analyses are 

summarized in Table 7.  Tabled are modes (see 

Table 5 for coding) emerging with p<0.05 in the 

weighted CTA model.  The weights were 

determined by the same method as was used in 

predicting temperature anomalies, but total monthly 

precipitation was used for the sort and median. 

As when modeling temperature anomalies, 

models derived using ipsative modes to predict 

precipitation anomalies in the United States 

convincingly and broadly outperformed 

corresponding models derived by normative modes, 

when considered from the perspective of predictive 

accuracy: 

 For a given state and month (corresponding 

to individual rows in Table 7), the ipsative 

mode model yielded the greatest WESS 126 

times (92.6%), versus 5 (3.7%) times each 

for the published and computed normative 

mode models. 
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Table 7: Precipitation Prediction via Weighted CTA by US State, for January, February, and March of 2008, 

            Using Ipsative mode Scores, and Published and Computed Raw Mode Scores 

                                                     Published                      Computed 

   State       Month  Ipsative Modes    WESS       Normative Modes     WESS       Normative Modes    WESS 

-------------  -----  ----------------  -----   ---------------------  -----   --------------------  ----- 

Alabama         Jan   C,O,P,MM,NN       89.01   EA,SCA                 64.47   8                     39.86 

                Feb   A,R,T,V,II        87.03   EA                     39.45   -                     -     

                Mar   I,YY              59.56   -                      -       -                     -     

Arkansas        Jan   C,R,FF,MM,YY      90.01   NAO,PNA                76.27   1,3,9                 80.54 

                Feb   Q                 39.98   -                      -       -                     -     

                Mar   HH                39.28   -                      -       -                     - 

Arizona         Jan   G,LL,SS           73.47   EPNP                   39.63   9                     52.02 

                Feb   I,J,L,1           87.14   EPNP,SCA               62.83   3,5                   71.36 

                Mar   G,Q,T,JJ,SS       84.51   PNA                    38.11   5,7,9                 57.10 

California      Jan   BB,LL,NN,SS,2     94.62   EA                     48.92   3,6,8                 76.33 

                Feb   V,SS,XX           68.79   -                      -       -                     - 

                Mar   C,R,U,SS          84.57   NAO                    44.07   -                     - 

Colorado        Jan   D,EE              59.44   PNA                    52.48   -                     - 

                Feb   NN,XX             65.75   SCA                    45.59   3,7                   59.73 

                Mar   II,SS,3           76.21   PNA                    45.47   -                     -     

Connecticut     Jan   V,BB,XX           87.67   -                      -       5                     42.02 

                Feb   P,HH              77.26   EAWR                   43.54   10                    38.92 

                Mar   G,H,J             51.32   POL                    44.07   -                     - 
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Delaware        Jan   B,RR              57.74   EAWR,NAO               51.49   2                     41.44 

                Feb   C,BB,EE           70.31   -                      -       6                     46.29 

                Mar   CC,DD,EE,PP       90.77   NAO,WP                 55.35   -                     - 

Florida         Jan   F,O,BB,CC,DD      92.11   EA                     43.66   3                     40.62 

                Feb   T,EE,VV,2         94.62   -                      -       -                     -     

                Mar   C,D,O,SS,TT       89.60   -                      -       4,5                   53.54 

Georgia         Jan   O,MM,NN           73.76   EA                     68.32   6,8                   57.63 

                Feb   C,J,T,SS,WW       91.88   -                      -       3                     42.02 

Iowa            Jan   GG,NN             59.38   EAWR,PNA               60.61   1                     49.68 

                Feb   G,I,R,PP          77.97   -                      -       -                     -     

                Mar   T,EE              56.52   -                      -       -                     - 

Idaho           Jan   E,L,T,GG,WW,1     98.48   EPNP,PNA,SCA           75.75   1,6,8,9               86.50 

                Feb   J,M,U,NN,XX       85.86   EA,POL                 64.52   5,7                   62.77 

                Mar   I,U,HH,LL,3       89.54   EA,NAO,WP              80.77   2,4,5                 84.80 

Illinois        Jan   H,Q,R,MM,NN       92.99   PNA                    50.32   9                     46.05 

                Feb   Q,U,BB,HH         81.06   -                      -       7                     39.51 

                Mar   E,J,JJ,UU         87.90   -                      -       -                     - 

Indiana         Jan   F,I,EE,HH,PP      91.23   NAO,PNA                72.59   9                     40.56 

                Feb   R,EE,LL,XX        83.46   -                      -       4,7                   66.45 

                Mar   O,JJ,SS           74.05   -                      -       -                     -     
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Kansas          Jan   E,Y,GG,LL         84.72   -                      -       3,6                   55.91 

                Feb   F,K,M,FF          78.08   -                      -       -                     -     

                Mar   D,H,R,2           81.12   PNA                    41.55   -                     - 

Kentucky        Jan   A,V,HH,PP         89.42   PNA,SCA                69.67   1,6                   79.95 

                Feb   Q,V,II,LL,TT      86.09   -                      -       7                     50.96 

                Mar   G,NN,XX           75.39   -                      -       2                     53.83 

Louisiana       Jan   H,DD,FF,WW        80.77   EA,EPNP                51.61   -                     - 

                Feb   C,P,T             71.24   -                      -       2                     40.09 

                Mar   A,E,K,FF,WW       85.80   -                      -       6,7                   64.87 

Massachusetts   Jan   -                 -       -                      -       2                     39.45 

                Feb   I,SS,WW,1         78.43   -                      -       -                     -     

                Mar   C,G,HH            66.74   POL                    50.85   -                     - 

Maryland        Jan   G,H,WW            69.73   -                      -       -                     - 

                Feb   E,P,Q,YY          88.54   -                      -       6                     42.96 

                Mar   I,HH,RR,VV        94.80   SCA,WP                 53.19   -                     - 

Maine           Jan   HH,WW,YY,2        86.44   -                      -       5                     39.22 

                Feb   J,NN,WW           70.25   -                      -       1,5                   65.40 

                Mar   I,J,HH,SS,1       86.85   POL                    43.78   -                     - 

Michigan        Jan   H,Q,T,GG,MM       86.97   PNA                    50.38   1,6                   53.95 

                Feb   D,DD              68.26   -                      -       -                     -     
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Minnesota       Jan   P,FF,GG           77.62   -                      -       -                     - 

                Mar   Q,YY,3            78.43   -                      -       -                     -     

Missouri        Jan   O,Q,R,EE,SS       89.77   PNA                    51.55   2,3,8                 72.88 

                Feb   Q,U               58.85   -                      -       -                     -     

                Mar   L,JJ              62.77   -                      -       -                     - 

Mississippi     Jan   U,V,MM,XX         91.12   EAWR                   40.50   -                     - 

                Feb   J,NN              48.51   -                      -       -                     -     

                Mar   CC,FF,2           73.12   -                      -       -                     - 

Montana         Jan   L,V,FF,GG,VV      96.90   PNA                    60.08   2,3,5,6               83.23 

                Feb   M,O,P,BB          89.13   EAWR,PNA,POL           76.97   2,7                   71.83 

                Mar   B,H,M,Q,TT        85.62   -                      -       -                     - 

North Carolina  Jan   MM                41.15   WP                     38.98   -                     - 

                Feb   F,L,R,PP,YY       84.40   -                      -       -                     -     

                Mar   G,EE,PP           73.41   -                      -       -                     - 

North Dakota    Jan   C,D,L,HH          83.34   PNA                    46.70   -                     - 

                Feb   L,NN,WW           61.72   -                      -       -                     -     

                Mar   I                 45.35   -                      -       -                     - 

Nebraska        Jan   Q,EE,PP           75.86   -                      -       9                     39.98 

                Feb   M,V,WW,XX         84.34   SCA                    39.28   8,10                  52.02 

                Mar   FF,MM,NN          73.70   PNA                    44.77   -                     - 
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New Hampshire   Jan   Q,HH,WW,2         86.44   -                      -       5                     46.23 

                Feb   NN,WW,2           70.89   -                      -       -                     -     

                Mar   H,R,P,HH          85.74   POL                    48.57   -                     -     

New Jersey      Feb   E,P,U,JJ          77.32   EAWR                   40.68   -                     -     

                Mar   J,P,JJ,2          76.50   POL,SCA                56.52   -                     - 

New Mexico      Jan   O,EE,GG,LL        89.17   -                      -       9                     46.72 

                Feb   A,O,EE,RR,WW      78.08   -                      -       3,6                   51.96 

                Mar   Q,GG,SS           80.19   NAO,PNA                54.88   1,7                   55.52 

Nevada          Jan   U,LL,SS,YY        89.01   -                      -       1                     47.34 

                Feb   V,DD,RR,SS,XX     92.69   -                      -       -                     - 

                Mar   C,G,U,SS          72.82   EA,NAO                 58.09   -                     - 

New York        Mar   D,H,R,HH,NN       87.90   EPNP                   40.39   -                     - 

Ohio            Jan   U,BB,HH,MM        77.85   NAO,PNA,WP             75.39   1,6                   60.08 

                Feb   F,P,R,TT          95.79   EAWR                   39.45   7                     54.24 

                Mar   I,SS              62.83   -                      -       2,9                   55.29 

Oklahoma        Jan   D,L,EE,FF,UU      90.88   WP                     40.68   6,9                   68.73 

                Feb   YY                41.03   -                      -       1,6                   61.48 

                Mar   D,H,Q,II          86.85   -                      -       2,5                   62.77 

Oregon          Jan   D,GG,LL,XX,YY     99.59   EPNP,PNA,SCA           78.61   1,6,8,9               89.66 

                Feb   P,LL,3            72.36   EA,POL                 74.28   6                     45.18 

                Mar   I,V,FF            76.91   EA,NAO                 52.54   2                     44.54 
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Pennsylvania    Jan   J,P,U,MM          69.14   -                      -       -                     - 

                Feb   E,Q,II,TT,WW      90.24   EAWR                   40.56   2,7                   52.07 

                Mar   J,O,SS,XX         79.84   -                      -       3                     39.86 

Rhode Island    Jan   JJ,LL,NN,UU       83.11   -                      -       -                     - 

                Feb   E,P,U             86.15   EAWR                   42.14   -                     - 

                Mar   CC                39.63   EA,POL                 71.60   5,9                   53.42 

South Carolina  Jan   T,JJ              67.45   EA,WP                  74.40   6,8                   54.59 

                Feb   L,R,CC,PP         75.69   -                      -       -                     -     

South Dakota    Jan   Q,FF,TT           76.10   -                      -       -                     - 

                Feb   A,U,LL,ZZ         87.90   -                      -       -                     -     

                Mar   A,H,GG,WW         76.10   -                      -       5,10                  63.30 

Tennessee       Jan   E,P,V,HH,ZZ       90.65   PNA                    68.44   1,2,6                 80.42 

                Mar   I,M               58.27   -                      -       2                     42.02 

Texas           Jan   L,JJ              65.81   EAWR,POL,SCA           50.15   1,6,7,9               88.90 

                Feb   F,V,SS,TT,ZZ      89.95   -                      -       3,7                   59.15 

                Mar   D,J,R,XX,2        87.61   -                      -       5,7,9                 77.56 

Utah            Jan   J,SS,XX           77.32   PNA                    40.04   1                     43.13 

                Feb   B,F,M,DD,XX       91.93   -                      -       3                     49.56 

                Mar   NN,SS,WW          73.47   NAO                    40.33   2                     39.45 

Virginia        Jan   G,I               71.71   -                      -       -                     - 

                Feb   C,Q,NN            79.31   EA                     40.09   6,8                   71.42 

                Mar   F,K,CC,MM,PP,RR   96.08   -                      -       -                     - 
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Vermont         Jan   H,Q,V             77.15   -                      -       5                     49.74 

                Feb   C,J,K,M,FF        87.03   -                      -       -                     -      

                Mar   J                 40.74   EPNP,WP                60.43   -                     - 

Washington      Jan   J,GG,NN,2         90.65   EA,EAWR                52.78   1,9                   57.10 

                Feb   -                 -       EA,POL                 54.35   5,6                   61.84 

                Mar   I,FF              55.58   EA                     45.06   2,10                  60.90 

Wisconsin       Jan   A,MM,PP           76.97   PNA                    47.63   1                     48.39 

                Feb   G,J,P,R           85.33   -                      -       1,7                   59.61 

                Mar   Q,R,YY,1          83.69   -                      -       -                     -     

West Virginia   Jan   HH,MM,3           81.94   EA,NAO,PNA             73.64   1,6,8                 70.72 

                Feb   A,C,Q,R           81.77   -                      -       -                     -     

                Mar   D,G,L,M,JJ        94.16   SCA                    38.63   2                     41.26 

Wyoming         Jan   T,YY,1            85.86   EA,PNA,SCA,WP          79.60   2,9                   59.91 

                Feb   CC,JJ,RR,WW       74.40   SCA                    39.22   -                     - 

                Mar   D,G,BB,HH,TT      86.09   -                      -       6                     41.67 

---------------------------------------------------------------------------------------------------------- 
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 In January, ipsative mode models achieved 

greater WESS than corresponding normative 

mode models 91.3% of the time (46 states 

had models based on January data). 

Similarly, in February the ipsative mode 

models almost always (93.3% of the time) 

achieved greatest WESS (45 states had 

models based on February data), and even as 

data aged substantially—in March, ipsative 

models almost always (93.5% of the time) 

achieved greatest WESS (46 states had 

models based on March data). 

 Using ipsative modes, for January data 12 

states had CTA models with WESS> 90%, 

as did 6 states for February data and 4 states 

for March data.  Zero normative mode 

models achieved this level of WESS in any 

month modeled. 

 We statistically contrasted the WESS of 

each pair of these three sets of modes. If no 

model was found, then WESS was assumed 

to be zero. We used ODA to determine 

which set of modes was better at predicting 

whether the mean precipitation of the states 

exceeded the median, or not. The PTMP 

procedure
7
 was used to estimate the exact 

Type I error for each contrast.  Analyses of 

January data (March and February had 

comparatively sparse data) indicated that the 

ipsative mode model had significantly 

greater WESS than the normative mode 

models (p’s<0.0002), but computed and 

published raw modes were indiscriminable 

(p<0.15). 

 Predicting Export of Arctic Sea Ice 

The export of Arctic sea ice through the 

Fram Strait off northeast Greenland is an important 

factor in the freshwater balance of the North 

Atlantic Ocean, and affects the North Atlantic 

thermohaline circulation.  The January monthly ice 

export at fluxgate a of the Fram Strait
8
 was studied 

using the ipsative modes found here.  The data 

consisted of sea ice area flux for the years 1979-

2002.  Kendall's tau b statistic was used to 

determine the correlation of  modes with ice export, 

and the significant associations are shown in Figure 

5. Negative associations were found with ipsative 

modes U (over Green-land), CC (near Svalbard), 3 

(near Franz Josef Land), XX (off the coast of 

northern Norway), and SS (eastern Pacific 

Ocean).  Positive associations were found with 

ipsative modes UU (Mediterranean Sea south of 

France), WW (North Atlantic Ocean northwest of 

Spain), H (over Manchuria), and BB (east of Japan). 

An example of a pattern with high sea ice 

export is illustrated in Figure 6.  The 500 mb pattern 

in January 1983 yielded the maximal ice export for 

any January in the years of 1979-2002.  Low 500 

mb heights extend from Green-land to Scandinavia 

and western Russia, and another area of low heights 

is found off of the Pacific coast of the USA.  Areas 

of high 500 mb heights are seen over southwest 

Europe and the western Mediterranean Sea, and 

over Mongolia and northeast China. 
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                Figure 5: Ipsative modes and Kendall's Tau b Coefficients with Statistically Significant 

                        (p<.05) Associations with Ice Export at Fram Strait Fluxgate a, Indicated as * 

Recent research
9
 reported no correlation 

between SLP-based NAO and Arctic wintertime 

sea ice export over 1958-1977, and a positive 

correlation of 0.7 over 1978-1997.  An eastern 

shift in NAO centers of variability was sug-

gested to explain this phenomenon.  However, 

for the 500 mb level, ipsative mode U was a sta-

ble center over Greenland, for both sets of years, 

1948-1976 and 1977-2007.  Mode U represents 

the northern center of the NAO dipole at the 500 

mb level. Mode II (near Iceland) was also a sta-

ble center, coincident with the northern center of 

surface-level winter NAO variability: this does 

not support the idea of a shift at 500 mb.  

Furthermore, factors XX, CC and 3, located in 

this region, were stable in both eras and reliably 

associated with sea ice movement.  Mode 3 is 

coincident with the surface center of variability 

in the Kara Sea, previously found to be associ-

ated with sea ice export variability.
10 



Optimal Data Analysis    Copyright 2010 by Optimal Data Analysis, LLC 

2010, Vol. 1, Release 1 (September 17, 2010)  2155-0182/10/$3.00p 

 

 

 

99 
 

 
                   Figure 6: 500 mb GHA for January 1983, which Entailed the Maximal January 

   Ice Export for the Period 1979-2002: Ipsative modes are Prefixed by 

             the Sign of their Associated Kendall's Tau b Coefficient 

Epilogue 

 Preliminary results using uncounfounded 

climatic data in atmospheric prediction are very 

positive.  An important extension of the present 

research is obtaining GHA modes for all months 

of the year.  Further evaluation of optimal statis-

tical methods used with unconfounded climatic 

data is warranted.  Future research should use 

these data in applications such as, for example: 

predicting the ontogenesis, intensity, and path of 

hurricanes
11

, and the ontogenesis, intensity, and 

location of sudden stratospheric warmings
12,13

; 

modeling of seasonal energy consumption and 

management of climate risk for energy firms
14

; 

forecasting and understanding the ENSO cycle 

(El Niño)
15

, and development and evaluation of 

numerical weather prediction models.
16

 

 



Optimal Data Analysis     Copyright 2010 by Optimal Data Analysis, LLC 

2010, Vol. 1, Release 1 (September 17, 2010)   2155-0182/10/$3.00 

 

 

 

100 
 

References 

1
Yarnold PR.  Characterizing and circumventing 

Simpson’s paradox for ordered bivariate data.  

Educational and Psychological Measurement 

1996, 56:430-442. 

2
Barnston AG, Livezey RE.  Classification, sea-

sonality and persistence of low-frequency 

atmospheric circulation patterns.  Monthly 

Weather Review 1987, 115:1083-1126. 

3
Bryant FB, Yarnold PR.  Principal components, 

and exploratory and confirmatory factor analy-

sis.  In: LG Grimm, PR Yarnold (Eds.), Reading 

and understanding multivariate statistics.  APA 

Books, Washington, DC, 1995, pp. 99-136. 

4
Yarnold PR.  Statistical analysis for single-case 

designs.  In: FB Bryant, L Heath, E Posavac, J 

Edwards, E Henderson, Y Suarez-Balcazar, and  

S Tindale (Eds.), Social psychological applica-

tions to social issues, volume 2: methodological  

issues in applied social research.  Plenum, New 

York, NY, 1992, pp. 177-197. 

5
Yarnold PR.  Discriminating geriatric and non-

geriatric patients using functional status infor-

mation: an example of classification tree analy-

sis via UniODA.  Educational and Psychologi-

cal Measurement 1996, 56:656-667. 

6
Yarnold PR, Soltysik RC.  Optimal data analy-

sis: a guidebook with software for Windows.  

Washington, DC, APA Books, 2005. 

7
Cade BS, Richards JD. User manual for blos-

som statistical software.  US Geological Survey, 

Fort Collins, CO, 2005. 

8
Kwok R, Cunningham GF, Pang SS.  Fram 

Strait sea ice outflow.  Journal of Geophysical 

Research 2004, 109:1009-1029. 

9
Holland MM.  The north Atlantic oscillation–

Arctic oscillation in the CCSM2 and its 

influence on Arctic climate variability.  Journal 

of Climate 2003, 16:2767–2781. 

10
Hilmer M, Jung T.  Evidence for a recent 

change in the link between north Atlantic oscil-

lation and Arctic sea ice export.  Geophysical 

Research Letters 2000, 27:989–992. 

11
Willoughby HE, Rappaport EN, Marks 

FD.  Hurricane forecasting: the state of the art.  

Natural Hazards Review 2007, 8:45-49. 

  
12

Charlton AJ, Polvani LM.  A new look at 

stratospheric sudden warming events: part I. cli-

matology and modeling benchmarks.  Journal of 

Climate 2007, 20:449-469. 

  
13

Charlton AJ, Polvani LM, Perlwitz J, Sassi F, 

Manzini E.  A new look at stratospheric sudden 

warming events: part II. evaluation of numerical 

model simulations.  Journal of Climate 2007, 

20:470-488. 

  
14

Troccoli A (Ed.).  Management of weather and 

climate risk in the energy industry.  Proceedings 

of the NATO advanced research workshop on 

weather/climate risk management for the energy 

sector, Santa Maria di Leuca, Italy 6-10 October 

2008. Series: NATO science for peace and secu-

rity series C: environmental security. Springer, 

New York, NY, 2008. 

15
Babkina AM (Ed.).  El Niño: overview and 

bibliography.  Nova Science Publishers, Haup-

pauge, NY, 2004. 

16
Kalnay E.  Atmospheric modeling, data assim-

ilation and predictability.  Cambridge Univer-

sity Press, Cambridge, UK, 2002. 

Author Notes 

 Send correspondence to the authors at: 

Optimal Data Analysis, 1220 Rosecrans St., 

Suite 330, San Diego, CA 92106.  Send E-mail 

to: Journal@OptimalDataAnalysis.com. 

mailto:Journal@OptimalDataAnalysis.com


Optimal Data Analysis     Copyright 2010 by Optimal Data Analysis, LLC 

2010, Vol. 1, Release 1 (September 17, 2010)   2155-0182/10/$3.00 

 

 

 

101 
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Person-Environment (PE) fit theory was used to explore the rela-

tionship between student involvement and freshman retention.  In-

coming freshmen (N=382) were followed longitudinally in a two-

wave panel study, the summer before beginning college, and again 

during the spring of their freshman year.  Involvement levels, a 

variety of summer and spring preferences (Ps), and spring percep-

tions (Es) regarding specific aspects of their college environment 

were assessed.  Twelve PE fit indicators were derived and com-

pared with respect to their relationship with student involvement 

and retention.  Results indicated that involvement was linked to 

some PE fit indicators.  Traditional parametric statistical analyses 

were compared with a new, nonparametric technique, Classifica-

tion Tree Analysis (CTA), to identify the most accurate classifica-

tion model for use in designing potential attrition interventions.  

Discriminant analysis was 14% more accurate than CTA in classi-

fying returners (97% vs. 85%), but CTA was 962% more accurate 

classifying dropouts (8% vs. 84%).  CTA identified nine clusters—

five of returners and four of dropouts, revealing that different sub-

groups of freshmen chose to return (and stay) for different reasons.  

Students’ end-of-the-year preferences appear to be more important 

than anticipated preferences, college perceptions, or PE fit levels. 

People most at risk of dropping out of 

organizational settings are those who have been 

there the shortest periods of time.
1
  Thus, in 

college settings, students most at risk of drop-

ping out are freshmen.
2,3

  Although researchers 

have long known about college attrition prob-

lems and have proposed a variety of theoretical 

models as potential remedies, little progress has 

been made in actually reducing student dropout 

rates.
2-4

  The act of leaving college prior to 
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graduation is often seen as a form of failure on 

the part of the attritor, and not on the part of the 

institution.  However, it may be that features of 

college environments may be at least partly 

responsible for the early withdrawal of some 

students.
3
 This possibility makes a theory which 

addresses both person- and environment-

focused variables (i.e., PE fit theory) potentially 

important in better understanding college attri-

tion. 

A large body of research has investi-

gated the issue of college attrition, linking stu-

dent departure to low levels of student integra-

tion and involvement.  It is important to distin-

guish between two different conceptualizations 

of “involvement” discussed in the education lit-

erature.  One way to define involvement is be-

haviorally—as the degree to which students 

participate in academic and social activities.  

Here, involvement is defined solely in terms of 

student behaviors (e.g., number of activities 

attended, frequency of participation).  A second 

way to define involvement is psychologically—

as students’ level of perceived commitment to, 

or affiliation with, their university.
5,6

  The pre-

sent study uses only the behaviorally-based con-

ceptualization of involvement. 

Encouraging students to be involved in 

campus activities seems to be an effective way 

of positively influencing their perceptions and 

ultimately their persistence.
2-4,7-10

  Student in-

volvement has been shown to affect commit-

ment to graduate; this commitment, in turn, has 

been linked to both intentions to remain enrolled 

and actual re-enrollment decisions.
2-4,11

  

Calling students’ freshman year a “stra-

tegic leverage point,” Tinto claims that most 

attrition decisions arise either explicitly during 

the freshman year or have their roots in the first-

year experience.
3
  To maximize the chances for 

students to make a commitment to graduate, 

Tinto calls for an increase in freshman opportu-

nities to engage in (formal and informal) social 

and academic activities.  Astin’s research also 

links college involvement to student develop-

ment and college retention.
7-10,12,13 

 According to 

Astin, attritors’ modal explanation for dropping 

out is boredom with college.  Indeed, boredom 

may simply be another name for being unin-

volved.  Of course, being uninvolved may be 

caused by person-focused factors (e.g., student’s 

lack of initiative), environment-focused factors 

(e.g., lack of college opportunities), or both.   

One way to understand the interaction of 

person-focused and environment-focused fac-

tors on behavior is through Person-Environment 

(PE) fit theory.  Several studies have demon-

strated the relationship between the “fit” of stu-

dent characteristics (P) and college attributes 

(E), and a plethora of educational variables in-

cluding physical symptoms,
14,15

 academic and 

social competency,
16

 satisfaction,
17

 academic 

achievement,
18

 student stress and strain,
19

 level 

of cognitive development,
20

 withdrawal, alcohol 

consumption, anxiety, the use of mental health 

services, grade point average,
14

 coping stra-

tegies,
21

 volunteer motivation
22

, school crime 

and misbehavior,
23

 willingness to recommend 

their college to prospective students,
24

 and re-

tention.
25

  However, few studies have investi-

gated the direct link between PE Fit and student 

retention.  Tinto alludes to PE fit in his retention 

model, but offers no specific recommendations 

concerning how to measure congruence between 

student preferences and college characteristics, 

nor conceptual or operational definitions of PE 

misfit.  Empirical tests of Tinto’s model also 

lack these components.
26

  Astin also alludes to 

PE fit in his retention research.  However, like 

Tinto, he does not explicitly measure PE misfit 

in ways recommended by congruence research-

ers, such as assessing PE variables on commen-

surate conceptually corresponding scales.   

The task of validly assessing the match 

between personal properties and environmental 

features is difficult.
20,27-29

  Researchers must 

determine which P and E variables are the most 

relevant to the population of interest.  They also 

must find the best way to combine these salient 

dimensions into a congruence, or fit, score.  

Those studying PE fit must balance the two di-

mensions, giving equal consideration to both.  
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Unfortunately, this often is not the case.  Even 

when one is certain that this balance has been 

achieved, researchers must be certain that each 

personal variable has a commensurate environ-

mental variable in order to justify calculating a 

valid PE fit score.
6,27,30-32

   Whether to calculate 

single or multiple PE fit indicators is another 

important measurement issue to consider.  The 

notion of breaking down complex environments 

into more manageably-sized Es can be traced to 

Barker
33

 and Wicker,
34

, and is still apparent to-

day in studies of noisy production lines,
35

 hos-

pital wings,
36

 college dormitories,
37

 career 

counseling departments,
38,39

 and classrooms.
40

  

A college campus may be an ideal candidate for 

this type of research since most university set-

tings contain distinct sets of populations, op-

portunities, and values.
15,41

  Tinto proposed that 

college environments actually are comprised of 

clusters of social and academic communities or 

subcultures.
3
  If micro-environments within a 

school can be identified, it may be reasonable to 

derive PE fit indicators for each dimension, 

rather than to rely simply on one overall con-

gruence score.    

Researchers are far from reaching a con-

sensus regarding how best to operationally de-

fine the PE fit construct.  The most frequently 

used measure of congruence is the difference 

score, which really is an indicator of PE misfit.
32

  

P and E items are subtracted from one another, 

producing a “discrepancy” score.  Traditionally, 

“Real E” items are subtracted from correspond-

ing “Ideal P” items, with the underlying as-

sumption that one’s actual environment typi-

cally will not exceed one’s ideal version of it.  

Some PE fit researchers compute the absolute 

value of this difference score, asserting that “P 

less than E” effects are similar to “E greater 

than P” effects.
14,25,36,42

  Others, however, have 

preserved the direction of PE incongruence by 

eliminating the absolute value sign.
23,31,43-45

   

It is crucial that the personal (P) and en-

vironmental (E) components comprising the 

congruence construct are carefully defined. Re-

searchers, however, disagree on how best to do 

this.  Examples of P conceptualizations are di-

verse and include dimensions such as: ideals,
19

 

expectations,
37

 values,
46,47

 needs,
11,48,49

 inter-

ests,
18,50,51

 personalities,
52

 choices,
50

 and demo-

graphic information.
7
 

Researchers have conceptualized the en-

vironmental (E) component of PE congruence a 

variety of ways as well.  Some define environ-

ments phenomenologically, by assessing occu-

pants’ images of a setting, rather than assessing 

a setting’s objective features.  Advocates of this 

approach believe that perceptions have real con-

sequences.
3,24

  From this perspective, university 

settings are defined in terms of their perceived 

“climates”.
48,49

  A second E conceptualization 

defines college environments in terms of the 

aggregate of students’ characteristics.
5,6,50,53

  

Environments from this perspective are defined 

by who their occupants are (e.g.,  choice of ma-

jor, ability levels, and ethnic backgrounds), ra-

ther than by what their occupants perceive.   

A third way to conceptualize college en-

vironments is by the activities that occur on 

campus.  Behaviorally-based E conceptualiza-

tions are concerned with what students and fac-

ulty actually do, rather than what perceptions 

they share or what characteristics they pos-

sess.
1,3,4,7,8,10

  From this perspective both the op-

portunity for activities and the activities them-

selves combine to represent the E component. 

Measures of student-college congruence 

will differ depending on which of these P and E 

conceptualizations are used to derive the con-

gruence construct.  Using the image-based E, 

PE fit assesses whether an institution lives up to 

the reputation or mystique surrounding it.   Us-

ing the “characteristics-based” E, PE fit repre-

sents how closely each student matches the at-

tributes of the student body majority.  However, 

using the third, “behaviorally-based” conceptu-

alization of “E,” PE Fit assesses the match be-

tween students’ preferences for involvement, 

and the actual opportunities to become involved 

in college.   

If environments can be defined both 

subjectively (e.g., climates) and objectively 
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(e.g., aggregate characteristics), so can congru-

ence measures.  According to French, “subjec-

tive” PE fit reflects the match between people’s 

preferences regarding their self-concept and 

their setting, and their beliefs about these attrib-

utes.
31

  “Objective” PE fit, on the other hand, 

uses information that is independent of the bi-

ases underlying human perceptions.  Actual at-

tributes of both the person (e.g., knowledge, 

abilities) and the environment (e.g., policies, 

activities) interact to produce these PE fit indi-

cators.   

Some researchers have expressed a con-

cern about the potential for excess error within 

subjective PE fit variables, claiming that an 

over-reliance on perceptual data may lead to the 

attenuation of true effects.
19

  They argue that 

any one person’s assessment of the actual envi-

ronment (the E component) will contain associ-

ated error variance resulting from personal bi-

ases and the lack of relevant environmental in-

formation.
6,27

  For example, students are often 

unaware of, or even denied access to, infor-

mation concerning specific activities and inter-

actions occurring on their campus.  This lack of 

knowledge may add error to E scores and atten-

uate the true effects of PE congruence.     

In response to these concerns, some re-

searchers have suggested that the measurement 

gap between objective and subjective reality be 

narrowed.
42

  Tracey and Sherry proposed that a 

more accurate measure of the actual environ-

ment is the mean of all respondents’ “Real E” 

ratings.  They claim that these environmental 

“consensus” scores are highly reliable because 

they are unlikely to be affected by individual 

variation.  They also claim that these more ob-

jective congruence measures possess more con-

struct validity, for they better represent the dis-

crepancy between ideal and actual settings.   

Tracey and Sherry used this technique to 

examine the relationship between PE fit and 

student strain in a college residence hall.  They 

asked residents to describe the preferred char-

acteristics (P) of a residence hall and then to de-

scribe the actual characteristics (E) of their own 

residence hall.  In addition to creating subjective 

discrepancy scores by subtracting each partici-

pant’s P score from her E score, Tracey and 

Sherry also created an objective PE fit indicator 

by computing the mean of all floormates’ E 

scores and subtracting this measure of central 

tendency from each P score.  It was found that 

discrepancy scores based on a consensus of E 

were more highly correlated with student stress 

and strain than respondents’ own “subjective” 

PE fit scores.  The superior strength of using the 

mean of “Real E” scores has been demonstrated 

in other studies investigating student-college 

congruence.
16

 However, advocates of these 

“objective” measures of PE fit are not without 

their critics.  Edwards is leery of congruence 

meas-ures that hold one element constant, such 

as when the mean of “actual” ratings is used to 

represent E.
54,55

  He argues that when PE fit is 

computed this way, discrepancy scores merely 

represent the variance attributable to one ele-

ment (e.g., P), and thus do not represent PE con-

gruence at all.   

Besides determining how to measure PE 

fit, another unresolved issue involves when to 

measure congruence.  The traditional approach 

to measuring PE fit is to ask respondents to pro-

vide both their personal preferences (P) and 

their environmental descriptions (E) concur-

rently.
16,35,46

  While this strategy is convenient 

(i.e., requiring only one data collection session), 

this design may suffer from a number of con-

ceptual and methodological problems, such as 

restriction in range due to natural attrition.  In-

dividuals who experience PE misfit over time 

either exit or adapt to their environments, thus 

spuriously shrinking the range of the personal 

characteristics remaining and reducing the 

measure’s predictive power.
14,15,56

  Selective at-

trition results, leaving only those most congru-

ent, and presumably those most productive and 

satisfied, to occupy the setting, and to complete 

researchers’ measures. This may pose a prob-

lem, since most participants of PE fit studies are 

individuals who have occupied their settings the 

longest.
29

  Individuals with considerable experi-
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ence and familiarity with a setting (e.g., tenured 

employees, seniors in college) are likely to pos-

sess synchronized preferences and perceptions.  

These members are typically few in number and 

may comprise an unrepresentative sample.
5
  

Range restriction problems also raise the issue 

of external validity threats.  If tenured occupants 

possess a unique set of similar characteristics, 

results from any one PE fit study may be lack-

ing with respect to generalizability.
57

  One way 

to remedy this problem is to examine longitudi-

nally populations that recently have entered an 

environment.  College freshmen may serve as an 

ideal group for this approach. 

Instead of measuring congruence at one 

point in time, several researchers have begun to 

utilize longitudinal research strategies to better 

understand degrees of, or changes in, PE fit.  

This nonconcurrent approach to measuring PE 

fit, although more time consuming, offers many 

benefits.  For instance, these designs enable re-

searchers to assess occupants’ desires and per-

ceptions both before and after they are influ-

enced by the impact of their environments.  If 

planned carefully, nonconcurrent designs are 

also able to include both congruent and incon-

gruent individuals in their pool of respondents.  

Additionally, these designs also allow for dif-

ferent PE fit scores both before (e.g., “Antici-

patory PE fit”) and after (“Present PE fit”) indi-

viduals enter and familiarize themselves with a 

setting to be calculated.
14,46

 

Statistical Analysis Options 

One goal of this project was to describe 

and classify as accurately as possible two 

groups of freshmen—those who returned as 

sophomores and those who did not—using PE 

fit variables and involvement indices.  Two sta-

tistical techniques were compared with respect 

to their ability to accuracy classify returners and 

attritors.  In addition to a traditional discrimi-

nant analysis (DA), an alternative statistical 

technique also was performed on the data.  Op-

timal Data Analysis (ODA) is a unique nonpar-

ametric approach to statistical classification that 

explicitly maximizes the average percentage ac-

curacy in classification (PAC) across groups in 

a sample.
58

  ODA works by finding an optimal 

classification solution which consists of a cut-

point (the point that lies midway between suc-

cessive observations that are from different 

groups) and a direction, which is analogous to 

the “sign” of a conventional statistic like a cor-

relation.  ODA finds the cutpoint and direction 

combination such that no other combination can 

result in fewer misclassifications: by definition, 

the resulting model is always optimal.
58

  

A special application of ODA, hierarchi-

cally optimal classification tree analysis (here-

after referred to as CTA) was used in the present 

study, to distinguish returners from attritors.  

CTA is an iterative ODA procedure that con-

structs a classification tree which hierarchically 

maximizes the mean percent accuracy in classi-

fication (mean PAC) for a sample.
58

  CTA is 

accomplished after several steps.  First, a stop-

ping rule is determined a priori (e.g., experi-

mentwise Type I error of p<0.05). Second, 

ODA is performed for every attribute (predictor) 

separately, using the total sample.  The attribute 

yielding the greatest standard effect size is then 

chosen and the cases are split according to this 

model’s cutscore and direction on the attribute 

having greatest effect strength (the model will 

likely be imperfect, making both correct and 

incorrect classifications).  Third, ODA is per-

formed again using all of the attributes, but only 

on a subset of the sample—the respondents who 

were predicted to be in one class only (e.g., 

dropouts) in an attempt to improve classification 

for this partition only.  If a new attribute is 

found to improve the predictive value it is added 

to that particular “branch” of the classification 

tree.  If not, the branch ends there.  The classifi-

cation tree “grows” until a sufficient number of 

attributes is found that best describes each sub-

set of the sample.  Branches are then “pruned” 

(i.e., nodes are removed) if their Type I error 

exceeds a set criterion, or if the branches do not 

enhance the model’s overall mean PAC.
58.59
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Traditional DA assumes that a set of at-

tributes is equally relevant and meaningful to all 

members of a particular sample.
59

  CTA, in 

contrast, creates separate discriminant functions 

for different subsets of the sample while de-

scribing clusters of individuals that share the 

same common pathway.  For example, it may be 

that students choose to leave or to remain for 

different reasons. One segment of the freshman 

class may return for social reasons, while an-

other segment may return for academic reasons.  

These specialized student clusters, which would 

be overlooked with traditional DA, may help to 

identify unique sets of “at-risk” freshmen.       

Another advantage of CTA is freedom 

from the restrictive assumptions underlying par-

ametric tests.  DA requires that several assump-

tions be satisfied, such as independence, linear-

ity, and distributions that are normal, in order 

for the estimated Type I error rate to be valid.
61

  

In contrast, for CTA “p” (i.e., the probability of 

making a Type I error) is exact and always 

valid, because it is based solely on the structural 

features of a particular data set.
 58

 

Because bias may enter a classification 

solution if the coefficients used to assign a par-

ticipant to a particular group are derived using 

that person’s data, it is important to perform 

leave-one-out (LOO) validity analysis (also 

called the jackknife procedure).
58

  This proce-

dure is then repeated, holding a different case 

out each time, for every case.  An advantage of 

CTA is that LOO analysis is performed at every 

step in the analysis.   

Purpose and Hypotheses 

This study was conducted with three 

purposes in mind.  The main purpose of this 

study was to assess the degree to which in-

volvement in college activities was associated 

with first year students’ PE fit levels, and the 

degree to which these PE fit levels impacted 

their decisions to return as sophomores.  A se-

cond purpose was to determine the relative con-

tributions that different PE fit derivations make 

in explaining student involvement and attrition.  

Finally, this study sought to compare traditional 

multivariate statistical strategies with nonpara-

metric optimal analyses.  Based on previous 

empirical tests of PE fit theory and college re-

tention models, these three goals resulted in the 

following six predictions.  

1. The first hypothesis addressed the di-

mensionality of the PE fit construct, and pre-

dicted that student “Ideals” (Ps) with respect to 

college environment preferences would be mul-

tidimensional, and thus multiple PE fit indica-

tors would be derived—one per dimension.  It 

also was expected that these dimensions would 

be stable over time, from summer until spring. 

2. The second hypothesis addressed the 

relationship between students’ participation in 

college activities and their subsequent PE con-

gruence levels.  It was hypothesized the more 

that students participated in college activities, 

the greater would be their degree of PE fit. 

3. The third hypothesis addressed the 

relationship between PE fit and retention deci-

sions.  It was proposed that students with greater 

PE fit would be more likely to return for their 

sophomore year than students with more incon-

gruent levels.   

4. In-coming freshmen may not be as 

certain of their college environment preferences 

prior to beginning college, so the fourth hypoth-

esis predicted “Present” PE fit (Posttest Ideals 

minus Posttest Reals) scores would be a better 

predictor of return status, and a better criterion 

of college involvement, than “Anticipatory” PE 

fit (Pretest Ideal minus Posttest Real). 

5. Because it is likely that no one student 

can accurately describe all dimensions of a col-

lege environment, “Objective” PE fit (Posttest 

Ideals minus the mean of Posttest Reals) was 

hypothesized to be a better predictor of return 

status, and a better criterion for college in-

volvement, than “Subjective” PE fit (individual 

Posttest Ideals minus individual Posttest Reals). 

6. Lastly, it was proposed that PE con-

gruence measures would be more strongly re-

lated to college involvement and retention deci-
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sions than either college preferences (P) or col-

lege perceptions (E) alone. 

Method 

Participants.  In-coming freshmen from 

a large Midwestern Catholic university were 

surveyed during summer registration sessions, 

and again during the spring of their freshman 

year either in residence halls (for on-campus 

students) or by postal mail (for commuters).  A 

total of 1,108 freshmen of the 1,186 students 

comprising the freshman class (93.4%) com-

pleted summer questionnaires, and 420 of these 

freshmen (38%) completed spring question-

naires (12 additional students completed the 

posttest, but not the pretest.)  Of the 420 spring 

participants, 382 placed a confidential identifi-

cation number on both questionnaires, allowing 

their summer and spring responses to be linked 

and compared.  Data from these 382 “pretest-

posttest” students were subsequently used to test 

the hypotheses; they represented 34.5% of the 

original sample. 

Procedure and Instruments.  Pretest data 

were obtained during summer registration ses-

sions before the students’ first semester.  Post-

test data were obtained at the end of partici-

pants’ freshman year.  Social security numbers 

were used to match students’ pretest and post-

test responses. The confidential treatment of re-

sponses was clearly emphasized to participants 

and was strictly enforced.    

Pretest. In an attempt to increase the re-

sponse rate, pretest data were collected during 

summer orientation sessions.  All but 78 stu-

dents who comprised the freshman class (1,108 

of 1,186) gathered in groups of approximately 

200 in a university auditorium the first morning 

of their respective registration sessions (numer-

ous sessions were held throughout the summer).  

After completing math placement exams, fresh-

men completed the PE fit pretest questionnaire.  

Pretest items assessed respondents’ col-

lege preferences. These items represented “an-

ticipated” ideals (Ps), since they were completed 

before students actually experienced college 

life.  Participants evaluated various features of a 

college environment using 7-point scales, rang-

ing from “very undesirable” to “very desirable.”   

The pretest questionnaire contained 46 

items which were either created specifically for 

this college environment or were borrowed from 

past PE congruence instruments.  Eleven items 

were chosen to correspond to the various com-

ponents of a new university program designed 

to encourage freshman participation and to en-

hance freshman retention implemented that 

year.  For example, freshmen were asked to in-

dicate how desirable it would be to go on a re-

treat, to use electronic-mail to communicate 

with faculty, and to go to the symphony or the-

ater.  Fourteen items corresponded to activities 

common to any university setting, such as vot-

ing in a campus election, or attending a social 

event.  Twenty-one items were borrowed and 

modified from the Organizational Culture Pro-

file Item Set.
46

  This set of items tapped stu-

dents’ preferences for certain environmental 

“presses” or images.  For example, freshmen 

were asked to indicate how desirable it would be 

for their college environment to be rule-ori-

ented, to be supportive, to foster independence, 

and to allow them time to themselves.  

Posttest. The posttest questionnaire was 

distributed in the spring of respondents’ first 

year, approximately 9 months after the pretest.  

Students residing on-campus were given post-

test questionnaires in their residence halls.  

Commuter students were surveyed via the mail.   

Respondents rated the same set of col-

lege dimensions that were included in the pre-

test questionnaire with the exception of three 

items (“reward minimal effort with high 

grades;” “reward good performance with high 

grades;” “have the same classmates in several of 

my courses”) which were eliminated due to the 

findings of an exploratory principal components 

analysis which are discussed below.  However, 

unlike the pretest instrument which contained 

only items assessing college ideals (“Anticipa-

tory” Ps), the posttest instrument contained both 



Optimal Data Analysis     Copyright 2010 by Optimal Data Analysis, LLC 

2010, Vol. 1, Release 1 (September 17, 2010)   2155-0182/10/$3 

 

108 
 

college preference (“Present” P) and college 

perception (i.e., “Real” E) items presented on 

commensurate scales.   

For preference (P) ratings, students were 

asked to indicate the degree to which they de-

sired various college attributes, and the degree 

to which they would desire participating in a 

variety of college activities (1=not at all; 7= 

very much).  For perception (E) ratings, students 

were asked to indicate the extent to which each 

attribute accurately described their college im-

pressions and experiences (1=not at all; 7=very 

much).  Anchors differed depending on whether 

E items were presented as continuous (1=never; 

7=very often) or discrete (yes/no) variables.   

Attributes 

Three major groups of attributes were 

measured to test the specified hypotheses.  

Student Involvement.  Sixteen “Real” (E) 

items were combined to create an involvement 

index which assessed the extent to which stu-

dents participated in both academic activities 

(e.g., speaking up in class; seeking out one’s 

advisor) and social activities (e.g., attending a 

cultural event; being active in campus politics) 

during their first year.  Psychologically-based 

aspects of involvement, such as students’ com-

mitment to the university, were not assessed. 

Five of the 16 involvement items tapped 

activities that could be done repeatedly through-

out one’s freshman year (e.g., chat with an in-

structor, go to church with friends), and were 

rated on 7-point scales ranging from “never” to 

“very often.”  The remaining 11 items included 

events that, for the most part, students would 

engage in only once or twice during the school 

year (e.g., go on a retreat, dine with a professor).  

To indicate whether or not they engaged in these 

activities, students circled either “Yes” or “No.”   

To create an overall index of involve-

ment for each student, the sum for each of the 

two sets of items was converted to standard (z) 

scores, and multiplied by the number of items 

comprising those sets (5 and 11, respectively).  

These scores were then added together and di-

vided by 16 to create an overall standardized 

involvement index. 

PE Fit. Derivation of PE fit indicators 

was complex, and involved four steps. First, two 

principal components analyses were performed 

on the summer and spring sets of Ideal data to 

determine the dimensionality of student college 

preferences (Ps).  Three factors were revealed 

and named “College Image,” “Student Experi-

ence,” and “Traditional-Catholic.”  E items were 

then categorized on the basis of these factors so 

that PE fit scores could be derived (see Results). 

The second step involved computing PE 

Fit indicators as difference scores. PE fit indi-

cators were computed at the factor level only.
31

  

However, in contrast to French’s congruency 

formula, the absolute values of these differences 

were used so that specific multivariate statistical 

analyses could be performed.
31

  Thus, for the 

present study, PE fit was calculated as the ab-

solute value of the difference between the sum 

of student preference (P) items and the sum of 

the commensurate set of student perception (E) 

items for each of the three dimensions: PE 

Fit=P - E.  These differences were then 

divided by the number of commensurate pairs in 

each of the three factors (16, 13, and 8 items, 

respectively).  The magnitude of absolute dif-

ference scores increases as P and E ratings be-

come increasingly discrepant, so small congru-

ence scores represent greater PE fit.   

Because several authors suggest differ-

ent ways to derive PE fit scores, the third step 

involved deriving four distinct kinds of discrep-

ancy scores (Table 1).
19,30,44

  First, to determine 

the degree of congruence for students who had 

not yet experienced college life, “Anticipatory” 

PE fit scores were computed by taking the dif-

ference between pretest Ideal ratings and post-

test Real ratings.  Second, to determine stu-

dents’ level of congruence at the end of their 

first year, “Present” PE fit scores were derived 

by computing the difference between posttest 

Ideal ratings and posttest Real ratings.  
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                                     Table 1: PE Fit Components and Derivations 

     Component                   Operational Definition 

    Anticipatory Personal Preferences (P)
a
 Pretest Ideal items       

    Present Personal Preferences (P)  Posttest Ideal items        

    Actual Environmental Properties (E)  Posttest Real items      

    Type of PE Fit
b
    Derivation of Difference Score

c
 

    Anticipatory Subjective PE Fit  Pretest Ideals minus Posttest Reals  

    Anticipatory Objective PE Fit   Pretest Ideals minus (mean) Posttest Reals  

    Present Subjective PE Fit     Posttest Ideals minus Posttest Reals                

    Present Objective PE Fit   Posttest Ideals minus (mean) Posttest Reals 

    -----------------------------------------------------------------------------------------------------------
 

Note: 
 a
This construct was assessed during summer orientation sessions.  All other attributes were derived 

using data collected at the end of respondents' first year.   
b
These variables were computed for each of the 

three dimensions  (College Image, Student Experience, and Traditional-Catholic).  
c
All PE fit derivations 

used the absolute value of the differences. 

The third and fourth types of PE fit indi-

cators differed with respect to how the E attrib-

utes were computed.  “Subjective” congruence 

scores were derived by taking the difference 

between each freshman’s set of (posttest) Ideal 

and Real scores.  “Objective” fit scores were 

computed by replacing respondents’ individual 

Real scores with the mean of all students’ Real 

rating.  Crossing Anticipatory and Present con-

gruence measures with Subjective and Objective 

measures, a total of four PE fit indicators re-

sulted: (a) Anticipatory Subjective PE Fit; (b) 

Present Subjective PE Fit; (c) Anticipatory Ob-

jective PE fit; and (d) Present Objective PE fit. 

The final fourth step in the derivation of 

PE fit indicators involved computing congru-

ence scores across the three dimensions revealed 

in the first step.  The four PE fit indicators 

derived for each of these factors resulted in a 

total of 12 types of PE fit indicators (see Table 

2). 

Return Status. Retention information 

was obtained via the university’s Department of 

Institutional Research.  Respondents failing to 

return for the sophomore year were classified as 

attritors, regardless of the reason for departure. 

Results 

Pretest-Posttest Respondents vs. Pretest-

Only Respondents.  Analyses comparing re-

spondents who completed only the pretest with 

respondents who completed both measures were 

performed.  Summer Ideal responses, as well as 

additional demographic and academic infor-

mation, were compared.  Because comparisons 

are meaningful only for students who had the 

opportunity to complete both measures, 44 stu-

dents who completed the fall semester but who 

did not re-enroll for the spring semester were 

omitted from these analyses.     

Results revealed that pretest-posttest and 

pretest only students were comparable on sev-

eral important dimensions.  For instance, these 

groups did not differ greatly with respect to at-

trition rates (10.5% vs. 13.7%, respectively), nor 

did they differ statistically with respect to an-

ticipatory preferences on the three PE fit dimen-

sions (ps>0.05, mean effect size=0.10).  These 

groups also did not have different expectations 

regarding first-semester GPAs (3.51 vs. 3.57, 

respectively, effect size=0.04), or first-year cu-

mulative GPAs (3.61 for both groups). 
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                                           Table 2: Descriptive Statistics for PE Fit Indicators 

 

                    Objective PE Fit
a
 

            Student Image                       College Behavior                   Traditional-Catholic 

         Anticipatory PE Fit
c
              Anticipatory PE Fit                 Anticipatory PE Fit 

         M=0.88 sd=0.47 (378)           M=1.69 sd=0.87 (376)            M=0.82 sd=0.59 (378)      

         Present
 
PE Fit

d
                       Present PE Fit                         Present PE Fit 

         M=0.88 sd=0.47 (360)           M=1.64 sd=0.91 (358)            M=0.88 sd=0.66 (345) 

                   Subjective PE Fit
b 

        Student Image                        College Behavior                    Traditional-Catholic 

        Anticipatory PE Fit                Anticipatory PE Fit                 Anticipatory PE Fit    

        M=0.97 sd = 0.74 (342)         M=1.72 sd=0.94 (347)            M=0.88 sd=0.64 (338) 

        Present PE Fit                         Present PE Fit                         Present PE Fit    

        M=0.82 sd = 0.68 (344)          M=1.61 sd=0.94 (345)            M=0.73 sd=0.62 (337) 

       --------------------------------------------------------------------------------------------------- 
    Note:  M=mean; sd=standard deviation.  Smaller means indicate smaller discrepancy scores and 

    greater PE fit.  Numbers in parentheses indicate the sample sizes.   
a
Objective PE fit scores were  

    derived from Individual “Ideals” and the mean of  “Reals”.   
b
Subjective PE fit scores were deri- 

    ved from Individual  “Ideals” and Individual “Reals.”   
c
Anticipatory  PE fit scores were derived 

    from Summer  “Ideals”  and Spring  “Reals.”   
d
Present  PE fit scores were  derived from Spring  

    “Ideals” and Spring “Reals.” 
 

However, some important differences 

were revealed.  Although pretest-posttest and 

pretest-only students possessed similar GPA 

expectations, they did statistically differ in the 

GPAs they later earned.  Students who com-

pleted both measures earned higher fall GPAs 

(3.06 vs. 2.97, t(989)=2.15, p<0.032), higher 

spring GPAs (3.06 vs. 2.89, t(1017)=3.62, 

p<0.0001), and higher first-year cumulative 

GPAs (3.07 vs. 2.94, t(1009)=3.23, p<0.001).  

However, the effect sizes corresponding to these 

differences were small (0.19, 0.28, 0.30, respec-

tively, mean effect size= 0.26).  Additionally, 

both gender and place of residence impacted 

whether or not students participated in both 

waves of the study.  A greater percentage of 

women  comprised  the  pretest-posttest  group 

(72.5%) than the pretest-only group (57.3%).   

Freshmen residing off-campus were also less 

likely to complete both measures. 

Tests of Hypotheses 

Dimensionality of PE Fit. To determine 

whether college preferences, and the PE fit con-

struct, were uni- or multi-dimensional, a princi-

pal components factor analysis with varimax 

rotation was performed on the Present Ideal 

data.  Only participants providing both pretest 

and posttest information were used (n=382).  

Six Present Ideal items (“Is easy-going;” “Is un-

predictable;” “Fosters risk-taking;” “Work un-

der pressure;” “Rewrite a paper/Redo a project;” 

and “Use e-mail to communicate with faculty 

and classmates”) did not have factor loading 

exceeding 0.30, and therefore were not included 

in the factor solution. 

A total of three dimensions meaningfully 

described the Present Ideal data (Table 3).  The 

first factor, labeled “College Image,” reflected a 

set of variables which described environmental 
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features emanating from students’ impressions 

of what a college should be like.  The factor in-

cluded items such as “fosters independence,” “is 

highly organized,” and “is distinctive/different 

from other colleges,” and closely resembled 

Pace and Stern’s impression-based definition of 

a college environment’s “perceived climate”.
49

 
 

                                            Table 3: Item Loadings for Present Ideal Factors 

 ________________________________________________________________________ 

 Item  Factor 1: College Image                                       Loading 

 ________________________________________________________________________ 

Is supportive                  0.68 

 Is people-oriented                  0.65 

 Is highly organized                   0.63 

 Fosters independence                  0.62 

 Is effort-oriented                  0.61  

 Allows you time to yourself                 0.60 

 Fosters social responsibility                 0.60  

 Is academically demanding                  0.56  

 Fosters social interactions                  0.56 

 Demands good performance from you                 0.53 

 Fosters friendships in the classroom                 0.53 

 Fosters friendships in residence halls                  0.49 

 Lead an active social life                   0.48  

 Identify yourself as a [college name] student                 0.40 

 Is distinctive/different from other college environments                 0.38 

 Is competitive                   0.35 

 ________________________________________________________________________ 

 Item  Factor 2: Student Experience                                  Loading 

 ________________________________________________________________________ 

 Speak before a group of your peers about a topic important to you                0.72  

 Attend a professor’s presentation as a part of a faculty lecture series                0.60  

 Imagine yourself president of a club or organization                 0.60  

 Chat with an instructor outside of class                 0.60 

 Share ideas/Speak up in class                 0.59 

 Become active in political groups on campus                 0.59  

 Eat dinner with a professor                  0.58 

 Volunteer in the local community                  0.56 

 Go to a subsidized cultural event (such as the symphony or theater)                0.51 

 Vote in a campus election                 0.50  

 Go on a retreat                  0.42 

 Encourages volunteering to meet local community needs                            0.36  

 Seek out your advisor for advice                 0.35  

 ________________________________________________________________________ 

 Item    Factor 3: Traditional-Catholic                Loading 

 ________________________________________________________________________ 

 Go to mass/church with your friends                 0.66  
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 Emphasizes a Catholic/Jesuit mission                 0.62 

 Emphasizes a single set of values throughout the university                 0.52 

 Attend a Pep-Rally before a game                   0.50 

 Is rule-oriented                   0.48 

 Go to a planned social event in your residence hall                 0.46  

 Is team-oriented                     0.44  

 Is grade-oriented                  0.40 

            ------------------------------------------------------------------------------------------------------------ 
     Note:  Displayed items include only Present Ideal items with factor loadings>0.30.  For factors 1, 2 and 3,  

     respectively: Chronbach’s alpha=0.85, 0.83, and 0.78; eigenvalue=8.19, 3.10, and 2.27. 

 

The second factor represented respond-

ents’ preferences regarding academic and social 

experiences.  Included in this dimension were 

“action” items, rather than “image” items like 

those comprising the first factor.  This factor 

was labeled “Student Experience” and included 

items such as “share ideas/speak up in class,” 

“volunteer in the local community,” and “seek 

out your advisor for advice.”  This factor closely 

resembled Astin’s behaviorally-based definition 

of “college environment”.
9,10,12

 

The third and final dimension combined 

both “image” and “behavior” items to reflect 

what seem to be respondents’ preferences for a 

conservative college experience. Traditional 

college attributes as well as features related to 

religiously affiliated schools comprised this 

factor labeled “Traditional-Catholic” and in-

cluded items such as “emphasizes a single set of 

values throughout the university,” “is rule-ori-

ented,” and “attend a pep-rally before a big 

game.”  Correlations among these three college 

dimensions were positive (College Image and 

Student Experience, r=0.45; College Image and 

Traditional-Catholic, r=0.40; and Student Expe-

rience and Traditional-Catholic, r=0.41, all 

ps<0.01). 

To test the stability of this three-factor 

solution, a principal components factor analysis 

with varimax rotation also was performed on the 

Anticipatory Ideal items.  This factor solution 

was then compared to the factor structure re-

sulting from the Present Ideal data using Coeffi-

cients of Congruence (COC).  Results compar-

ing the two three-factor solutions revealed that 

the underlying factor structures of the two data 

sets were highly congruent.  The highest COC 

was between summer and spring Student Expe-

rience dimensions (0.96), with the College Im-

age dimension also showing comparable factor 

structures (0.93).  The Traditional-Catholic di-

mensions were least congruent, but the degree 

of factor correspondence was still high (0.70).         

Because PE fit scores involve the differ-

ence between commensurate “Ideal” and “Real” 

scores, only one of these two factor solutions 

were used to compute the discrepancy scores.  

The dimensions resulting from the posttest data 

were chosen for two reasons.  First, although the 

two sets of three-factor solutions displayed 

comparable internal consistencies (Cronbach 

alphas=0.84, 0.83, 0.81 for summer factors vs. 

Cronbach alphas=0.85, 0.83, 0.71 for respective 

spring factors), the Present Ideal factors account 

for a larger percentage of the variance (36.5% 

vs. 34.8%) in their respective data set.   

The second reason for choosing the Pre-

sent Ideal factors involved students’ degree of 

familiarity with their college setting.  After 

having experienced a college environment for 

nine months, students should be better able to 

describe their college preferences than before 

starting school.  Spring factors thus served as 

the basis from which PE fit scores were derived.   

Student Involvement and PE Fit. To test 

the prediction that highly involved freshmen 

would possess more congruent PE fit levels, 

correlations were calculated between the in-

volvement index and eight PE fit indicators (the 

involvement index was derived using 16 Student 
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Experience Real items: thus, the four congru-

ence measures related to the Student Experience 

dimension were not included in these analyses 

due to the violation of the independence as-

sumption).  Supporting predictions, involvement 

level was significantly correlated with five of 

eight PE fit indicators (Table 4).  However, alt-

hough statistically significant, involvement ac-

counted for little of the variance in any of the 

congruence measures: R
2
 ranged from 2.4% for 

Anticipatory Subjective College Image, to 4.3% 

for Anticipatory Objective College Image.  De-

gree of college involvement was related to three 

of four Subjective PE fit indicators and two of 

four Objective PE fit indicators.  High involve-

ment was associated with more congruent Sub-

jective PE fit.  However, contrary to predictions, 

highly involved freshmen were more likely to 

possess less congruent Objective PE fit levels. 

       Table 4: Correlations Between PE Fit 

            Scores and Student Involvement 

           Effect 

Objective PE Fit
a                                  

     r              r
2 
      Size (d)

 

College Image Fit (A)
c
              0.207

**
    0.043      0.424  

College Image Fit (P)
d
               0.188

*
     0.035      0.381 

Traditional-Catholic Fit (A)      0.064       0.004      0.127     

Traditional-Catholic Fit (P)       0.002       0.000      0.004 

 

Subjective PE Fit
b
   

College Image Fit (A)              -0.153
*         

0.024      0.314 

College Image Fit (P)               -0.176
*
      0.031      0.358 

Traditional-Catholic Fit (A)     -0.021       0.000      0.042 

Traditional-Catholic Fit (P)     -0.170
*
      0.029

          
0.346 

--------------------------------------------------------------- 
Note: Student Experience PE fit scores were excluded 

from analyses due to the independence assumption viola-

tion with the involvement variable.  All analyses were 

performed with and without involvement items in the PE 

fit indicators: significance levels did not change.  A single 

asterisk (*) indicates p<0.05 at  the generalized  (per-

comparison) criterion, and double asterisks (**) indicate  

p<0.05 at the experimentwise criterion.
58

  Derived  from: 
a
Individual  “Ideals” and mean of respondents’ “Reals”; 

b
Individual “Ideals” and Individual  “Reals”;  

c
summer  

“Ideals” and spring  “Reals”;  and 
d
spring “Ideals” and 

spring “Reals.” 

PE Fit and Retention. To test the predic-

tion that PE fit scores would help to distinguish 

returners from dropouts, linear DA and CTA 

were performed.  PE fit scores served as attrib-

utes, and return status as the class variable.  

None of the 12 PE fit variables (four fit indices 

across each of three dimensions: Student Image, 

College Behavior, Traditional-Catholic) quali-

fied for DA or CTA analysis.    

Additional Analyses 

Because the attribute set outlined above 

did not adequately classify returners from drop-

outs, further analyses were performed in which 

several predictor variables were used.  CTA and 

stepwise DA were performed.  For CTA all sin-

gle-item Ideal and Real variables were used, as 

was the involvement index and the Ideal, Real, 

and PE fit factors.  For DA only the set of single 

item variables was used because the inclusion of 

construct-level variables would violate the inde-

pendence assumption underlying this procedure.      

Stepwise DA Model. The DA resulted in a 

linear model that distinguished returners from 

dropouts (canonical R=0.39, χ
2
(7)=46.53, p< 

0.0001).  Seven predictors combined to yield a 

significant discriminant function after 7 steps 

(Table 5).  The loading matrix of correlations 

between predictors and the discriminant func-

tion suggest that together, three variables dis-

criminated respondents on the basis of return 

status (predictors having loadings less than 0.50 

were not interpreted
62

). 

The best predictors for distinguishing re-

turners from attritors assessed how organized 

and how competitive respondents perceived 

their college environment to be at the end of 

their freshman year.  Dropouts described their 

college environment as more organized than 

returners (means=5.18 vs. 4.87, respectively), 

but less competitive than returners (means=4.65 

vs. 5.52, respectively).  One posttest preference 

rating also contributed to the classification 

model.  Returners and dropouts differed in the 

degree to which they wanted to identify them-
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selves as members of their college community, 

with returners possessing stronger desires 

(means=5.88 vs. 5.17, respectively). 

               Table 5: Standardized Canonical Discriminant Function Coefficients for Stepwise DA 

                Step     Item
a
                                                            Coefficient

b
            Wilks Lambda  

       1        competitive environment (Real)              0.59          0.96         

       2        fosters risk-taking (Ideal)                          0.31          0.94       

       3        highly organized college (Real)                       -0.57                 0.91 

       4        identify self as college member (Ideal)        0.53          0.89  

       5       team-oriented college (Ideal)        -0.32               0.87 

       6        fosters risk-taking (Real)                            0.39                     0.86 

       7        attend pep-rally (Ideal)                                     -0.33                     0.85 

              ------------------------------------------------------------------------------------------------------ 
               Note:  

a
All items included in the solution were assessed during the spring of students’ freshman year. 

                 No summer (i.e., “anticipatory”) items significantly contributed to the discriminant function. 
b
Stand- 

      ardized canonical discriminant function coefficients. 

 

Although the model classified almost all 

of the returners correctly, it performed poorly in 

its classification of dropouts.  Group PACs for 

returners and attritors were 97.2% and 17.9%, 

respectively.  The mean PAC across both groups 

of returners and dropouts was 57.6% (Table 6). 

 

           Table 6: DA Classification Results 

   Actual                            Predicted Group  

   Group             N        Dropouts      Returners 

  Dropouts        39              7                  32        7.9% 

  Returners      324             9                 315      97.2%     

                                        43.8%          90.8% 

  ----------------------------------------------------- 
  Note: ESS=5.1 (weak effect). 

CTA Model.  CTA yielded a different 

solution, outperforming DA especially with 

respect to classifying attritors.  The CTA model 

correctly classified 84% of dropouts and 85% of 

returners, with an overall mean PAC of 84.5% 

(see Table 7). 

 

       Table 7: CTA Classification Results 

  Actual                            Predicted Group  

  Group             N        Dropouts       Returners 

  Dropouts         31             26                  5        83.9% 

  Returners       317            48                269      84.9%     

                                         35.1%           98.2% 

  ----------------------------------------------------- 
  Note: ESS=68.8 (relatively strong effect). 

 

Presented in Figure 1, CTA also revealed 

that different groups of dropouts left, and differ-

ent groups of returners stayed, for different rea-

sons.  The CTA model revealed four clusters of 

dropouts and five clusters of returners. 

Four common pathways through the meas-

ured attributes described the participants who 

did not return to the university for their sopho-

more year.  As seen, dropouts on Path 1 (“Drop 

1” in Figure 1), “Small Dose Participators” pos-

sessed little desire to identify themselves as a 

university member (<0.5), chatted frequently 

with instructors outside of class (>3.5), desired a 

team-oriented environment (>5.5), but did not 

desire to dine with instructors (<4.5). 
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Figure 1: CTA Model for Classifying Dropouts and Returners 
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Dropouts on Path 2 (Drop 2), “Involve-

ment Avoiders,” also possessed little desire to 

identify themselves as a university member 

(<5.5), but rarely chatted with their instructors 

outside of class (<3.5).  “Involvement Avoid-

ers” also indicated during summer registration 

that they were not interested in attending urban 

cultural events in a chaperoned group (<4.5). 

Dropouts on Path 3 (Drop 3), “Congruent 

Non-Competitors,” differed from the first two 

clusters.   These students did want to identify 

themselves as a university member (>5.5).  Alt-

hough this cluster of dropouts possessed strong 

Traditional-Catholic PE fit (<0.19), they did not 

desire a competitive college environment (<5.5). 

The final set of Path 4 dropouts (Drop 4), 

“Incongruent Thrill-Seekers,” were similar to 

those on Path 3 in that they desired to identify 

themselves as university members.  However, 

these attritors revealed incongruent Traditional-

Catholic PE fit levels (>0.19), and possessed 

pre-enrollment desires to attend a college with 

an unpredictable environment (>5.5). 

The PACs for Paths 1, 2, 3, and 4 classi-

fying dropouts were 90% (9/10), 83.3% (5/6), 

and 88% (7/8), and 71% (5/7), respectively. 

Five common pathways were used to clas-

sify students who chose to return to the univer-

sity as sophomores. 

Path 1 returners (Stay 1), “Large-Dose 

Participants,” possessed little desire to identify 

themselves as a university member (<5.5), 

chatted frequently with their instructors outside 

of class (>3.5), desired a team-oriented envi-

ronment (>5.5), and also desired to dine with 

their instructors (>4.5). 

Returners on Path 2 (stay 2), “Academi-

cally Involved Independents,” were similar to 

those on Path 1 in that they possessed little de-

sire to identify themselves as a university mem-

ber (<5.5) and chatted frequently with their in-

structors outside of class (>3.5).  However, they 

differed from “Large Dose Participants” in that 

they did not desire a team-oriented college envi-

ronment (<5.5). 

Returners on Path 3 (Stay 3), “Culture 

Seekers,” also possessed little desire to identify 

themselves as a university member (<5.5), and 

indicated that they did not often chat with their 

instructors outside of class (<3.5).  However, 

“Culture Seekers” indicated during summer 

reistration sessions a desire to attend urban cul-

tural events with classmates and faculty mem-

bers (>4.5). 

Returners on Path 4 (stay 4), “Congruent 

Competitors,” did want to identify themselves 

as a university member (>5.5), possessed good 

Traditional-Catholic PE fit (<5.5), and desired a 

competitive college environment (>5.5). 

Finally, returners on Path 5 (Stay 5), “In-

congruent Routine-Seekers,” wanted to identify 

themselves as university members (>5.5), pos-

sessed little Traditional-Catholic PE fit (>0.19), 

and did not desire a unpredictable environment 

(<5.5). 

The PACs for these five pathways were 

71.4% (5/7); 81.8% (30/37); 82.0% (50/61); 

66.7% (24/36); and 90.9% (160/176), respec-

tively. 

 Objective vs. Subjective PE Fit.  It was 

predicted that Objective PE fit scores would be 

more closely related to involvement, and would 

better predict students’ return status, than Sub-

jective PE fit scores.  Results did not support 

these predictions.  No Objective PE fit score 

contributed to the understanding of student re-

tention and attrition.  Only one subjectively de-

rived congruence measure (Present Traditional-

Catholic PE Fit) assisted in classifying returners 

and attritors, but only for the expanded ODA-

CTA model.  

A surprising pattern emerged when the in-

volvement index was correlated with both Sub-

jective and Objective PE fit indicators.  The re-

lationship between Subjective PE fit and in-

volvement was in the opposite direction of the 

relationship between Objective PE fit and in-

volvement.  As predicted, highly involved stu-

dents tended to have more congruent subjec-

tively derived PE fit scores.  However, contrary 

to predictions highly involved students tended to 
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have more incongruent PE fit scores when this 

variable was computed using the mean of all 

respondents’ Real scores.  Thus, it appears that 

the direction of the relationship between student 

involvement and PE congruence may be contin-

gent upon how the PE fit scores were derived.  

This unexpected relationship might best be ex-

plained by measurement artifacts, rather than 

true effects (discussed below).   

 Anticipatory vs. Present PE Fit.  It was 

hypothesized that Present PE fit scores would 

better predict return status and be more closely 

associated with students’ involvement levels 

than Anticipatory PE fit scores.  The logic be-

hind this prediction was that first-year students 

would have a better understanding of what they 

desired in a university after having experienced 

college life for two semesters.   

Results revealed that Present congruence 

measures were only slightly better than Antici-

patory congruence measures with respect to in-

volvement and return status. Three Present PE 

fit scores, but only two Anticipatory PE fit 

scores, were associated with students’ level of 

participation in college activities (see Table 4).  

With respect to return status, the only congru-

ence measure that was included in any of the 

classification models was Present Subjective 

Traditional-Catholic, derived from posttest 

items (see Figure 1).     

 PE Fit vs. P and E Variables.  It was hy-

pothesized that PE fit difference scores would 

outperform P (Ideal) and E (Real) scores alone.  

Results did not support this prediction.  Student 

involvement was more highly correlated with 

the P factors and E factors than with the PE fit 

factors (see Table 8).  To test the relationship 

between P and E dimensions and retention, 

MANOVAs and discriminant analyses were 

performed, using the six Ideal (P) and three Real 

(E) factors in place of the PE Fit indicators to 

test for group differences between returners and 

non-returners.  P and E factors did not improve 

the accuracy in classifying freshman returners 

from dropouts. 

       Table 8: Correlations Between Student 

              Involvement and Ideal (P) and 

                          Real (E) Factors 

           Effect 

Ideal (P) Dimension 
                          

     r              r
2 
      Size (d)

 

College Image (A)
a   

                  0.250
**

    0.063      0.519  

College Image (P)
b 
                    0.210

**
    0.044      0.429 

Student Experience (A)
 
             0.348

**
    0.121      0.742 

Student Experience (P)        
  
     0.439

**
    0.190      0.969 

Traditional-Catholic (A)
 
            0.357

**
   

 
0.127     

 
0.763     

Traditional-Catholic (P)             0.401
**

    0.161      0.876 

Real (E) Dimension  

College Image  
 
        

 
 0.293

**      
0.086      0.613 

Traditional-Catholic                    0.539
**

    0.291      1.280 

--------------------------------------------------------------- 
Note: The Student Experience Real factor was excluded 

from these analyses due to the independence assumption 

violation between this variable and the involvement 

attribute.  All analyses were performed with and without 

involvement items in the Real and Ideal factors: signifi-

cance levels did not change. Double asterisks (**) indi-

cate  p<0.05 at the experimentwise criterion.
58

  
a
Antici-

patory (derived from summer items).  
b
Present (derived 

from spring items). 

Additionally, three CTA and three DA 

procedures were run—each containing the two P 

(Anticipatory and Present) and one E factor cor-

responding to the three college dimensions 

(College Image, Student Experience, Tradi-

tional-Catholic).  Neither CTA nor DA proce-

dures generated a classification solution with 

respect to return status when Real and Ideal 

factors replaced PE fit factors.  However, as dis-

cussed above, when ancillary analyses expanded 

discriminant procedures to include single-item P 

and E variables, preferences and perceptions 

outperformed PE fit scores in distinguishing 

freshman returners from non-returners. 

 

Discussion 

The PE Fit literature has linked student-

college congruence to a host of desirable educa-

tional variables (e.g., academic achievement, 

perceived competency), yet has virtually ig-

nored attrition and retention variables.  The pre-
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sent study attempted to merge the separate re-

tention and PE Fit paradigms, by investigating 

the relationships among involvement, student-

college congruence, and withdrawal decisions 

for one population of college freshmen over a 

period of one year.     

Although most PE fit indicators were 

linked to student involvement levels, the corre-

lations between separate P and E factors and 

involvement were stronger.  The variable most 

highly correlated with student involvement 

measured students’ perceptions (E) regarding 

the Traditional-Catholic nature of their college.  

Students who believed that the “press” of their 

college environment emphasized religious val-

ues, grades, and school rules, were most likely 

to participate in campus activities.  Highly in-

volved students also seemed to have desired 

these characteristics, since the variable corre-

lated next highly with involvement was the Tra-

ditional-Catholic P factor.   

It appears that the relationship between in-

volvement and student-college congruence was 

contingent upon the way that the PE Fit indica-

tor was derived.  When subjective congruence 

scores were used, the relationship between these 

PE fit indicators and involvement was as pre-

dicted; the greater students’ level of involve-

ment, the greater the match between students’ 

preferences and perceptions.  However, when 

objective congruence scores were used, greater 

student participation resulted in more discrepant 

congruence scores. 

One explanation for this change in direc-

tion may lie in the relationship between in-

volvement and the Ideal (P) component of the 

PE fit score.  By using the average “Real” rating 

across all respondents to derive Objective PE fit 

scores, any variability related to the E compo-

nent of congruence was lost.  Thus, variability 

in objectively derived PE fit scores was due to 

differences in student preferences (P items) 

only.  This was not the case with subjectively 

derived congruence scores in which both P and 

E responses were free to vary.  

In this study, involvement was, in fact, 

positively correlated with all six Ideal ratings (rs 

ranged from 0.21 to 0.44, all ps<0.01, mean ef-

fect size=0.72).  Thus, the relationship between 

Objective PE fit and involvement may simply 

have represented a measurement artifact.  Be-

cause students with the highest college stand-

ards (P ratings) were likely to have been the 

same students who frequently participated in 

college activities, it was made to appear that 

greater participation was linked to greater (ob-

jective) incongruence.  

 This is consistent with Edwards’ assertion 

that PE fit measures must allow both the P and 

E components to contribute to the total variabil-

ity.
54,55

  When only one component is permitted 

to vary, Edwards claims that PE fit is no longer 

being assessed.  Since this may have been the 

case in the present study, all analyses using 

Objective PE fit scores should be rendered sus-

pect. 

 So, how is it that several congruence re-

searchers have demonstrated that Objective PE 

fit was superior to Subjective PE fit in their 

studies?  The answer may simply be they have 

not.  A closer examination of these studies re-

vealed that measurement problems suggested by 

Edwards may also explain these findings as 

well.  For instance, Tracey and Sherry studied 

the relationship between Objective PE fit, Sub-

jective PE fit, and student distress.
19

  They 

found that objective measures of congruence 

were more highly correlated with distress than 

Subjective PE fit measures.  However, this was 

only the case when students’ Ideal (P) ratings 

also were negatively correlated with distress. 

When distress and college preferences were 

positively related, Subjective PE fit scores were 

more highly correlated with college distress than 

Objective PE fit.  Thus, Tracey and Sherry’s 

findings may suffer from the same problems as 

those found in the present study.  

 Although many studies suggest that the 

congruence between preferences (Ps) and per-

ceptions (Es) is superior to either component 

alone in predicting behavior, studies do exist 
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that refute this claim.
63,64

  The present study 

might be included in this group since no classi-

fication model differentiated returners from 

attritors when psychometrically constructed PE 

fit indicators were used as predictors.   

 When exploratory analyses were ex-

panded to include student preferences and per-

ceptions measured at the individual item level, 

the present study supports the notion that P and 

E components may be more important in classi-

fying returners from attritors than congruence 

measures that combined these components.  

Only one of the 12 PE fit indicators significantly 

classified returners from non-returners, and this 

was only for the expanded CTA model.  Present 

Subjective Traditional-Catholic PE fit scores 

assisted in the classification of two clusters of 

dropouts and two clusters of returners.  No con-

gruence score was included in the traditional 

discriminant function.  All other variables in 

both models were either P or E items.    

Ideal and Real factors differed in their 

contribution to the classification models.  Alt-

hough the DA solution was comprised of both P 

and E variables, the CTA model was comprised 

almost completely of P variables.  The only E 

item in the classification tree assessed the fre-

quency of student-teacher interactions outside of 

the classroom.   

The time of the year in which P variables 

were assessed also made a difference.  The ma-

jority of the DA and the CTA items comprising 

these classification solutions contained re-

sponses that were assessed in the spring of re-

spondents’ freshman year.  Spring preferences 

were better predictors of college retention than 

previous summer preferences perhaps because 

in their second semester, students did not have 

to speculate about aspects of college life they 

had yet to experience.   

The CTA model may be consistent with 

Tinto’s theory that links freshman involvement 

with retention.
3
  According to Tinto, different 

types of involvement are critical at different 

points in time.  Upon arriving to campus, the 

social sphere is critical to students, as they seek 

to find a support network.  However, the focus 

soon switches to the academic sphere once 

freshmen begin their second month of college.  

After the first few weeks on campus, classrooms 

become first year students’ “gateways to [fu-

ture] involvement” in other social and academic 

arenas (p. 134).  Here, fledgling students learn 

to engage in both formal and informal activities 

with both faculty and peers.  Thus, according to 

Tinto, the quality of the learning experience 

(e.g., contact with, and helpfulness of, faculty 

and classmates) is not freshmen’s first priority 

when they arrive on campus, but soon becomes 

the crucial predictor of their overall satisfaction 

with the college experience.        

The left side of the CTA model (see Fig-

ure 1) seemed to reflect this emphasis on infor-

mal academically-oriented interactions.  All be-

haviorally-based items in the CTA model in-

volved informal interactions with faculty mem-

bers.  Both brief (chat with instructor) and ex-

tended (dine with professor; attend a cultural 

event) faculty interactions helped to distinguish 

returners from non-returners.  Thus, it appears 

that student-teacher interactions may have been 

more important for enhancing freshman reten-

tion than purely social peer-only interactions.   

Although the left side of the CTA model 

contained mostly behaviorally-based variables, 

the right side of the tree contained image-based 

preferences in addition to a Traditional-Catholic 

congruence variable.  This side, then, reflected 

retention decisions based on the value-system of 

one’s institution (Traditional-Catholic congru-

ence) as well as the degree of thrill-seeking 

“press” that was thought to exist on campus.  

Interestingly, this “thrill-seeking” component 

was similar to the most important items in the 

traditional DA classification model.  In that 

model, perceptions regarding how “competi-

tive” and “organized” their college was contrib-

uted greatly to the differentiation of dropouts 

from attritors.  However, unlike the CTA model, 

no behaviorally-based items were included in 

the DA model.  These findings emphasize one 

of CTA’s major strengths.  Clusters of respond-
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ents that would not have been found with one 

linear discriminant function, were revealed with 

CTA. 

Although results from these models are 

interesting, three important limitations must be 

noted.  First, both the CTA and the DA classifi-

cation solutions yielding a solution on the basis 

of retention were exploratory.  Only after the 

psychometrically derived constructs were una-

ble to distinguish attritors from returners, were 

individual “ideal” and “real” items included in 

the analyses.   

Second, although the CTA model held up 

under LOO (jackknife) tests for overfitting, 

neither model was able to be cross-validated 

using a training sample, for which group mem-

bership was known, and a holdout sample, for 

which group membership was predicted, and 

later compared to reality.  Although the pretest 

sample size was large enough to divide, the 

posttest sample size was not.  Future studies that 

intend to follow freshmen students longitudi-

nally should focus on increasing the response 

rate in spring phases of data collection.  Special 

efforts also should be made to encourage com-

muting freshmen and freshmen who are strug-

gling academically to participate, since these 

groups were somewhat under-represented in this 

study. 

Finally, neither classification model was 

able to classify students on the basis of return 

status better than simply relying on the base 

rates.  Because the vast majority of freshmen 

did return to campus for their sophomore year, 

simply using the classification rule, “Predict all 

students to return” would have resulted in a 

classification accuracy of close to 90%.  Neither 

the DA model nor the CTA model could beat 

this rule.   

However, it is important to note that the 

beating the base rates may not be a relevant cri-

terion with which to base the adequacy of the 

classification models in this study.  Because ex-

ploring the perceptions and behaviors of stu-

dents most at-risk of dropping out is of utmost 

importance to college administrators, finding the 

model that most accurately classifies this “vul-

nerable” group may be more important than 

finding the model that most accurately classifies 

all students (dropouts and returners).  The ex-

panded CTA model was able to do just that.  

The relationship between PE fit and reten-

tion might have been stronger if the reasons 

driving students’ decisions to exit or remain in 

their academic setting were assessed.  Factors 

impacting one’s decision to leave college are 

both numerous and complex.  Researchers have 

discussed several kinds of dropouts, including 

temporary or permanent; voluntary or involun-

tary; and attrition for academic or social rea-

sons.
3,7,65

  Additionally, leaving college may not 

necessarily result in negative outcomes if, for 

instance, one’s experience with a university 

results in highly aversive outcomes, and better 

options exist elsewhere.
66

  It may be that PE fit 

levels impact only certain kinds of attrition.    

Future researchers might want to fine-tune 

the return-status variable to better assist college 

personnel in stream-lining their retention efforts.  

Reasons for dropping could be assessed using 

an exit interview or written questionnaire at the 

time of departure.  An interesting and poten-

tially important future study could combine the 

use of exit interviews with CTA techniques to 

better understand freshman attrition.  If reasons 

for leaving differed among the different “clus-

ters” of attritors, CTA models could be used as 

diagnostic tools for college admissions directors 

and administrators.  

There are four important findings that may 

be of interest for those in the business of en-

hancing freshman involvement and retention.  

First, it may be important to encourage both 

students and faculty to seek each other out when 

they are not in the classroom.  Behaviorally-

based items that helped to distinguish returners 

from non-returners included, not peer-interac-

tions, but different types of faculty-student in-

teractions.   

Second, in addition to desires for interac-

tions with faculty members, students’ images of 

their college are also important to students.  The 
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value system that a college promotes, as well as 

the competitiveness and predictability of its cli-

mate, all appear to be important components in 

the understanding of student retention.  These 

factors may help to impact how much of a col-

lege “member” students feel they are.    

Third, college preferences may be more 

important than college perceptions in classifying 

freshmen on the basis of return status.  It also 

may matter when researchers document these 

college desires.  If students really do not know 

what they want in a college until they have oc-

cupied it for some time, administrators may 

want to wait until the spring of students’ fresh-

man year to assess college preferences and per-

ceptions. 

Finally, there appears to be specific statis-

tical analysis which is ideally suited for the task 

of understanding college student attrition.  CTA 

was far superior in classifying dropouts than 

traditional discriminant analysis techniques 

(84% vs. 18%).  This finding is important since 

attritors comprise the group about which college 

administrators are most concerned.  Addition-

ally, CTA was able to identify unique clusters of 

dropouts (and returners) implying that, indeed, 

students choose to leave their colleges for a 

plethora of reasons.  This ability to refine our 

understanding of college attrition may be an im-

portant first step in actually reducing the num-

ber of students who choose this route. 
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This study explored multiple variables that influence the develop-

ment of juvenile delinquency.  Two datasets of the National Youth 

Survey, a longitudinal study of delinquency and drug use among 

youths from 1976 and 1978, were used: 166 predictors were se-

lected from the 1976 dataset, and later self-reported delinquency 

was selected from the 1978 dataset. Optimal data analysis was then 

used to construct a hierarchical classification tree model tracing the 

causal roots of juvenile delinquency and non-delinquency.  Five 

attributes entered the final model and provided 70.37% overall 

classification accuracy: prior self-reported delinquency, exposure 

to peer delinquency, exposure to peer alcohol use, attitudes toward 

marijuana use, and grade level in school.  Prior self-reported delin-

quency was the strongest predictor of later juvenile delinquency.  

These results highlight seven distinct profiles of juvenile delin-

quency and non-delinquency: lay delinquency, unexposed chronic 

delinquency, exposed chronic delinquency, unexposed non-delin-

quency, exposed non-delinquency, unexposed reformation, and ex-

posed reformation. 

 

The Federal Bureau of Investigation 

(FBI) reported that more than 1.5 million juve-

niles under the age of 18 were arrested in 2003, 

suggesting that about 16.3% of all individuals 

arrested were juveniles.
1
  As a result, youth vio-

lent crime is often considered to be a major 

problem in the United States.
2
 In addition, re-

search indicates that a delinquent criminal ca-

reer increases the potential to commit crime in 

adulthood.
3-11

  For these reasons, juvenile delin-

quency and its causes have been major topics in 

the study of crime.
12

 

Some scholars have focused on situa-

tional factors as underlying determinants of 

criminal behavior.
13-16

 For example, because 

crime rates are generally high in areas of pov-

erty, it has been argued that poor socialization 

(i.e., failure to teach skills to achieve middle-

class success) provided by lower-class parents is 

a predictor of delinquency.
17

  With poor sociali-

zation, lower-class adolescents feel frustrated 

and develop a unique subculture for their values.  
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From the general view of conventional groups, 

this is referred to as a delinquent subculture, and 

youths belonging to this subculture are socially 

labeled as delinquent gangs.  Moreover, a delin-

quent subculture often develops in socially dis-

organized areas.
18

  Social disorganization is said 

to exist
12

 when: “institutions of social control... 

have broken down and can no longer carry out 

their expected or stated functions” (p. 168).  Ad-

olescents living in socially disorganized areas 

have limited conventional opportunities, such as 

well-paying jobs or educational opportunities, 

which adolescents eventually perceive as an un-

equal distribution of power, a disjunction exist-

ing between aspirations and expectations, or a 

discrepancy between expectations and achieve-

ment.
18

  To achieve their goals under such lim-

ited conventional opportunities, some adoles-

cents seek alternative but illegal ways and 

thereby become involved in a deviant sub-

culture. 

Although prior research
17-18

 addressed 

the general relationship between social class and 

delinquency, not all lower-class youths automa-

tically engage in illegal behaviors.  As an alter-

native conceptual viewpoint, social learning the-

ory argues that crime results from the learning 

process of rewarded and punished behaviors 

shaped through past experience and observa-

tions.
19-21

  For instance, youth might learn actual 

criminal techniques (e.g., how to steal things 

from others), psychological coping strategies 

(e.g., how to deal with guilt or shame as a result 

of criminal activities), and attitudes about crime 

(e.g., the norms and values related to criminal 

activities) from direct exposure to antisocial be-

havior
22-23

 or from relationships with a delin-

quent group.
24-27

   

Furthermore, it has been suggested that 

criminals are at lower stages of moral develop-

ment than law-abiding citizens.
28-30

 This reason-

ing suggests that people’s perceptions of their 

environment influence moral development.  In 

fact, Thornberry
26

 found that peer influence was 

a crucial element during mid-adolescence, and 

having delinquent peers helped form delinquent 

values.  Menard and Elliott
31

 also found that 

antisocial behavior attenuated a sense of social 

morality.   

Considering influences that move youth 

away from antisocial behavior, in contrast, 

Hirschi
32

 focused on four important prosocial 

bonds that detach adolescents from delinquency: 

attachment (i.e., sensitivity to and interest in 

others); involvement (e.g., participation in social 

activities); commitment (i.e., investing time, 

energy, and effort in conventional behaviors); 

and belief (i.e., respecting social values).  Ac-

cording to his social bond theory, if youths have 

weak bonds of attachment, involvement, com-

mitment, and belief, then they are more likely to 

engage in delinquent behavior.  Extending this 

theoretical model, social bond theory was trans-

formed into the general theory of crime (GTC), 

in which impulsive adolescents who receive 

poor socialization are more likely to be low in 

self-control and to weaken their social bonds to 

conventional groups, which, in turn, encourages 

them to seek criminal opportunity (e.g., joining 

gangs, using illegal drugs).
33

 

Contrary to theoretical predictions, how-

ever, it has been reported that some youths who 

did not actually reject social bonds nevertheless 

developed associations with delinquents.
24

 Thus, 

it is suggested that a relationship between social 

bonds and delinquent behavior is moderated by 

other factors, such as socioeconomic status.
24

  

Alternatively, path analyses of the National 

Youth Survey from 1976 to 1978 concluded that 

prior delinquency and involvement in delin-

quent peer groups were direct causal influences 

on delinquency and drug use, and conventional 

bonds and strain in-directly influenced later de-

linquency.
24

  This research implies that delin-

quency is recidivistic probably because such 

youth have been labeled negatively and stigma-

tized, making it difficult for them to be rehabili-

tated into conventional society.
34-35

 

Thus, previous research has provided 

rich information explaining sociological and 



Optimal Data Analysis     Copyright 2010 by Optimal Data Analysis, LLC 

2010, Vol. 1, Release 1 (September 17, 2010)  2155-0182/10/$3.00 

 

 

 

127 
 

psychological mechanisms underlying delin-

quency.  Our goal in this study is to combine 

previous theoretical perspectives and research 

findings to examine delinquency more compre-

hensively than has been done previously.  Most 

prior research has examined only bivariate or 

linear relationships with delinquency and has 

analyzed a limited number of predictors.  In this 

study, we investigated many different potential 

predictors in a single integrated model and ex-

plored how these various predictors interact 

non-linearly with each other.  We hypothesized 

that both social and personal factors would mu-

tually influence delinquent behaviors.  We also 

considered several personal, social, and family-

related variables that are potentially associated 

with delinquency, such as attitudes toward 

deviance, social isolation, family isolation, and 

demographic characteristics.  Our dependent 

variable was youth’s delinquency status—

delinquency versus non-delinquency—and we 

used a newly available non-linear multivariable 

method of classification tree analysis, based on 

optimal data analysis (ODA), to classify obser-

vations into delinquents or nondelinquents.
36

 

Advantages of 

Classification Tree Analysis (CTA) 

Traditionally, linear classification meth-

ods such as discriminant analysis and logistic 

regression analysis have been used to solve sta-

tistical classification problems.  Nevertheless, 

linear classification methods have several weak 

points that might produce statistical solutions 

that are less than optimal.  For example, discri-

minant analysis can produce probabilities be-

yond the range of 0 to 1 and requires restrictive 

normality on the independent variables, which is 

usually not met in practice.
37

  Furthermore, both 

discriminant analysis and logistic regression 

analysis simplify complex real-world phenom-

ena by using a linear model although real phe-

nomena are typically not linear.
38

  In addition, 

these linear methods assume three conditions 

that are often unrealistic—namely, that the mag-

nitude of importance, the direction of influence, 

and the coefficient value for each predictor vari-

able is the same across all observations.
38

  It is 

not our intention to argue that statistical results 

found by linear methods are invalid, but rather 

to note that the level of accuracy of these meth-

ods is constrained by the above limitations. 

In contrast to traditional linear classifica-

tion techniques, the ODA paradigm offers a 

non-linear multivariable classification method 

known as hierarchically optimal classification 

tree analysis (CTA).
38

  Independent and depend-

ent variables are referred to respectively as “at-

tributes” and “classes” in CTA.  An attribute is 

defined as: “any variable that can attain two or 

more levels, and reflects the phenomenon that 

one hopes will successfully predict the class 

variable,” and a class variable is defined as “any 

variable that can attain two or more levels, and 

reflects the phenomenon that one desires to suc-

cessfully predict.”
36

 

Note that a class variable must be cate-

gorical, although an attribute can be either cate-

gorical or continuous.  CTA has distinct ad-

vantages over linear classification methods.  

First, CTA can handle non-linear, complicated 

real-world phenomena.  With CTA, the shape or 

form of a given phenomenon does not matter, 

whereas linear methods assume that a straight 

line or a sigmoidal curve characterizes the un-

derlying phenomenon.
38

  In addition, a CTA 

model produces a high level of classification 

accuracy by adopting optimal decision rules, 

rather than trying to maximize explained vari-

ance or minimize a fit function (see Method for 

more detail).  Moreover, CTA is free from the 

restrictive assumptions about independent varia-

bles.  In particular, unlike linear methods, CTA 

does not assume constant importance, direction 

of influence, and coefficient value (unstandard-

ized or standardized regression coefficient) for 

each attribute across all observations.
38

 

 Another strength of CTA is it provides a 

hierarchically optimal classification model, 

which can be very informative.  In CTA, the at-
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tribute with the strongest effect size for the total 

sample, called the first node, enters the top of a 

hierarchically optimal classification tree model.  

One level or branch of the first node leads to a 

second node through a predictive pathway, 

while another level of the first node leads to an-

other second node through a different predictive 

pathway.  At these second nodes, the attributes 

with the strongest effect size under each condi-

tion are entered to produce, in turn, different 

pathways to the third nodes.  These patterns are 

repeated until prediction endpoints are reached. 

The final CTA model reveals two im-

portant pieces of information.  First, tracing 

combinations of nodes in CTA visually identi-

fies crucial interaction effects.  For example, 

imagine the final CTA model indicates a certain 

subgroup (endpoint) is predicted to engage in 

delinquency when the first node of the model 

(e.g., attachment) is at a low value and the se-

cond node (e.g., moral belief) is also low.  This 

result indicates that moral belief predicts delin-

quency, depending on the strength of attach-

ment.  Note that in contrast to traditional linear 

approaches, CTA automatically detects im-

portant interactions by examining all attributes 

in the statistical model.  Second, the CTA model 

allows us to trace multiple stages branching into 

each level of a class variable and to discover the 

critical profiles linked to each outcome.  In the 

above example, the CTA model would show at-

tachment (the first stage) and moral belief (the 

second stage) at which youths move toward de-

linquency or non-delinquency.  This result im-

plies that one profile of delinquency is the com-

bination of weak attachment and moral beliefs.   

In contrast, linear methods cannot iden-

tify ordinal predictors leading to each outcome.  

Furthermore, unlike CTA, linear methods have 

difficulty finding combinations of multiple vari-

ables predicting each level of an outcome simul-

taneously, making it more difficult to use linear 

methods to identify predictive profiles. 

These advantages make CTA a powerful 

procedure for solving statistical classification 

problems in comparison with the linear classifi-

cation methods.  CTA models are manually con-

structed using statistical software which con-

ducts ODA and classifies observations optimally 

by following “a prediction rule that explicitly 

achieves the theoretical maximum possible level 

of classification accuracy”.
36

   We used ODA in 

this study for three reasons in addition to the 

fact that ODA enables us to capitalize on all the 

strengths of CTA.  First, ODA can analyze all 

types of attributes measured by ratio, interval, 

ordinal, and nominal scales.
36,39

 Second, as 

noted in the Method section below, ODA empir-

ically tests the expected cross-sample generali-

zability of optimal classification models.
 36,39

  

Finally, ODA simultaneously analyzes as many 

attributes as one wants without the limitations of 

the ratio of attributes to sample size or problems 

of multicollinearity.
36

 This is because ODA tests 

the overall effect of each attribute on a class 

variable individually and selects only the single 

most influential attribute at each node.  This 

strategy differs from multiple regression analy-

sis, which calculates the partial effect of each 

variable independent of the effects of other vari-

ables when considered simultaneously. 

Method 

Participants and Materials.  Archival 

data from the National Youth Survey, a 1976-

1978 longitudinal design with multiple birth co-

horts, were used.
24,40-41

  In early 1977, the first 

wave of the survey gathered a multistage, clus-

ter (area) probability sample of 1,725 American 

adolescents aged from 11 to 17 in 1976.  Thus, 

by design, the sample included not only delin-

quents but also non-delinquents.  The survey as-

sessed events and behaviors theoretically linked 

with delinquency during calendar year 1976, 

and the subsequent wave tracked most of the in-

dividuals in 1978.  Because the National Youth 

Survey followed the same individuals over time, 

we selected theoretically relevant attributes 

from the 1976 dataset to predict later self-re-

ported delinquency in the 1978 dataset.  Partici-
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pants interviewed for the first survey were rep-

resentative of the youth population aged 11-17 

in the U.S. measured by the U.S. Census Bu-

reau, and the attrition rate for the subsequent 

wave was only 6% (N=99).
24

  ODA software
36

 

was used to manually construct a hierarchically 

optimal CTA model of juvenile delinquency. 

Measures.  Our class variable of general 

delinquency was a composite index consisting 

of the frequency of the following behaviors re-

ported by youths in 1978: aggravated assault, 

larceny, burglary, robbery, marijuana use, hallu-

cinogens use, amphetamines use, barbiturates 

use, cocaine use, vandalism, buying stolen 

goods, hitting, joyriding, runaway, carrying a 

hidden weapon, prostitution, and selling drugs.  

Note that there were no questions about homi-

cide and arson in the survey.  Alcohol use, lying 

about age, hitchhiking, and buying liquor for a 

minor from were excluded from our measure of 

delinquency because they were rather common 

illegal acts.
24,43

  Sexual intercourse, panhan-

dling, and disorderly conduct were also ex-

cluded from delinquent behaviors.  Sexual inter-

course is relatively commonplace among 

youths, and it is also hard to judge whether sex-

ual intercourse is delinquent.
43

  For example, a 

victim of rape has sexual intercourse against his 

or her will, but voluntary intercourse is not ille-

gal.  Thus, it was reasonable to bar sexual inter-

course as a component of delinquency.  As for 

panhandling, begging for money does not hurt 

anyone and is not delinquent.  Finally, people 

often behave in a disorderly manner (e.g., being 

loud in public) simply because of their exuber-

antly positive mood, so disorderly conduct is not 

always a form of delinquency. 

Although our decision to consider some 

illegal acts as non-delinquent due to the trivial 

nature of these acts may not be universally ac-

cepted, the proportion of youths who performed 

at least one of these “trivial” illegal acts once or 

more monthly was 69.1%, whereas the propor-

tion of youths who committed delinquent acts 

once a month or more as we have operationally 

defined this construct was 32.8%, which seems 

much more reasonable as an estimate of the un-

derlying rate of delinquency. 

The National Youth Survey offered two 

sets of questions to measure (a) the actual num-

ber of times each delinquent act was committed 

and (b) the frequency of each delinquent behav-

ior using a scale ranging from one (never) to 

nine (two-three times a day).  Cronbach’s α for 

the frequency rates of the general delinquency 

was 0.713, which was greater than that for the 

actual number of delinquent behaviors.  Hence, 

only the frequency rate items were used to con-

struct the class variable for CTA.  Committing 

each delinquent behavior once a month or more 

(score≥4) was recoded as one point, while com-

mitting each delinquent behavior less than once 

a month (score<4) was recoded as zero points.  

This rule was the most effective in making our 

sample as representative as possible of Ameri-

can delinquents and non-delinquents (see the 

above discussion of the proportion of delin-

quents).  Respondents who scored at least one 

point were defined as delinquents, whereas re-

spondents who scored zero points were defined 

as non-delinquents: this was the class variable 

employed in CTA. 

Attributes.  A total of 166 attributes were 

examined, including 17 theoretical “broad band” 

composite variables, the individual “narrow 

band” items composing these theoretical attrib-

utes, and additional background and demo-

graphic characteristics used in prior research.
24

  

The theoretical variables were: (a) conventional 

involvement measured by a sum of scores on the 

school athletic and activities involvement scales 

and community involvement scale (α=0.70); (b) 

attachment to family measured by a sum of 

scores on the family involvement and aspiration 

scales (α=0.72); (c) conventional commitment 

measured by a sum of scores on the school 

aspirations scale and future occupational and 

educational goal scales (α=0.71); (d) moral be-

lief measured by a sum of scores on the family, 

school, and peer normlessness scales (α=0.72); 
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(e) exposure to peer delinquency measured by a 

sum of scores on the number of close friends 

performing each of some bad behaviors 

(α=0.82); (f) involvement with delinquent peers 

measured by a sum of scores on the peer in-

volvement scale multiplied by the difference 

between an observed score for exposure to peer 

delinquency and its mean (because this is a sin-

gle index, α was not computed
24

); (g) sociali-

zation measured by a sum of scores on the per-

ceived sanctions in family scale (α=0.84); (h) 

attitudes toward deviance measured by a sum of 

scores on the attitudes toward deviance scale 

(α=0.79); (i) social disorganization measured by 

a sum of scores on the neighborhood problems 

scale and the reversed and standardized family 

income scale (α=0.75); (j) prior self-reported 

delinquency measured by a sum of scores on the 

continuous frequency rate scale (α=0.95) and 

measured by a sum of scores on the dichoto-

mous frequency rate scale (α=0.91); (k) social 

isolation measured by a sum of scores on the 

family and school social isolation scales 

(α=0.73); (l) family isolation measured by a sum 

of scores on the family social isolation scale 

(α=0.72); (m) social labeling measured by a 

sum of scores on the family and school labeling 

scales (α=0.86); (n) perceived labeling by par-

ents measured by a sum of scores on the family 

labeling scale  (α=0.71); (o) perceived labeling 

by teachers measured by a sum of scores on the 

school labeling scale (α=0.80); and (p) strain 

measured by a sum of scores recoded 0 (no 

strain) to 3 (high level of strain), after subtract-

ing scores on the achievement of each goal from 

scores on the importance of the corresponding 

goal (α=0.62).
24

  Note that in measuring prior 

delinquency based on both continuous and di-

chotomous scales, we adopted the same opera-

tional definition as that of our class variable. 

Procedure and Analysis Strategy. The 

National Youth Survey data sets were obtained 

through the Inter-University Consortium for Po-

litical and Social Research (ICPSR) of the Uni-

versity of Michigan.  After all data were ac-

cessed and gathered, the class variable and attri-

butes were selected and computed as described 

above.  Finally, the class variable and the attri-

butes were input into the ODA program to con-

struct the CTA model. 

To facilitate clarity of exposition we re-

view how optimal data analysis operates in con-

structing a CTA model.  ODA is first used to 

determine a cutpoint, or decision rule, for each 

attribute that maximizes the overall percentage 

of observations that are correctly classified (i.e., 

the percentage accuracy in classification, or 

PAC).  For each equal interval or ordinal (i.e., 

continuous) predictor, ODA identifies an opti-

mal classification cut-point (e.g., if age>14, then 

predict delinquency; if age<14, then predict 

non-delinquency) that maximizes overall PAC.  

For each nominal or binary (i.e., categorical) 

predictor, ODA identifies an optimal classifica-

tion rule (e.g., if ethnicity=Anglo, then predict 

delinquency; if ethnicity≠Anglo, then predict 

non-delinquency) that maximizes overall PAC.  

Thus, ODA can accommodate multi-category 

nominal predictors, such as race, without 

dummy coding these variables. Unlike other 

statistical methods for constructing tree models 

(e.g., regression-based CART or chi-square-

based CHAID), ODA uses an exact permutation 

probability with no distributional assumptions, 

assesses the expected cross-sample generaliza-

bility of classification rules through an auto-

mated jackknife validity analysis procedure, and 

finds main effects and nonlinear interactions 

that optimally classify admission decisions.  

PAC is computed as 100% x (number of cor-

rectly classified observations)/(total number of 

observations).
36

 

After determining the optimal cutpoint 

providing the greatest PAC for each attribute, 

the next step is to decide which attributes to en-

ter into the hierarchically optimal CTA model.  

The chosen attribute must have the greatest ef-

fect strength for sensitivity (ESS), which re-

flects how much better PAC is compared to 

chance, using a standardized scale where chance 
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classification accuracy is 0% and perfect classi-

fication accuracy is 100%.  ESS is calculated 

using the following equation: 

 
100

C

100
100

classes  across  PACmean  100
1(%) ES 






















  

where C is the number of response categories 

for the class variable.
36

  By rule-of-thumb, ESS 

values < 0.25 are regarded as weak, values be-

tween 0.25 and 0.50 are considered  moderate, 

and values > 0.50 are defined as strong.
36

 

After selecting the attribute with the 

greatest ESS to serve as a node of a tree model, 

the attribute’s expected cross-sample stability in 

classification performance is assessed using a 

leave-one-out (LOO), or jackknife, validity 

analysis.  In LOO analysis, classification 

performance is evaluated after removing an 

observation, and then the removed observation 

is classified again according to the classification 

performance obtained using the remaining 

subsample.  This process is repeated until every 

observation has been removed and classified.  

An attribute is included in the CTA model only 

if its classification accuracy is stable in LOO 

analysis.  LOO analysis helps to construct a tree 

model whose constituent attributes are most 

likely to generalize to a new sample. 

If a LOO stable attribute with the great-

est ESS is statistically significant, then the attri-

bute enters as the first node of a CTA model.  

The level of statistical significance is deter-

mined by Monte Carlo simulation as a permuta-

tion probability, and is isomorphic with Fisher’s 

exact p test for binary attributes.  After the first 

node is determined, ODA subsequently searches 

the second node and lower nodes under each 

level of the highest node of a hierarchical tree 

model using the above procedures.  These 

procedures are repeated until no more attributes 

are below the critical p<0.05-level. 

Note that a given attribute can re-enter a 

node at a lower level even if it has already en-

tered as a node at a higher level in the CTA 

model.  This is the case when a re-entered attrib-

ute still contributes to the best classification per-

formance with a new cutpoint when combining 

specific levels of higher nodes.  Finally, to con-

trol the experimentwise Type I error rate at 

p<0.05 per comparison, a sequentially-rejective 

Sidak Bonferroni-type multiple comparisons 

procedure is used to prune attributes selected by 

inflation of Type I error.
36

  These adjustments 

also help maximize statistical power by reject-

ing lower nodes tested from very small subsam-

ple sizes when the total sample becomes divided 

and reduced.
36

 

Results 

Univariate Analyses.  To describe simple 

relationships between delinquency and each at-

tribute, we first conducted univariate analyses 

using ODA (Table 1).  Consistent with previous 

findings, most theoretical attributes were signifi-

cantly related to delinquency in the predicted 

direction: delinquency was significantly associ-

ated with weak attachment to family, weak con-

ventional commitment, weak moral belief, 

greater exposure to peer’s delinquency, positive 

attitudes toward deviance, high level of social 

disorganization, more experiences of prior de-

linquency, high level of social isolation, high 

level of family isolation, negative social label-

ing, negative social labeling by teachers, and 

high level of strain. 

In addition to these theoretical attributes, 

race and age were also significantly related to 

delinquency: Anglo adolescents were more 

likely to commit delinquency than other racial 

groups; and adolescents aged 14 or older were 

more likely to commit delinquency than those 

aged 13 or younger. 
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Table 1: Univariate Associations of Theoretical and Demographic Attributes 

with Delinquent (1) Versus Non-Delinquent Behavior (0) for the Total Sample (N=1,606) 

 

Attribute 

 

ODA Model 

 

n 

 

% Delinquent 

 

ESS 

 

p-value 

 

Conventional 

involvement 

 

> 20.5, predict 0 

 

70 

 

30.00 

 

 

17.93 

 

 

0.413  

≤ 20.5, predict 1 

 

186 

 

36.56 

 

Attachment  

with family 

 

> 29.5, predict 0 

 

1024 

 

25.78 

 

 

19.94 

 

0.118 

x 10
-13

  

≤ 29.5, predict 1 

 

536 

 

45.15 

 

Conventional 

commitment 

 

> 30.0, predict 0 

 

875 

 

24.00 

 

 

21.38 

 

0.906 

x 10
-15

  

≤ 30.0, predict 1 

 

705 

 

42.98 

 

 

Moral belief 

 

> 42.5, predict 0 

 

907 

 

25.58 

 

 

18.95 

 

0.935 

x 10
-12

  

≤ 42.5, predict 1 

 

653 

 

42.73 

 

Exposure to peer’s 

delinquency 

 

≤ 16.5, predict 0 

 

809 

 

21.88 

 

 

30.96 

 

0.102 

x 10
-26

  

> 16.5, predict 1 

 

538 

 

50.56 

 

Involvement with 

delinquent peers 

 

≤ 1.26, predict 0 

 

812 

 

21.80 

 

 

31.19 

 

0.107 

x 10
-25

  

> 1.26, predict 1 

 

532 

 

50.75 

 

Socialization 

 

> 30.5, predict 0 

 

57 

 

26.32 

 

 

1.08 

 

 

0.175  

≤ 30.5, predict 1 

 

1520 

 

33.16 

 

Attitudes toward 

deviance 

 

> 25.5, predict 0 

 

878 

 

21.75 

 

 

27.32 

 

0.524 

x 10
-24

  

≤ 25.5, predict 1 

 

719 

 

46.04 

 

Social 

disorganization 

 

≤ 12.15, predict 0 

 

1377 

 

31.30 

 

 

3.79 

 

 

0.0112  

> 12.15, predict 1 

 

135 

 

41.48 

 

Prior self-reported 

delinquency 

 

≤ 33.5, predict 0 

 

1053 

 

20.42 

 

 

36.86 

 

0.215 

x 10
-46

  

> 33.5, predict 1 

 

553 

 

56.42 
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Social isolation 

 

≤ 20.5, predict 0 

 

662 

 

29.15 

 

 

6.49 

 

 

0.0082  

> 20.5, predict 1 

 

917 

 

35.01 

 

Family isolation 

 

≤ 10.5, predict 0 

 

1018 

 

29.76 

 

 

8.59 

 

 

0.000519  

> 10.5, predict 1 

 

577 

 

37.95 

 

Social labeling 

 

> 81.5, predict 0 

 

1050 

 

26.67 

 

 

19.20 

 

0.462 

x 10
-13

  

≤ 81.5, predict 1 

 

479 

 

46.35 

 

Perceived labeling 

by parents 

 

> 37.5, predict 0 

 

1146 

 

28.88 

 

 

13.34 

 

 

0.682  

≤ 37.5, predict 1 

 

403 

 

44.17 

 

Perceived labeling 

by teachers 

 

> 43.5, predict 0 

 

1010 

 

25.94 

 

 

19.97 

 

0.132 

x 10
-13

  

≤ 43.5, predict 1 

 

541 

 

45.29 

 

Strain 

 

≤ 11.5, predict 0 

 

171 

 

23.98 

 

 

3.66 

 

 

0.0479  

> 11.5, predict 1 

 

1095 

 

30.50 

 

Exposure to peer’s 

alcohol use 

 

≤ 2.5, predict 0 

 

880 

 

22.05 

 

 

32.13 

 

0.332 

x 10
-30

  

> 2.5, predict 1 

 

501 

 

52.89 

 

Attitudes toward 

marijuana use 

 

> 3.5, predict 0 

 

1042 

 

23.61 

 

 

27.01 

 

0.553 

x 10
-25

  

≤ 3.5, predict 1 

 

556 

 

49.82 

 

Sex 

 

Male, predict 0 

 

849 

 

40.64 

 

 

-18.75 

 

 

0.999  

Female, predict 1 

 

757 

 

24.04 

 

Race 

Black/Chicano/American 

Indian/Asian/other, predict 0 

 

322 

 

25.47 

 

 

6.69 

 

 

0.000902  

Anglo, predict 1 

 

1281 

 

34.66 

 

Age 

 

≤ 13, predict 0 

 

732 

 

24.45 

 

 

17.28 

 

0.346 

x 10
-10

  

> 13, predict 1 

 

874 

 

39.82 
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Grade at School 

 

8th grade or lower, predict 0 

 

819 

 

26.01 

 

 

17.28 

 

 

0.439 9th grade or higher, not in 

school, or other, predict 1 

 

787 

 

39.90 

 

GPA 

 

F, predict 0 

 

10 

 

60.00 

 

 

-0.78 

 

 

0.983  

A, B, C, or D, predict 1 

 

1585 

 

32.49 

 

Family Income 

 

≤ $14,000, predict 0 

 

141 

 

33.33 

 

 

-0.43 

 

 

0.646  

> $14,000, predict 1 

 

1375 

 

32.22 

 

Parent’s Marital 

Status 

 

Single or married, predict 0 

 

1300 

 

31.23 

 

 

5.11 

 

 

0.593 Divorced/separate/other, 

predict 1 

 

280 

 

38.93 

Note: “ODA Model” indicates the cutpoint or decision rule by which ODA classified (non)delinquents.
36

  Total sample sizes 

varied across attributes due to incomplete data.  A sequentially-rejective Bonferroni adjustment procedure was not employed 

for univariate analyses.
36

  The total number of respondents who answered the set of questions associated with conventional 

involvement was 256, so the response rate for this set of items was only 15.94%.  ESS values indicated in red were stable in 

jackknife (“leave-one-out”) validity analysis, and are expected to show cross-sample generalizability. 

However, contrary to previous theory 

and research, attributes unrelated to delinquency 

included conventional involvement, socializa-

tion, and perceived labeling by parents.  More-

over, LOO analysis concluded that a significant 

relationship between involvement with delin-

quent peers and delinquency was not cross-sam-

ple generalizable. 

Classification Tree Analysis.  Our pri-

mary interest was not to see simple relationships 

between each attribute and delinquency, but to 

see how multiple attributes combine to explain 

predictive roots and profiles of juvenile delin-

quency and non-delinquency.  Therefore, we 

used ODA to construct a hierarchically optimal 

CTA model.  Following established procedures 

for constructing optimal CTA models, 68 nodes 

were initially identified; but after applying a se-

quentially-rejective Sidak Bonferroni-type mul-

tiple comparisons procedure, only five nodes 

were retained.  These five nodes were prior self-

reported delinquency measured by continuous 

scales as the first node (p<0.001) and as the 

third node (p<0.001), exposure to peer alcohol 

use during 1976 (p<0.001), exposure to peer 

delinquency during 1976 (p<0.001), grade level 

in school during 1976 (p<0.001), and attitudes 

toward marijuana use during 1976 (p<0.001).  

Except for grade level, all attributes were signif-

icant in the univariate analyses.  Figure 1 shows 

the final hierarchically optimal CTA model for 

explaining juvenile delinquency.  In the figure, 

circles represent nodes, arrows indicate 

branches, and rectangles are prediction end-

points (D=delinquency, ND=non-delinquency).  

Numbers below each node indicate directional 

Fisher’s exact p value for the node, and numbers 

in parentheses within each node indicate ESS 

for the node.  Also, numbers next to each arrow 

indicate the value of the cutpoint for the node. 

The strongest predictor of delinquency 

for the total sample was prior self-reported de-

linquency (ESS=36.86%): the first node of the 

CTA model.  The cutpoint for this attribute was 

33.5 (1.94% on the absolute scale).   
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Figure 1: The CTA model for predicting juvenile delinquency versus non-delinquency (N=1,367).  Ellip-

ses represent nodes, arrows represent branches, and rectangles represent prediction endpoints.  Numbers 

under each node indicate the exact p value for each node.  Numbers in parentheses within each circle in-

dicate effect strength.  Numbers beside arrows indicate the cutpoint for classifying observations into cat-

egories (delinquency or non-delinquency) for each node.  Fractions below each prediction endpoint indi-

cate the number of correct classifications at the endpoint (numerator) and the total number of observa-

tions classified as the endpoint (denominator).  Negative attitudes toward marijuana use = Thinking that 

marijuana use is “very wrong” or “wrong” for a youth or someone his or her age; Positive attitudes to-

ward marijuana use = Thinking that marijuana use is “a little bit wrong” or “not wrong at all” for a youth 

or someone his or her age; D = delinquency; ND = non-delinquency. 

 

ND 

Prior Self-

Reported 

Delinquency 

(36.87%) 

Exposure to 

Peer Alcohol 

Use 

(20.87%) 

Exposure to 

Peer 

Delinquency 

(29.75%) 

Prior Self-

Reported 

Delinquency 

(21.57%) 

Grade at 

School 

(23.35%) 

Attitudes 

toward 

Marijuana 

Use 

(30.60%) 

ND ND ND D D D 

> 33.5 ≤ 33.5 

.215 x 10
-46

 

absence 
existence > 20.5 ≤ 20.5 

.324 x 10
-6

 .495 x 10
-10

 

.000104 

.000102 

.000045 

positive negative 

    99/118 

(83. 

41/101 

(40.59) 

9th or 

higher 

grade, not 

in school, or 

other 

8th or 

 lower 

grade 

59/102 

(57.84) 

106/160 

(66.25) 

70/186 

(37.63) 

156/195 

(80.00) 

431/505 

 

> 30.5 ≤ 30.5 
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For youths who scored 33.5 or less on 

the prior delinquency scale based on its fre-

quency rate, the second node was exposure to 

peer alcohol use (ESS= 20.87%).  If a respond-

ent had no friends who used alcohol, then that 

respondent was predicted to be non-delinquent 

with 85.35% accuracy.  In other words, a few 

prior experiences with delinquency and no 

exposure to peer alcohol use jointly led to non-

delinquency.  For youths who had a few prior 

experiences of delinquency but who were 

exposed to peer alcohol use, a third node 

branched to either delinquency or non-de-

linquency.  This third node was, again, prior 

self-reported delinquency (ESS=21.57%).  That 

is, prior self-reported delinquency became the 

strongest attribute again among youths who had 

committed delinquent behavior less frequently 

and were exposed to peer alcohol use, but not 

among youths who fell into the other predictive 

pathways.  At this node the cutpoint was 30.5, 

representing less than the 1
st
 percentile on an 

absolute scale.  If youths scored 30.5 or lower 

on the prior delinquency scale, then they were 

predicted to be non-delinquent with 80% accu-

racy.  Therefore, even if youths had friends who 

had used alcohol, it was possible that the youths 

were still non-delinquents when they had been 

much less likely to perform delinquent behav-

iors two years earlier. In contrast, under the con-

ditions where youths were exposed to peer alco-

hol use, if their scores were above 30.5 but 33.5 

or less on the prior delinquency scale, then they 

were predicted to be delinquent with 37.63% ac-

curacy.  This was the lowest classification per-

formance at any endpoint predicting delin-

quency.  Overall predictive accuracy for youths 

who had earlier engaged in delinquent acts less 

often was 74.15% (657/886). 

In comparison, for those who had earlier 

engaged in delinquent behavior more often, a 

different hierarchical pattern appeared.  Among 

youths who scored more than 33.5 on the prior 

delinquency scale, the strongest predictor in the 

model was exposure to peer’s delinquency.  The 

cutpoint for this attribute was 20.5, which repre-

sents the 26
th

 percentile on an absolute scale.  If 

youths scored more than 20.5 on the scale of 

exposure to peer delinquency, then they were 

classified as being either delinquent or non-de-

linquent, depending on their attitudes toward 

marijuana use.  In contrast, among youths re-

porting more frequent prior delinquency and 

less exposure to peer’s delinquency (score≤ 

20.5), classification as delinquent or nondelin-

quent depended on their grade level in school.  

Specifically, youths were predicted as non-de-

linquent when (a) they were more exposed to 

peer delinquency and thought that marijuana use 

was “very wrong” or “wrong” for them or some-

one their age (59.41% delinquency rate), or (b) 

they were less exposed to peer’s delinquency 

and were in the eighth grade or lower (33.75% 

delinquency rate).  In comparison, youths were 

classified into delinquency when (c) they were 

more exposed to peer delinquency and thought 

that marijuana use was “a little bit wrong” or 

“not wrong at all” (83.90% delinquency rate), or 

(d) they were less exposed to peer’s delinquency 

and were in ninth grade or higher, did not attend 

at school, or a trade or business school (57.84% 

delinquency rate).  Overall predictive accuracy 

for those who reported more frequent delinquent 

behaviors earlier was 63.41% (305/481). 

Table 2 summarizes the overall classifi-

cation performance of the CTA model, which   

correctly classified 962 (70.37%) of the total 

1,367 youths.  The ESS for this model was 

30.59%, indicating that the model attained al-

most one-third of the theoretically possible im-

provement in classification accuracy versus the 

performance expected by chance: this is consid-

ered to reflect a moderate effect.
36
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                         Table 2: Confusion Table for CTA DelinquencyModel 

                                                     Predicted Class Status 

                                                      Non-                            

                                                 Delinquent       Delinquent 

Actual        Non-Delinquent           860                 128             Specificity = 87.0% 

Class  

Status                 Delinquent           135                   70              Sensitivity = 34.1% 

                                          Negative          Positive 

                                                               Predictive        Predictive 

                                                                 Value =           Value = 

                                                86.4%              35.4% 

 

Additional Comments about Cutpoints.  

Although the cutpoints for prior self-reported 

delinquency were 33.5 and 30.5, depending on 

the level of node, what do these values signify?  

Scores less than 33.5 were located within 1.94% 

on the absolute possible range, and the scores 

less than or equal to 30.5 reflects 0.65% of the 

absolute possible range on the prior delinquency 

scale.  Descriptive statistics showed that the 

mean of prior delinquency (range=29-261) was 

35.02 with SD=15.40.  Overall, 65.2% of re-

spondents scored 33.5 or less, while 34.8% 

scored more than 33.5.  Conceptually, a respon-

dent who scored 29 (i.e., 1 point x 29 items) had 

never committed delinquency in 1976, and a 

respondent who had performed all types of de-

linquent behaviors once or twice in 1976 should 

have scored 58 (i.e., 2 points x 29 items).  

Therefore, respondents who scored 33.5 had 

performed only a few types of illegal behaviors 

once or twice in 1976.  In addition, because the 

score of 30 indicates that a respondent commit-

ted one kind of delinquent behavior once or 

twice in 1976, scores less than or equal to 30.5 

indicate that respondents were engaged in only 

one delinquent behavior very few times.  Thus, 

scores below 33.5 on the prior delinquency in-

dex were much closer to the score of non-delin-

quents used to categorize the class variable, and 

could be considered as reporting very few prior 

delinquent experiences.   

What about exposure to peer delin-

quency?  The cutpoint for exposure to peer de-

linquency was 20.5.  Descriptive statistics re-

vealed that the mean of this attribute (range=10-

50) was 16.72 with SD=5.87.  For exposure to 

peer delinquency, 77.8% of respondents scored 

20.5 or less, and 22.2% scored greater than 20.5.  

Scores less than 20.5 fell within 26.25% on an 

absolute scale.  A score of 20 (i.e., 2 x 10 items) 

would indicate that a respondent was exposed to 

peers who committed all ten types of delinquent 

behaviors.  Therefore, a score of 20.5 or less 

indicates that a respondent was exposed to rela-

tively few delinquent peers.   

Discussion 

Implications of the CTA Model of Delin-

quency.  As hypothesized, this study yielded a 

parsimonious model identifying social (expo-

sure to peer alcohol use, exposure to peer delin-

quency, and grade level in school) and personal 

variables (prior delinquency and attitudes to-

ward marijuana use) that together predicted 

American youths as either delinquent or non-

delinquent, supporting the critical influence of 

these factors on young people’s anti-social be-

havior.  The optimal CTA model achieved about 

a third of the possible improvement in classifi-
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cation accuracy relative to chance, which repre-

sents a moderate effect size.  The model identi-

fied three profiles of juvenile delinquency: (a) 

lay delinquency, reflecting infrequent prior de-

linquency with exposure to peer alcohol use 

(37.63% accuracy), (b) unexposed chronic de-

linquency, reflecting youth who had frequent 

prior delinquency with less exposures to peer 

delinquency, but being in the ninth grade or 

higher (57.84% accuracy), and (c) exposed 

chronic delinquency, reflecting youth who had 

frequent prior delinquency with exposure to 

peer delinquency and positive attitudes toward 

marijuana use (83.90% accuracy).  In contrast, 

the model yielded four profiles of non-delin-

quency: (a) unexposed non-delinquency, reflect-

ing youth who have infrequent prior delin-

quency with no exposure to peer alcohol use 

(85.35% accuracy), (b) exposed non-delin-

quency, reflecting youth who had extremely in-

frequent prior delinquency with exposure to 

peer alcohol use (80.00% accuracy), (c) unex-

posed reformation, reflecting youth who had 

frequent prior delinquency with less exposure to 

peer delinquency, but who were in eighth grade 

or lower (66.25% accuracy), and (d) exposed 

reformation, reflecting youth who had frequent 

prior delinquency with greater exposure to peer 

delinquency, but who had negative attitudes 

toward marijuana use (40.59% accuracy). 

The CTA model provides additional in-

sights into the prospective predictors of delin-

quency. Prior delinquency was the strongest pre-

dictor of subsequent delinquency—a conclusion 

that is consistent with previous reports that prior 

general delinquency directly influences later de-

linquency and drug use.
24

  Our results extend 

prior findings,  by identifying combinations of 

variables that exert a differential influence for 

experienced delinquents versus other subgroups 

of youth.  For experienced delinquents, the fac-

tors important in maintaining delinquency ap-

pear to be exposure to peer delinquency, grade 

level in school, and attitude toward marijuana 

use.  Youths who maintained their status as de-

linquents were categorized as unexposed or ex-

posed chronic delinquents with 71.82% accu-

racy (Table 3).  Previous studies showing the 

effect of exposure to antisocial behavior on 

criminal actions
22-23

 and the effect of peers on 

the formation of delinquent values
26,31

 support 

the profile of exposed chronic delinquency.  

Thus, with exposed chronic delinquency, prior 

delinquent experiences and exposure to delin-

quent peers might lead youths to form positive 

attitudes toward marijuana use, and these antiso-

cial attitudes might encourage them to commit 

delinquent actions later.  Note, however, that 

there is also a predictive profile reflecting ex-

posed reformation, implying that not all youths 

with frequent prior delinquency and more expo-

sure to delinquent peers automatically adopt 

positive attitudes toward marijuana.   

In contrast, for adolescents who have 

infrequent prior delinquency, the variables pre-

dictive of changing non-delinquency into delin-

quency were exposure to peer alcohol use and 

prior delinquency.  However, the combination of 

these factors predicted lay delinquency with 

only 37.63% accuracy, indicating that other fac-

tors not measured in the survey also operate. 
 

Table 3: Summary of Cross-Classification 

by Year (N=1,367) 

 

 
 
Year of 1978 

 
Year of 1976 

Non-Delinquency Delinquency 

Non-Delinquency 587/700 
(83.86%) 

147/261 
(56.32%) 

Delinquency 70/186 
(37.63%) 

158/220 
(71.82%) 

Note. The numerator of each fraction indicates the num-

ber of observations classified correctly.  The denominator 

of each fraction indicates the number of observations pre-

dicted as a given category by the CTA model.  Percent-

ages reflect the proportion of correctly classified observa-

tions. 
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Another important implication is that the 

factors that maintain non-delinquency are differ-

ent from the factors that terminate delinquency 

(Figure 1).  The CTA model demonstrated that 

unexposed and exposed non-delinquents main-

tained their status of non-delinquency with 

83.86% accuracy, whereas unexposed and ex-

posed reformers became non-delinquents with 

only 56.32% accuracy (see Table 3).  Future re-

searchers should include measures of the varia-

bles composing these profiles, in order to en-

hance accuracy in predicting and understanding 

the dynamics of juvenile delinquency. 

The CTA model identified protective 

factors more accurately than risk factors, and 

classification accuracy for non-delinquency was 

greater than for delinquency.  This is probably 

because the surveys did not assess some critical 

risk factors.  For instance, impulsivity
33

, atten-

tion deficit/hyperactivity disorder
44

, criminal 

opportunity
33.45

, and historical contexts, such as 

a change in the level of surplus value
46

 have all 

been identified as important risk factors, but 

were not directly assessed by the surveys.  An-

other interesting implication concerns the cru-

cial roles of adolescent exposure to peer delin-

quency and substance use in relation to delin-

quency.  Regardless of prior delinquency, youths 

are sensitive to influence from peers perhaps 

because they desire to maintain intimacy and to 

avoid being rejected by peers.  Also, alcohol use 

seems to be a “gateway” to performing delin-

quent behaviors by youths with infrequent prior 

delinquency, while marijuana use may be an ob-

stacle to stopping delinquent behaviors. 

Some variables found to be predictive of 

delinquency in previous research did not appear 

in the final CTA model.  These predictors were 

socialization
17,24,33

, social disorganization and 

social strain
18,24

, involvement with delinquent 

peers
24-27

, any types of social bonds
24,32-33

, and 

any form of labeling.
34-35

  It should be noted that 

in the univariate analyses all of these predic-

tors—except for involvement with delinquent 

peers, conventional involvement, socialization, 

and perceived labeling by parents—were signif-

icantly predictive of delinquency (Table 1).  The 

reason why these particular predictors failed to 

enter the final CTA model was that these predic-

tors had smaller ESS than attributes selected for 

entry in the model, had low generalizability 

across samples, and/or had weaker effects when 

combined with variables in higher nodes of the 

hierarchical tree model.  In contrast, grade in 

school was not significant in the univariate anal-

ysis, yet it was a node in the CTA model.  This 

indicates that grade in school is significant 

among only a certain group, that is, American 

young people who had more prior delinquent 

experiences and were more likely to be exposed 

to peer delinquency, but not among general 

American young population. 

Limitations.  Our results are not without 

limitations.  Although the strongest predictor of 

delinquency was prior self-reported delin-

quency, this result subsequently raises a follow-

up question, “What factors, if any, predict prior 

delinquent behavior?”  In our model, the profile 

of lay delinquency included not only those who 

had no prior delinquent experience, but also 

those who had very few prior delinquent experi-

ences.  Future research should explore the addi-

tional profile of delinquent youth who have no 

prior experiences of delinquency whatsoever. 

Another limitation of the present re-

search is the time frame of the survey data we 

analyzed.  The National Youth Survey was con-

ducted in 1976 and 1978.  Thus, our results 

might reflect phenomena that are no longer gen-

eralizable to the present time period.  Future re-

search should address this limitation by con-

structing CTA using more recent data. 

In terms of methodological limitations, 

our model reflects roughly 60% of the eligible 

youths originally selected by the multistage 

cluster sampling method.  Although there is no 

agreed-upon standard for what constitutes an 

acceptable rate of inclusion, excluding 40% of 

respondents raises the possibility of potential 

selection and non-response biases.  However, no 



Optimal Data Analysis     Copyright 2010 by Optimal Data Analysis, LLC 

2010, Vol. 1, Release 1 (September 17, 2010)  2155-0182/10/$3.00 

 

 

 

140 
 

particular group of the youth population appears 

to be over- or under-represented in our sample, 

compared to the original sample who agreed to 

participate in the National Youth Survey.
24

 

Other methodological issues concern the 

particular measures used in the National Youth 

Survey.  In particular, the self-report items used 

to assess delinquency and other socially nega-

tive behaviors might not accurately reflect the 

actual levels of these behaviors because of so-

cial desirability, memory limitations, and moti-

vation to recall.  Moreover, the National Youth 

Survey did not include some variables that we 

wanted to examine as potential predictors of de-

linquency (e.g., impulsivity).  Future research 

needs to include measures of other unanalyzed 

variables so that the classification accuracy of 

the hierarchical tree model can be further im-

proved.  Finally, although some theoretical com-

posite attributes showed acceptable values of 

Cronbach’s α, other attributes, including expo-

sure to peer alcohol use and attitude toward ma-

rijuana use, were each measured by only a sin-

gle individual question and had unknown relia-

bility.  Future research should measure attrib-

utes, especially exposure to peer alcohol use and 

attitude toward marijuana use, using multiple 

items, obtain acceptable Cronbach’s α for these 

composite subscales, and then re-test them by 

including them in an ODA model. 

Finally, it should be noted that an alter-

native definition of delinquency might yield dif-

ferent findings concerning the prospective pre-

dictors of juvenile delinquency.  Although we 

contend that the classification of delinquency or 

non-delinquency based on our definition pro-

duced representative samples of youths who en-

gage in these two forms of behavior, other theo-

rists or researchers might well adopt an alterna-

tive definition of these two constructs.  Or, they 

might suggest examining more specific delin-

quent actions (e.g., theft) independently rather 

than a broader, comprehensive category of ju-

venile delinquency because the factors might 

vary across different delinquent actions.  Nev-

ertheless, while we should avoid over-general-

izing the factors found in our study to all delin-

quent actions, it is also informative to focus on 

the large-scale pattern of delinquency.  This 

macro-level analysis is important because (1) 

the society and citizens tend to be more inter-

ested in getting a general idea (e.g., how to pre-

vent delinquent crime in general) than a specific 

idea (e.g., how to prevent each potential delin-

quent actions specifically), and (2) each specific 

delinquent action is not exclusive or independ-

ent but accompanies another illegal action (e.g., 

robbery and assault could occur at the same 

time).  Thus, our findings provide an overview 

of delinquent behavior, and the next goal should 

be to focus on each specific delinquent action to 

examine whether our model is applicable to it. 

Another limitation concerning our defi-

nition of delinquency is the inevitable loss of 

precision in analyzing delinquency as a dichot-

omy as opposed to a continuous rate of fre-

quency.  In doing so, we have limited ourselves 

to investigating variables that predict whether or 

not youths exceed a threshold frequency that we 

have defined a priori as representing juvenile 

delinquency versus non-delinquency.  These 

predictive variables may well differ from those 

that explain variation in the absolute frequency 

of delinquent behaviors. 

Applications of the Present Study.  The 

findings suggest potentially effective strategies 

for crime prevention.  For example, shifting 

positive attitudes toward marijuana use toward 

negative attitudes may reduce delinquent behav-

ior among exposed but reformed delinquent 

youths.  Furthermore, our results suggest that an 

effective approach to protect non-delinquent 

youths from moving toward delinquency is to 

keep them away from peers who use alcohol.  

Future research should test these hypotheses. 
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Automated CTA Software: Fundamental 

Concepts and Control Commands 
 

Robert C. Soltysik, M.S. and Paul R. Yarnold, Ph.D. 
Optimal Data Analysis, LLC 

 

Fundamental methodological concepts are reviewed, and auto-

mated CTA software commands are annotated. 

 

A decade in the making, commercially-available 

software which conducts automated hierarchi-

cally optimal classification tree analysis
1
 (CTA) 

is now being offered to organizations and indi-

viduals.  This article reviews motivation under-

lying use of nonlinear models; shortcomings of 

suboptimal nonlinear methods; CTA methods, 

model interpretation and reporting; and use of 

automated software.  Software commands and 

sample code used for solving (un)weighted clas-

sification problems are annotated. 

“One Size Fits All” versus 

“Different Strokes for Different Folks” 

Examples of linear models broadly used 

in applied research include models derived via 

logistic regression, log-linear, and discriminant 

analysis.
2,3

  Regardless of derivation, all linear 

models share three important, usually unfulfilled 

assumptions. 

First, linear models assume attributes in 

the model are important for every observation in 

the sample.  In contrast, with nonlinear models 

different attribute sets can be used with different 

partitions of the sample: one set of attributes is 

used for classifying one partition of the sample; 

another set of attributes is used for classifying a 

different sample partition; and so forth. 

Second, linear models assume the model 

attributes have identical direction of influence 

(positively or negatively predictive) for every 

observation.  In contrast, with nonlinear models 

an attribute may predict class category 1 for one 

partition of the sample, versus category 0 for a 

different sample partition. 

Third, linear models assume attributes in 

the model have the same coefficient value (or 

decision weight) for all sample observations.  In 

contrast, in nonlinear models the coefficient for 

an attribute may assume two different values for 

two different sample partitions: for example, 0.2 

and -1.8, respectively. 

Traditional Nonlinear Methods 

Nonlinear classification methods based 

on general linear model (GLM) or maximum-

likelihood (ML) paradigms maximize variance 

ratios, or the value of the likelihood function for 

the sample, respectively.  Examples of such sub-

optimal methods are chi-square automatic inter-

action detection, classification and regression 

tree analysis, genetic algorithms and neural net-

works.  A problem for GLM-based methods in-

volves satisfying the multivariate normally dis-

tributed (MND) assumption required for p to be 

valid, and a problem for ML-based methods is 
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that model coefficients are biased except in the 

limit for enormous samples.
2,3

  A common issue 

is that neither GLM nor ML methods explicitly 

maximize model accuracy.
1
 

Example of a CTA Model 

 The first CTA model published involved 

exploratory research discriminating geriatric (at 

least 65 years of age) versus nongeriatric adult 

ambulatory medical patients on the basis of self-

reported well-being.
4
  Forty geriatric and 85 non-

geriatric ambulatory medical patients completed a 

survey assessing five functional status dimensions 

(Basic and Intermediate Activities, Mental Health 

[absence of depression], Social Activity, Quality of 

Social Interaction), and including five single-item 

measures assessing health satisfaction, physical 

limitations, and quantity of social interaction.  The 

CTA model (Figure 1) was constructed manually 

using ODA software.
1
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Figure 1: CTA Model Discriminating Geriatric 

vs. Nongeriatric Ambulatory Medical Patients 

On first glance a depiction of any classi-

fication tree model may appear similar to results 

obtained by decision analysis (DA), because 

both methods depict findings using tree-like rep-

resentations.
4
 As seen, CTA models initiate with 

a root node, from which two or more branches 

emanate and lead to other nodes:  branches indi-

cate pathways through the tree, and all branches 

ultimately terminate in model endpoints.  The 

CTA algorithm determines the attribute subset 

which predicts the outcome with maximum ac-

curacy, beginning with the attribute which best 

discriminates the class variable (geriatric status) 

with maximum accuracy for the total sample.  

DA estimates valence and likelihood associated 

with all possible decision-making strategies and 

outcomes.  In contrast, CTA identifies a specific 

decision-making strategy which maximizes ac-

curacy in predicting a specific outcome. 

        Circles represent nodes in this schematic 

illustration of the CTA model, arrows indicate 

branches, and rectangles represent model end-

points.  Numbers (or words, when attributes are 

categorical) adjacent to arrows indicate the 

value of the cutpoint (or category) for the node.  

Numbers underneath nodes give the generalized 

(per-comparison) Type I error rate for the node. 

The number of observations classified into each 

endpoint is indicated beneath the endpoint, and 

the percentage of geriatric observations is given 

inside the rectangle representing the endpoint. 

Using CTA models to classify individual 

observations is straightforward.  Consider a hypo-

thetical person having an Intermediate Activities 

score=85, a Mental Health score=64, and 7 close 

friends.  Starting with the first node, since the 

person’s Intermediate Activities score is <89.6, the 

left branch is appropriate.  At the second node the 

left branch is again appropriate because the per-

son’s Mental Health score is <65.  Finally, at the 

third node the right branch is appropriate since the 

person has more than 5 close friends.  The person 

is classified into the corresponding model end-

point: as seen, all six observations classified into 

this model endpoint were geriatric.  Note that end-

points represent sample strata identified by the 

CTA model.  The probability of being geriatric for 
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this endpoint is pgeriatric=1 for the sample (in light 

of the small sample size at this endpoint, it may be 

more meaningful, depending on the application, to 

report pgeriatric>6/7).  In this example, had the 

patient instead reported 5 or fewer close friends, 

then the left-hand endpoint would be appropriate, 

with pgeriatric=0 (i.e., pgeriatric<1/18). 

Some intuitive aspects of CTA models 

are immediately obvious.  For example, model 

“coefficients” are cutpoints or category descrip-

tions expressed in their natural measurement 

units.  In addition, sample stratification unfolds 

in a “flow” process which is easily visualized 

across model attributes.  The manner in which 

CTA handles observations having missing data 

is also intuitive: linear models drop observations 

missing data on any attributes in the model, but 

CTA only drops observations which are missing 

data on attributes required in their classification.  

In the present example, imagine an observation 

having an Intermediate Activities score of 89.6 

or greater, but missing data on number of close 

friends and/or on Mental Health.  Using a linear 

model the observation would be dropped, but 

using CTA the observation would be classified. 

Staging Tables 

Staging tables (see Table 1) represent an 

alternative intuitive representation of CTA find-

ings, and are useful for assigning “severity” or 

“propensity” scores (weights) to observations 

based on the findings of the CTA model.  The 

rows of the staging table are simply model end-

points reorganized in increasing order of percent 

of class 1 (geriatric) membership.  Stage is an 

ordinal index of geriatric propensity, and 

pgeriatric is the corresponding continuous index: 

increasing values on either index indicates in-

creasing propensity. Compared to Stage 1 (with 

pgeriatric set at <1/18, or 0.056), pgeriatric is ap-

proximately 4-times higher in Stage 2, 12-times 

higher in Stage 3, and 15-times higher in Stage 

4 (with pgeriatric set at >6/7, or 0.857). 

To use the table to stage geriatric pro-

pensity for a given observation, simply evaluate 

the fit between the observation’s data and each 

stage descriptor.  Begin at Stage 1, and work 

sequentially through stages until identifying the 

descriptor which is exactly true for the data of 

the observation undergoing staging.  Consider 

the hypothetical person discussed earlier.  Stage 

1 does not fit because the person has more than 

five close friends. Stage 2 does not fit because 

the person’s Intermediate Activities score is 

<89.6. Stage 3 does not fit because the person’s 

Mental Health score is <65.  The staging table 

has only one degree of freedom, so through the 

process of elimination, it is clear that Stage 4 

must be appropriate.  Because the person has an 

Intermediate Activities score <89.6, a Mental 

Health score <65, and >5 close friends, Stage 4 

clearly fits the data of this hypothetical person.  

        Table 1: Staging Table for Predicting 

                         Geriatric Status 

--------------------------------------------------------------- 
          Intermediate   Mental     Close 

Stage   Activities      Health    Friends   N    pgeriatric   Odds 

--------------------------------------------------------------- 

   1        < 89.6        < 65        < 5     17      0     <1:17 

   2        > 89.6        ------       -----    69   .217       1:4 

   3        < 89.6        > 65        -----    31   .645       2:1 

   4        < 89.6        < 65        > 5        6      1       >6:1 

--------------------------------------------------------------- 
Note: Increasing scores on  Intermediate Activities indi- 

          cate increasing adaptability, and increasing scores 

          on Mental Health indicate decreasing depression. 

Assessing Model Performance 

Performance measures for CTA (and for 

all ODA methods) are also intuitively appealing, 

and are derived from a confusion table, as indi-

cated for the present example in Table 2.  Rows 

of the confusion table indicate the actual class 

category of any given observation in the train-

ing sample (used for model development), and 

columns indicate the class category predicted 

for an observation by the CTA model.  For pre-

dictions involving the class category status of 
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individual observations in the training sample, 

when the actual and predicted class categories 

are identical (e.g., a geriatric person is predicted 

to be geriatric) then the model is correct; other-

wise it is incorrect.  Row and column marginal 

totals (the sum of all table entries in the row or 

column, respectively) are presented in the bor-

ders of the confusion table.  For example, for 

actual class=geriatric, the row marginal is 15+ 

26=41.  For predicted class=geriatric, the col-

umn marginal is 11+26=37.  Finally, the total 

sample size which is classified by the model is 

given in the lower right-hand corner of the table: 

this total is equal to the sum of row marginals, 

and also to the sum of column marginals. 

Table 2: Confusion Table for the 

Example CTA Model 

    ------------------------------------------------------------ 

                                        Predicted Class 

   Actual Class          Nongeriatric   Geriatric 

   Nongeriatric                    71               11            82 

   Geriatric                          15               26            41 

                                           86               37          123 

   ------------------------------------------------------------ 

Assessing the performance of a CTA (or 

any classification) model begins by computing 

five standard epidemiological indices.
1
  The first 

pair of indices assess the ability of the model to 

accurately classify observations in the different 

class categories.  Sensitivity is the likelihood of 

correctly classifying an observation from Class 

1, and is defined as the number of correctly 

classified Class 1 observations divided by the 

total number of Class 1 observations: here, 26/ 

41=0.634.  Specificity is the likelihood of cor-

rectly classifying an observation from Class 0, 

and is defined as the number of correctly classi-

fied Class 0 observations divided by the total 

number of Class 0 observations: 71/82=0.866. 

The next set of indices address the accu-

racy of the model when it is used to make classi-

fications.  Positive predictive value (PPV) is the 

likelihood that an observation predicted to be a 

member of Class 1 is accurately classified (i.e., 

is in reality a member of Class 1): here, 26/37= 

0.703.  Negative predictive value (NPV) is the 

likelihood that an observation predicted to be a 

member of Class 0 is accurately classified: here, 

71/86=0.826. 

Finally, overall accuracy, or percentage 

accuracy in classification (PAC), is 100% times 

the number of correctly classified observations 

divided by the total number of observations 

classified by the model: 100% x (71+26)/123= 

78.9%.  In the literature, sensitivity, specificity, 

PPV and NPV are typically multiplied by 100% 

in order to report all five indices in a common, 

familiar metric, and because the focus of CTA 

(and all statistical models in the optimal data 

analysis paradigm) is predictive accuracy rather 

than probabilistic likelihood.
1,5

 

Summarizing a confusion table is a me-

thodic, straightforward process, as illustrated for 

the present example: Using the CTA model, a 

total of 30.1% [100% x (26+11)/123] of the 

sample is predicted to be geriatric.  These pre-

dictions are correct 70.3% [100% x PPV] of the 

time, and correctly identify 63.4% [100% x 

sensitivity] of all geriatric observations.  Also, 

82.6% [100% x NPV] of the model-based pre-

dictions that an observation is nongeriatric are 

correct, and correctly classify 86.6% [100% x 

specificity] of all the nongeriatric observations.  

Overall, the model correctly classified 78.9% 

[PAC] of the observations in the sample. 

Foregoing indices are bounded by 0 and 

1 (or, equivalently, between 0% and 100%), and 

reference the absolute predictive capacity of a 

classification model.  The ultimate objective is 

for all of these indices to reach their theoretical 

upper limit of 100% correct prediction. How-

ever, in the likely event that a statistical model 

fails to achieve perfect prediction, statistical cri-

teria are used to assess the performance of CTA 

(and other) models, in terms of their predictive 

capacity relative to chance. 
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Effect Size for Sensitivity (ESS) 

None of the five absolute performance 

indices are normed relative to chance, or have 

an associated exact p value.
1
  Accordingly, the 

performance of all models in the optimal data 

analysis paradigm, including CTA, is summa-

rized using the effect strength for sensitivity 

(ESS) statistic, a normed index ranging between 

0 (representing the level of classification accu-

racy expected by chance) and 100 (representing 

errorless classification).
1
 

The formula for computing ESS for 

problems with class variables involving two cat-

egories (automated CTA software solves only 

two-category problems: CTA for more than two 

class categories has never been reported) is: 

ESS=100% x (Mean PAC – 50)/50                (1), 

where 

Mean PAC=100% x (sensitivity + specificity)/2 

                                                                        (2). 

For example, if a CTA model had sensitiv-

ity=0.85 and specificity=0.74, then mean PAC= 

100% x [(0.85+0.74)/2]=79.5%, and ESS=100% 

x [(79.5-50)/50]=59.0%. 

Using ESS one may directly compare the 

performance of different models, relative to 

chance, regardless of structural features of the 

analyses, such as sample size, number of class 

categories, number of attributes and attribute 

metric, sample skew, and so forth.  The rule-of-

thumb which is used for evaluating ecological 

significance of results achieved by classification 

models is: ESS<25% (one-quarter of the im-

provement in classification accuracy theoreti-

cally possible to attain beyond the performance 

achieved by chance) is a relatively weak effect; 

25%<ESS<50% is a moderate effect; 50%<ESS 

<75% a relatively strong effect; and ESS>75% 

is a strong effect.
1
  Thus, in order to complete 

the summary of the confusion table which was 

presented earlier, append the following conclu-

sion: “The CTA model yielded ESS=50.0%, a 

relatively strong effect.” 

It is noteworthy that linear models may 

classify all observations in the sample into the 

dominant class if the sample is highly skewed 

(e.g., more than 75% of the sample falls into one 

class category).  In this case Mean PAC is 50%, 

and ESS=0.  For expository purposes, Table 3 

illustrates how Mean PAC and ESS are related 

if one class category is classified perfectly, and 

Table 4 emphasizes that mean PAC=50 is what 

is anticipated by chance. 

Table 3: PAC in Each of Two Groups (PAC= 

  100% in One Group), Mean PAC, and ESS 

  Group A      Group B     Mean PAC     ESS 

     100                0                   50              0 

     100               10                  55             10 

     100               20                  60             20 

     100               30                  65             30 

     100               40                  70             40 

     100               50                  75             50 

     100               60                  80             60 

     100               70                  85             70 

     100               80                  90             80 

     100               90                  95             90 

     100             100                100           100 

------------------------------------------------------- 

Table 4: Patterns of PAC in Each of Two 

Groups that Yield ESS=0 

  Group A      Group B     Mean PAC     ESS 

     100                0                   50              0 

       90               10                  50              0 

       80               20                  50              0 

       70               30                  50              0 

       60               40                  50              0 

       50               50                  50              0 

------------------------------------------------------- 

 Ostrander et al.
6
 note that, in contrast to 

sensitivity and specificity, PPV and NPV are 

influenced by base rate of class category c (e.g., 

0 or 1) in the population, and by the false posi-
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tive rate—the likelihood that the model will 

classify an observation into class category c 

when the observation is not a member of c.  A 

method is given for easily assessing the models 

efficiency over different base rates (an efficient 

model provides PAC for category c which is 

greater than the category c base rate).
6
 

Model Interpretation 

In addition to its greater accuracy versus 

logistic regression analysis or Fisher’s discriminant 

analysis, CTA also produced substantively richer 

findings.  In the present example the linear models 

identified two patient clusters: relatively active, 

depressed nongeriatric people; and relatively inac-

tive, non-depressed geriatric people. 
 

Active

nongeriatric

adults

Inactive, happy

geriatric adults

Inactive, depressed,

socially isolated

young women

Inactive, depressed,

socially connected

geriatric adults

 

Figure 2: Pie-Chart Illustrating Distribution of 

Total Sample in Four CTA-Based Strata 

In contrast, the CTA model identified four 

patient strata.  Patients scoring >89.6 on Intermedi-

ate Activities were primarily (78.3%) relatively 

active nongeriatric adults (56% of total sample).  

Patients scoring at lower levels on Intermediate 

Activities, and at high levels (>65) on Mental 

Health, were largely (64.5%) relatively inactive, 

nondepressed geriatric adults (25% of sample).   

All the patients scoring at lower levels on both 

Intermediate Activities and Mental Health, and 

having fewer than six close friends, were inactive, 

depressed, socially isolated nongeriatric adults 

(14% of total sample, primarily young depressed 

women).  Finally, all patients scoring at lower 

levels on both Intermediate Activities and Mental 

health, but having more than five close friends, 

were inactive, depressed, socially-connected geria-

tric adults (5% of sample). 

Illustrating the portion of the total sample 

represented by CTA-identified strata, using a pie-

chart, can facilitate understanding and develop-

ment of policy implications of CTA-based find-

ings: for example, by indicating the percentage of 

the sample that falls into each strata, the likeli-

hood of attributing undue attention to compariti-

vely rare strata is diminished (see Figure 2). 

      Table 5: AID Analysis for CTA Example 

                          Percent of Sample Evaluated in 

Attribute          Part on the Basis of the Attribute 

---------------------------------------------------------- 

Intermediate 

Activities                  123/123         100.0% 

 

Mental Health               54/123          43.9% 

 

Number of 

Close Friends               23/123          18.7% 

---------------------------------------------------------- 

It is also informative to evaluate the attrib-

utes loading in the CTA model in terms of their 

importance in the prediction-making process.  

Conceptually related to the R
2
 statistic from re-

gression analysis, which indicates the percentage 

of the variance in the class (independent) variable 

which is explained by attributes (dependent 

measures) in the model
2
, an Attribute Importance 

in Discrimination (AID) analysis indicates the per-

centage of the sample of classified observations 

which were influenced by the attribute (Table 5). 
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Only the root attribute is involved in the 

classification decisions for all observations in the 

sample.  Easily seen in Figure 1, Mental Health 

was involved in classification decisions for all of 

the observations except for those classified on the 

right-hand side of the root attribute: 123–69=54 

observations.  Mental Health therefore influenced 

classification decisions for 100% x 54/123, or 

43.9% of the total sample.  Also easily seen in Fig-

ure 1, the Number of Close Friends influenced 

classification decisions for 100% x 23/123, or 

18.7% of the total sample. 

Validity Assessment in CTA 

Limited by the daunting computational 

burden associated with manual construction of 

CTA models, experimental research addressing 

validity issues in CTA has been infeasible in the 

absence of automated software.  Psychometric 

properties of scores created using optimal data 

analysis methods has been a major focus of the 

paradigm since its inception
1
, and rigorous in-

vestigation in this area is underway. 

Nevertheless, some preliminary research 

in this area has been reported.  For example, a 

Bayesian method was developed for estimating 

the efficiency of a CTA model versus chance for 

any class variable base rate.
6 

 And, the first CTA 

model published in the field of medicine used a 

manual hold-out methodology to create a CTA 

model which was optimal for two random split-

halfs of a single large sample.
7
  This study used 

CTA to create a severity-of-illness score for pre-

dicting in-hospital mortality from Pneumocystis 

carinii pneumonia, which cross-generalized to 

independent random samples with strong ESS.
8
 

For all models created in the optimal 

data analysis paradigm, the upper-bound of ex-

pected cross-generalizability of the findings to 

an independent random sample is estimated via 

jackknife (“leave-one-out”) analysis, whereby 

each observation in the sample is classified by a 

model created using a sample omitting the 

observation’s data.
1
 In the absence of automated 

CTA software, only attributes with stable jack-

knife classification performance (i.e., with ESS 

that did not vary between training versus jack-

knife analyses) were used in manually-derived 

CTA models.  However, an estimate of Type I 

error associated with the jackknife procedure 

may be determined by computing the ESSj from 

the confusion table generated by this procedure.  

The proportion of ESS values greater than ESSj 

obtained from randomly shuffled classes in the 

original Monte Carlo procedure estimates the 

jackknife Type I error, and setting this propor-

tion to the desired value (e.g., 0.05) may be used 

in a decision rule to admit these attributes into 

the final model. 

Obtaining CTA Models 

The mechanics underlying construction 

of CTA models was described previously.
1,7,9

 

Recursively-derived CTA models chain together 

series of models, derived by univariate optimal 

discriminant analysis (UniODA), on monoton-

ically diminishing sample strata.
1
 Because they 

chain together UniODA models, CTA models 

may be derived manually
10

 via ODA software
1
 

which conducts UniODA (advantages of using 

automated software are discussed ahead). Exact 

statistical distribution theory and Monte Carlo 

simulation methodology are available for testing 

one- (confirmatory, a priori) and two-tailed (ex-

ploratory, post hoc) hypotheses.
1
 

Researchers are encouraged to construct 

at least one CTA model manually using ODA 

software, in order to gain a deeper understand-

ing of the recursive mechanical nature of CTA.  

Furthermore, ODA and CTA software use ident-

ical command syntax, so skill and knowledge 

acquired by using ODA will generalize to oper-

ation of CTA. 

Submitting a Program for Analysis 

Automatic CTA software can be used to 

analyze problems with two class categories, 500 

attributes, and 65,535 observations (methods to 

solve problems involving massive samples are 
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undergoing alpha testing), and is available under 

either commercial or individual license: custom 

systems are also created for special-purpose ap-

plications.  The software is available through the 

ODA webpage.
11

  To run an analysis, registered 

users login to the ODA webpage and upload the 

associated command and data file.  Analyses are 

executed in the order they were received, and all 

associated output is returned via eMail. 

A quick word seems in order regarding 

why Optimal Data Analysis, LLC, adopted a 

“software as service” model for distributing ac-

cess to the automated CTA software.  From the 

perspective of users there are several advantages 

of this model: (1) users needn’t tie-up their 

(probably slower) computers, our fast computers 

will do the work; (2) the most current version of 

the software is always immediately available; 

(3) one can work 24/7/365 from any computer, 

anywhere; and (4) if the system crashes then 

specialists will be scrambling to fix the problem 

immediately—and any problems may well be 

fixed before most users are even aware that an 

issue had occurred.  Another advantage to both 

user and Optimal Data Analysis, LLC, is sav-

ings in money and time, because the software 

doesn’t need to be adjusted to run in the context 

of many different types of constantly changing 

computers, operating systems and data-base pro-

grams.  Users simply send text files to the CTA 

system, and the CTA system returns a text file 

output via eMail. 

Interpreting Automated Software Output 

 The module which produces schematic 

illustrations of CTA models is currently under 

development, and investigation addressing op-

timal information display in this context is un-

derway in our laboratory.
12

  The present soft-

ware reports CTA models using an intuitive 

shorthand notation describing the node constitu-

ents of the CTA model.  To facilitate clarity, 

Figure 3 gives a schematic illustration of node 

structure underlying all CTA models. 

2

 4 5
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38 39 40 41 42 43 44 45 46 47
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2827  29 30 31

 12 13 14 15

1

 

Figure 3: CTA Node Structure 

It is a simple matter to determine the 

“identity number” of a node existing at a deeper 

depth than is illustrated in this five-level-deep 

tree (depth level 1 of the tree includes node 1; 

level 2 includes nodes 2 and 3; level 3 includes 

nodes 4-7; level 4 includes nodes 8-15; level 5 

includes nodes 16-31; and level 6 includes 

nodes 32-63).  From the perspective of node X 

(for X>1), the identify number of the node ema-

nating from X’s left-hand side is 2X, and from 
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X’s right-hand side is 2X+1.  For example, from 

node 47, node 94 (2x47) emanates to the left, 

and node 95 (94+1) emanates to the right.  From 

node 94, node 188 emanates to the left, node 

189 to the right, etcetera.  Note that after the 

root attribute (depth 2 and deeper), all even-

numbered nodes lie on the left-hand branch, and 

odd-numbered nodes on the right-hand branch, 

of the tree. 

CTA software produces output employ-

ing node identity numbers to describe the CTA 

model: an example of CTA software output is 

presented in Figure 4 (hypothetical data).  Re-

spectively, the automated CTA software output 

lists: attribute name (D2, D3 and D4 loaded in 

the hypothetical CTA model); node identity 

number; tree depth level; sample size for the 

analysis indicated; ESS for the attribute; 

whether jackknife (leave-one-out, or LOO) va-

lidity analysis was stable (indicated) or unstable; 

jackknife ESS; p for the jackknife ESS; attribute 

metric (ORD=ordered, CAT=categorical); and 

CTA model shorthand. 

The root attribute (here, D2) is listed 

first in the report.  For each attribute the report 

first indicates the cutpoint and outcome for the 

left-hand branch emanating from the attribute, 

and second for the right-hand branch.  Branches 

ending in model endpoints are marked by an as-

terisk.  As seen, the left-hand branch emanating 

from D2 has a cutpoint of <6.2 units: observa-

tions having D2 scores <6.2 units are predicted 

to be a member of class 4, and this branch ter-

minates in a model endpoint representing a total 

of 242 observations, of whom 165 (68.18%) are 

correctly classified.  The remaining 242–165= 

77 observations having D2 scores <6.2 units 

were members of class 5, and were misclassified 

by this branch of the CTA model. 

 

 

 

 

 

 

Figure 4: Sample CTA Software Output (Hypothetical Expository Data) 

The right-hand branch emanating from 

D2 has a cutpoint of >6.2 units: observations 

having D2 scores >6.2 units are predicted to be 

members of class 5, but this branch does not 

terminate in a model endpoint.  Rather, the 

model includes attribute D3 at node 3. 

As seen, the left-hand branch emanating 

from D3 has a cutpoint of <4.5 units: observa-

tions having D3 scores <4.5 units are predicted 

to be members of class 4, but this branch does 

not terminate in a model endpoint. 

The right-hand branch from D3 has a 

cutpoint of >4.5 units: observations with D3 

scores >4.5 units are predicted to be members of 

class 5, and this branch terminates in a model 

endpoint representing a total of 229 observa-

tions, of whom 206 (89.96%) are correctly clas-

sified.  The remaining 229–206=23 observa-

tions having D3 scores >4.5 units were mem-

bers of class 4, and were misclassified by this 

branch of the CTA model. 

Both branches emanating from D4 term-

inate in a model endpoint (this is always true for 

 

  ATTRIBUTE NODE LEV  OBS    p     ESS     LOO    ESSL  LOOp TYP            MODEL 

  --------- ---- ---  ---    -     ---     ---    ----  ---- ---  ------------------------- 

         D2   1   1   704  .000  48.44%  STABLE  48.44% .000 ORD  <=6.2-->4,165/242,68.18%* 

                                                                   >6.2-->5,375/462,81.17% 

 

         D3   3   2   292  .000  41.60%  STABLE  41.60% .000 ORD  <=4.5-->4,29/63,46.03% 

                                                                   >4.5-->5,206/229,89.96%* 

 

         D4   6   3    62  .039  28.99%  STABLE  28.99% .039 ORD  <=1.9-->4,18/30,60.00%* 

                                                                   >1.9-->5,22/32,68.75%* 
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the last attribute listed in the output).  The left-

hand branch has a cutpoint of <1.9 units: obser-

vations with D4 scores <1.9 units are predicted 

to be members of class 4; this endpoint repre-

sents 30 observations of whom 18 (60.00%) are 

correctly classified and 30–18=12 (40.00%) are 

misclassified.  And, the right-hand branch has a 

cutpoint of >1.9 units: observations having D4 

scores >1.9 units are predicted to be members of 

class 5; this endpoint represents 32 observations 

of whom 22 (68.75%) are correctly classified 

and 32–22=10 (31.25%) are misclassified. 

To construct an illustration of the final 

CTA model, referring to Figure 3 select nodes 1, 

3 and 6 (see Table 3, column 2): these are de-

picted by circles (Figure 1).  Branches are then 

depicted using arrows emanating from the left-

hand side of the root attribute (D2), the right-

hand side of D3, and both sides of D4, terminate 

in model endpoints depicted using rectangles 

(Figure 1).  Add the Type I error rate beneath 

each attribute, cutpoint values adjacent to ar-

rows, and text indicating the outcome for each 

endpoint—and the CTA model is complete. 

 

Automated CTA Command Syntax 

Table 6 gives an alphabetical roster and 

description of automated CTA software control 

commands and keywords (an example of an 

automated CTA program is provided ahead). 

 

Table 6: Control Commands for 

Automated CTA Software 
--------------------------------------------------------------------------------------- 

ATTRIBUTE 

     Syntax ATTRIBUTE variable list ; 

        Alias ATTR 

 Remarks The ATTRIBUTE command lists 

the attribute(s) to be used in the 

analysis.  The TO keyword may be 

used to define multiple attributes in 

the list.  For example, the command 

      ATTR A1 to A4; 

 indicates that A1, A2, A3 and A4 

will be treated as attributes.  Further 

 exposition of the TO keyword is 

found in the discussion for VARS. 

CATEGORICAL 

     Syntax CATEGORICAL {ON | OFF} ; 

 CATEGORICAL variable list ; 

        Alias CAT 

 Remarks The CATEGORICAL command 

specifies that categorical analysis 

will be used, and is required when 

the attribute to be analyzed is 

categorical.  Using the ON keyword 

indicates that all variables in the 

variable list are categorical.  CAT 

with no parameters is the same as 

CAT ON.  The TO keyword may be 

used in the variable list (see the 

discussion under VARS). 

CLASS 

     Syntax CLASS  variable list ; 

Remarks The mandatory CLASS command 

specifies the class variable to be 

used in the analysis.  A separate 

analysis will be run for each class 

variable named.  The TO keyword 

may be used in the variable list (see 

discussion under VARS). 

DIRECTION 

     Syntax DIRECTION  {< | LT | > | GT |  

                     OFF} value list ; 

    Aliases DIR, DIRECTIONAL 

 Remarks The DIRECTION command defines 

the presence and nature of a direc-

tional (i.e., a priori, one-tailed, or 

confirmatory) hypothesis.  The 
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parameter < or LT indicates that the 

class values in the value list are 

ordered in the “less than” direction.  

The parameter > or GT indicates the 

class values are ordered in the 

“greater than” direction.  The value 

list must contain every value of the 

class variable currently defined.  

The default is OFF.   

ENUMERATE 

      Syntax ENUMERATE {ROOT} 

{MINOBS value} ; 

  Remarks The ENUMERATE command with 

no options specifies that all combin-

ations of attributes in the top three 

nodes will evaluated.  

ENUMERATE ROOT specifies 

that only the top node will have all 

attributes evaluated.  

ENUMERATE MINOBS value 

allows only solution trees with at 

least value observations in them. 

EXCLUDE 

     Syntax EXCLUDE  variable {= | <> | < | > | 

   <= | >= | OFF} value (,value2,…) ; 

    Aliases EX, EXCL 

 Remarks This command excludes observa-

tions having the indicated value of 

variable.  For example, 

      EXCLUDE D=4 ; 

 drops all observations with the 

value of 4 for attribute D.  The 

 command 

      EXCLUDE B=2 Z>=113 ; 

 drops all observations with the 

value of 2 for attribute B or values 

greater than or equal to 113 for 

attribute Z.  Commas in the exclude 

string enable the user to exclude 

multiple values of a variable using a 

single command: 

      EXCLUDE C=2,4 ; 

 excludes all observations having a 

value of 2 or 4 for attribute C.  

Multiple EXCLUDE commands 

may be entered, up to a maximum 

of 100 clauses.  Observations which 

satisfy any of the EXCLUDE 

clauses will be excluded. 

FORCENODE  

     Syntax FORCENODE node var ; 

 Remarks The FORCENODE command 

forces CTA to insert the attribute 

var at node node in the solution 

tree.  If the UniODA solution for 

this attribute is not significant, or 

this node is subsequently pruned, an 

error message will be printed. 

GO 

     Syntax GO ; 

 Remarks The GO command begins execution 

of the currently defined analysis. 

INCLUDE 

     Syntax INCLUDE  variable {= | <> | < | > | 

<= | >= | OFF} value (,value2,…)  ; 

    Aliases IN, INCL 

 Remarks The INCLUDE command functions 

in the same manner as the 

EXCLUDE command, except that 

only those observations with the 

indicated value for variable are 

included.  If multiple INCLUDE 

statements exist, only those obser-
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vations will be kept which satisfy 

all these INCLUDE statements. 

LOO 

     Syntax  LOO  {pvalue | STABLE} ; 

 Remarks The LOO command indicates that 

leave-one-out analysis will be 

performed for every attribute in the 

tree.  LOO STABLE allows only 

attributes with LOO ESS equal to 

the ESS for that attribute.  LOO 

pvalue allows only those attributes 

in the solution tree which have an 

ESS that yields a p < pvalue. 

MCARLO 

     Syntax MCARLO  {ITERATIONS value | 

CUTOFF pvalue | STOP confvalue 

} ; 

        Alias MC 

 Remarks The MCARLO command controls 

Monte Carlo analysis for estimating 

Type I error, or p.  The keywords 

specify stopping criteria; if any 

criterion is met, then the analysis 

stops.  ITERATIONS (ITER) 

specifies the maximum number of 

Monte Carlo iterations.  STOP xxx 

indicates the confidence level (in 

percent), which will stop processing 

for the current attribute, if the 

estimated Type I error rate 

(specified with the CUTOFF 

keyword) drops below this level.  

For example, the command 

      MCARLO ITER 70000  

      CUTOFF .05 STOP 99.9 ; 

 indicates a Monte Carlo analysis 

will be conducted, and will stop 

when one of the following occurs: 

(1) 70,000 iterations have been 

executed, (2) a confidence level of 

less than 99.9% that p<.05 has been 

obtained. 

MAXLEVEL 

     Syntax MAXLEVEL value ; 

 Remarks The MAXLEVEL command 

specifies the deepest level or depth 

allowed in the solution tree. 

MINDENOM 

     Syntax MINDENOM value ; 

Remarks The MINDENOM command 

specifies that only attributes which 

yield a denominator of value or 

more will be allowed in the solution 

tree. 

MISSING 

     Syntax MISSING  {variable list | ALL}  

(value) ; 

        Alias MISS 

 Remarks The MISSING command tells ODA 

to treat observations with value 

(value) as missing for each variable 

on the list.  For example, the 

command 

           MISSING X Y Z (-4) ; 

 indicates that observations with 

attrbutes X, Y, or Z equal to -4 will 

be dropped if they are present in a 

CLASS, ATTRIBUTE, WEIGHT, 

or GROUP variable.  ALL specifies 

that the indicated missing value 

applies to all variables.  The TO 

keyword may be used in the attribu-

te list (see discussion under VARS). 
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OPEN 

     Syntax OPEN  {path\file name | DATA} ; 

 Remarks The OPEN command specifies the 

data file to be processed by ODA.  

This file must be in ASCII format.  

DATA indicates that a DATA state-

ment, with inline data following, 

appears in the command stream. 

OUTPUT 

     Syntax OUTPUT  path\file name  

{APPEND} ; 

 Remarks The OUTPUT command specifies 

the output file containing the results 

of the ODA run.  The default is 

ODA.OUT.  APPEND indicates 

that the report is to be appended to 

the end of an already existing output 

file. 

PRIORS 

     Syntax PRIORS  {ON | OFF} ; 

 Remarks The PRIORS command indicates 

whether the ODA criterion will be 

weighted by the reciprocal of sam-

ple class membership.  The default 

is ON.  PRIORS with no parameters 

is the same as PRIORS ON. 

PRUNE 

     Syntax PRUNE pvalue {NOPRIORS} ; 

 Remarks The PRUNE command indicates the 

p-value with which to optimally 

prune the classification tree.  The 

NOPRIORS keyword should be 

used when PRIORS is turned OFF. 

SKIPNODE 

     Syntax SKIPNODE node ; 

 

 Remarks The SKIPNODE command 

specifies that the node node will be 

empty of any attribute in the 

solution tree. 

TITLE 

     Syntax TITLE  title ; 

 Remarks The TITLE command specifies the 

title to be printed in the report.  

TITLE with no parameters erases 

the currently defined title. 

USEFISHER 

     Syntax USEFISHER value ; 

 

 Remarks The USEFISHER command 

specifies that all probability 

calculations for categorical variable 

will be determined by Fisher’s exact 

test, rather than by Monte Carlo. 

VARS 

     Syntax VARS  variable list ; 

Remarks The VARS command specifies a list 

of attribute names corresponding to 

fields in the input data set. The TO 

keyword may be used to define 

multiple variables in the variable 

list. For example, the command 

      VARS X Y Z V1 TO V4 ; 

 specifies that the input file contains, 

in order, variables X, Y, Z, V1, V2, 

V3, and V4, and that there is at least 

one blank space separating all 

adjacent data.  Alternatively, the 

data points may be separated by a 

single comma (with no spaces). 

       The TO keyword may be used to 

input a range of variables which 

have the same name except for the 
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integer at the end of the name: the 

integers must be positive and 

 ascending, increasing one unit per 

variable.  Thus, VAR1 TO VAR10 

is admissible (defining 10 

variables).  In contrast, VAR10 TO 

VAR1, VARA TO VARJ, or A TO 

X10, are not admissible. 

                         The data for each observation 

may all exist on a single line of the 

data set, or may be placed on 

multiple adjacent lines.  It is not 

recommended that a new observa-

tion is included on a line containing 

data from the previous observation. 

WEIGHT 

     Syntax WEIGHT  {variable | OFF} ; 

        Alias RETURN 

 Remarks The optional WEIGHT command 

specifies the weight variable for the 

analysis.  The data values for the 

WEIGHT variable supply the 

weight the corresponding 

observation.  The default is OFF. 
 

 

Two Example Automated CTA Programs 

Imagine an application in finance.  In 

light of the recent calamitous failure of home 

mortgages, it is decided that a new credit-

screening methodology is needed.  Toward this 

objective a bank creates a dataset consisting of 

records describing all mortgages granted in the 

past three years (for exposition, imagine N=300 

loans were made, of which, 10%, or 30 loans, 

were in default).  The class variable is whether 

or not the loan went into default (label this class 

variable “Loan”, and use dummy-codes 1=sol-

vent, 0=default).  The weight is the value of the 

loan in dollars (label this variable “Value”).  Fi-

nally, imagine data are available for twenty at-

tributes (Var1-Var20).  Of these, Var1-Var10 

are ordered, and the rest categorical. 

Imagine that data and program files have 

been saved, and the output file will be saved, in 

the “c:cta” directory.  As per the automated CTA 

system job-naming convention, a common name 

is used for data, program and output files: the 

name of the data file is “loan.dat”; the name of 

the program file is “loan.pgm”; and the name of 

the output file is “loan.out.”  The following code 

defines data and output files, assigns class, 

weight, and attribute variables, and defines the 

categorical attributes: 

open c:\cta\loan.out; 

output c:\cta\loan.out; 

vars loan value var1 to var20; 

class loan; 

attr var1 to var20; 

cat var11 to var20; 

weight value; 

It is decided a priori that, to increase the 

likelihood of the model cross-generalizing when 

applied to a validity sample, model endpoints 

should represent at least 5% of the total sample 

(5% of N=300 is N=15): 

mindenom 15; 

It is also decided a priori that to increase 

the likelihood of the model cross-generalizing, 

only variables stable in leave-one-out analysis 

would be allowed as model nodes: 

loo stable; 

It is decided a priori to use the system 

default (on) for weighting by prior odds intact, 

as another means of increasing the likelihood of 

the model cross-generalizing to an independent 

random sample, and also to explicitly maximize 

ESS (setting priors off explicitly maximizes 

overall PAC).  The conventional experiment-

wise Type I error rate (p<0.05) is selected for 

pruning
13

 to maximize ESS (experimentwise p< 
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0.05 is used automatically during model growth 

to control overfitting
1
): 

prune .05; 

Because there are relatively many cate-

gorical variables, it is decided to use Fisher’s 

exact test to assess p for categorical variables
1
 

and reduce the number of Monte Carlo simula-

tion experiments conducted: 

usefisher; 

Because the sample is modest in size, as 

is the number of attributes, and in light of the 

small number of failed loans in conjunction with 

the minimum denominator specification, it is 

decided that full enumeration of the first three 

nodes is feasible and appropriate, using 25,000 

Monte Carlo experiments to compute p for all 

ordered attributes: 

enumerate; 

mcarlo iter 25000 cutoff .05 stop 99.9; 

title loan default weighted CTA; 

go; 

Imagine an application in space physics.  

A phased array of 16 high-frequency antennas 

located in Goose Bay (Labrador), with a total 

transmitted power exceeding 6 kilowatts, was 

used to target free electrons in the ionosphere.
14

  

The class variable was labeled “return”: “good” 

returns showed evidence of some type of 

structure in the ionosphere, and “bad” returns 

failed to provide evidence of structure (dummy-

coded as “1” vs. “0”, respectively).  Received 

signals were processed using an autocorrelation 

function with two arguments per signal: time of 

pulse and pulse number.  Because there were 17 

pulse numbers for the Goose Bay system, there 

were thus 34 ordered attributes (“X1-X34”).  

There was no weight variable, and no categori-

cal attribute. The objective is to maximize over-

all PAC—the total number of accurately classi-

fied good and bad returns. 

Imagine that data and program files have 

been saved, and the output file will be saved, in 

the “c:cta” directory.  As per the automated CTA 

system job-naming convention, a common name 

is used for data, program and output files: the 

name of the data file is “radar.dat”; the name of 

the program file is “radar.pgm”; and the name 

of the output file is “radar.out.”  The following 

code defines data and output files, and assigns 

class and attribute variables: 

open c:\cta\radar.out; 

output c:\cta\radar.out; 

vars return x1 to x34; 

class return; 

attr x1 to x34; 

It is decided a priori that, to maximize 

overall PAC achieved, the endpoint minimum 

denominator and model maximum depth would 

be unconstrained, but rather explicitly optimized 

by the program (no commands required). 

Also, to maximize overall PAC it was 

decided to let attributes load as nodes even if 

unstable in LOO analysis, so long as their ESS 

in LOO analysis exceeded the ESS achieved by 

any other attribute: 

loo 0.05; 

It is decided a priori to set priors off in 

order to explicitly maximize overall PAC: 

priors off; 

The default setting for optimal pruning is 

priors on, so the prune command has to be ad-

justed to indicate that priors is set to off.  Also, 

to maximize overall PAC, a statistical marginal 

loading will be allowed in the optimally-pruned 

model: 

prune .10 nopriors; 

Because there are no categorical attrib-

utes, the usefisher command is omitted.  Be-

cause the sample is moderate in size, as is the 
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number of attributes, and the attributes are or-

dered with few ties, analysis will be resource 

intensive.  Also, 100,000 Monte Carlo experi-

ments will be used in order to provide adequate 

statistical power for the small denominator end-

points that are anticipated: 

mcarlo iter 100000 cutoff .05 stop 99.9; 

Because UniODA analysis showed many 

attributes are loo-unstable, the analysis is judged 

to be too computationally intensive to attempt 

full enumeration on the first pass through the 

data via CTA (omitting the enumeration com-

mand results in an algorithmic analysis by de-

fault).  Thus, after specifying enumeration of the 

root variable only, and providing a title, the pro-

gram is ready to go: 

enumerate root; 

title RADAR maximum-PAC CTA; 

go; 

Advantages of Automated versus 

Manually-Derived CTA 

 Perhaps the most striking advantage of 

the automated software is that it is able to ac-

complish the example analyses just described, 

whereas neither of those analyses are possible to 

accomplish using manual derivation.  Two spe-

cific advantages of the automated software are 

integrated automated pruning procedures: (a) 

sequentially-rejective Sidak “Bonferroni-type” 

multiple comparisons adjustment
1
 to prevent 

model overfitting during the growth phase of the 

analysis; and (b) optimal pruning to maximize 

ESS at any specified experimentwise alpha level 

after growth has ceased.
13

  And, those with ex-

perience conducting manual CTA using ODA
1
 

software would likely be amazed to hear that in 

recent speed trials (N=351, 34 continuous at-

tributes) the automated software was able to 

solve enumerated CTA models averaging 0.7 

CPU seconds per model, running 5,000 Monte 

Carlo experiments on a 3 GHz Intel Pentium D 

microcomputer.  An algorithmic CTA derived 

manually for either type of CTA would typically 

require one or more man-days. 

Initial comparisons of automated versus 

manual methods clearly reveal that the increased 

depth of search afforded by the enumeration ca-

pabilities of the automated software typically 

returns stronger, more efficient models.
8
  The 

enumerated models may also be more consistent 

with original hypotheses than manually-derived 

counterparts.
15

  Preliminary investigations in our 

laboratory suggest that the advantages of auto-

mated software become even more striking in 

applications which feature numerous, scattered, 

missing data.  We are aware of several studies 

which compare previously-completed manually-

derived CTA models vs. models derived using 

automated software, either planned or in prog-

ress.  Monte Carlo simulation studies comparing 

the two methods are obviously warranted. 

It is exciting to witness, whether as actor 

or spectator, the beginning of a new area of in-

quiry involving a powerful and evolving new 

methodology.  Manually-derived CTA may be 

likened to an early telescope, focused by mov-

ing the body much like a trombone slide.  Initial 

exploration using this early tool was fruitful and 

informative, and motivated the development of 

the automated system, which may be likened to 

a modern telescope.  The modern instrument 

allows for pinpoint placement of the machine in 

any particular area (forcenode), aspect control 

including depth of field (maxlevel) and search 

(mcarlo iter; enumerate), luminosity (minobs; 

mindenom), fuzzy control (loo stable vs. .0x), 

and a standardized measure of acuity (ESS).  It 

is likely that using these controls in a variety of 

applications will lead to refinements in the con-

trols themselves, as well as in the methods of 

their operations, and these developments in turn 

may result in the creation of additional control 

features.  For these reasons we anticipate surpri-

sing findings and major advances in the under-

standing of absolute and comparative capabili-

ties of automated CTA—soon to come. 
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How to Save the Binary Class Variable 

and Predicted Probability of Group 

Membership from Logistic Regression 

Analysis to an ASCII Space-Delimited 

File in SPSS 17 For Windows 
 

Fred B. Bryant, Ph.D. 
Loyola University, Chicago 

 

This note explains the steps involved and provides the SPSS syntax 

needed to run two-group logistic regression analysis using SPSS 

17 for Windows, and output to an ASCII space-delimited data file 

the binary class variable and predicted probability of group mem-

bership (i.e., “Y-hat”) from an SPSS logistic regression analysis. 

 

1. Obtain an SPSS data set containing a binary 

class variable (e.g., sex), along with categorical 

(e.g., city1, city2, city3, colorA, colorB, colorC) 

and continuous (e.g., age) attributes.  Missing 

data should be indicated with a value (e.g., -9) 

in the SPSS data set. 

2. Open the SPSS data set, and run the follow-

ing syntax file, which saves predicted probabil-

ity of group membership as a variable named 

PRED_1 in the active SPSS data file. 

LOGISTIC REGRESSION VARIABLES sex 

 /METHOD=ENTER age raceA raceH city2 city3  

 /CONTRAST (city3)=Indicator 

 /CONTRAST (city2)=Indicator 

 /CONTRAST (colorA)=Indicator 

 /CONTRAST (colorC)=Indicator 

 /SAVE=PRED 

 /CLASSPLOT 

 /PRINT=GOODFIT 

 /CRITERIA=PIN(0.05) POUT(0.10) ITERATE(20) 

   CUT(0.5).  

3. If desired, in Variable View, edit the SPSS 

data file to rename PRE_1 as “lryhat,” for 

example, to reflect “logistic regression y-hat.” 

4. From the drop-down SPSS Windows menu, 

select Transform, Recode into Same Variable, 

and change the value of “system missing” 

(blank) to -9 (or value used) for the PRE_1 

(lryhat) variable. Then resave the SPSS data set.  

5. Run the following SPSS syntax to write a 

space-delimited ASCII data file which is named 

“lryhat.dat” and which contains a code for the 

class variable (e.g., sex) and the predicted 

probability of group membership (e.g., lryhat): 
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FORMATS sex (f4.0). 

FORMATS lryhat (f13.8).  

write outfile='c:\lryhat.dat' records=1 

    /1 sex lryhat. 

execute. 

6. Locate the file “lryhat.dat” in the root folder 

for the c:\ drive, and move this file to the ODA 

directory for analysis. 

Author Notes 

Correspondence should be sent to Fred 

B. Bryant at: Department of Psychology, Loyola 

University Chicago, 6525 North Sheridan Road, 

Chicago, IL, 60626.  eMail: fbryant@luc.edu. 
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Self-Monitoring And Review Tool, or SMART, is an interactive, 

internet-based, self-monitoring and feedback system, which helps 

people discover and monitor links between their own health-related 

behaviors, management strategies, and symptom levels over time.  

SMART involves longitudinal collection and optimal analysis of 

an individual’s self-monitoring data, and delivery of personalized 

feedback derived from the data.  Forty women with fibromyalgia 

(FM) enrolled in a three-month alpha test of the SMART system.  

Utilization, satisfaction, and compliance were high across the test 

period, and higher utilization was predictive of lower anxiety, and 

improved physical functioning and self-efficacy. 

 

FM is a chronic illness without medical cure and 

prevalence estimated as high as twelve million 

Americans—primarily women of child-bearing 

age, although children, the elderly, and men are 

also affected.
1
  Predominant symptoms include 

widespread musculoskeletal pain, multiple ten-

der points, fatigue, concentration and memory 

problems, and gastrointestinal complaints.
2-4

  

For a sample of 594 FM patients in an HMO, 

scores on a well-being measure were lower than 

for patients having advanced cancer, chronic 

obstructive pulmonary disease, and rheumatoid 

arthritis.
5
  FM is believed to involve a central 

pain processing dysfunction of the nociceptive 

system, particularly the central nervous system, 

and chronic inflammation.
6,7

  There is evidence 

of elevated corticotropin-releasing hormone and 

substance P in the cerebrospinal fluid of FM 

patients.
8
 

Many conventional and complementary 

treatment and management options have been 

tried, with mixed results across patients. The 

prevailing approach involves a combination of 
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pharmacological treatments for specific symp-

toms, and recommendations involving educa-

tion, lifestyle change, exercise, and self-help.
9-13

  

Meta-analysis of 49 treatment outcome studies 

concluded that nonpharmacological approaches, 

specifically cognitive, behavioral and exercise, 

appear to be more efficacious in improving self-

report of FM symptoms and functional well-

being than pharmacological treatment alone.
14

  

There is consensus that success in managing FM 

depends heavily on the patient’s daily efforts in 

self-management. FM patients who use adaptive 

problem-focused coping strategies report lower 

levels of pain and emotional distress, and higher 

levels of perceived control over symptoms, ver-

sus patients who don’t use such strategies.
15

  A 

patient’s decision to adopt a self-management 

strategy is influenced by a sense of self-efficacy 

about pain, a strong internal health locus of 

control, and a belief that one is not necessarily 

disabled or damaged by FM.  In addition, posi-

tive self-management behaviors are related to 

decreased guarding, increased exercise, seeking 

support from others, activity pacing, and use of 

coping self-statements.
16,17

 

While habits and patterns of daily living 

are directly compromised by FM, they also pre-

sent opportunities for beneficial impact.  Those 

reporting success in managing or recovering 

from FM commonly report significant—some-

times radical—changes in daily habits, roles, 

interpersonal relationships, behavior patterns, 

and life goals.
18

  Several self-management strat-

egies which have shown benefit in FM warrant 

inclusion in an individualized self-management 

approach.  For example, pacing involves learn-

ing to regulate one’s activity levels and energy 

expenditure throughout the day and the week, 

and FM patients have a higher level of pre-mor-

bid “action proneness” in their lifestyles com-

pared to control samples, suggesting failure to 

appropriately pace oneself may be both a pre-

disposing and perpetuating factor.
19

  Studies of 

mindfulness-based stress reduction and related 

approaches report moderate to marked improve-

ment in FM symptom levels.
20,21

  Performance 

of aerobic exercise in FM patients is also related 

to improvement in functioning, depression, pain, 

range of motion, and general FM impact.
22

 

In light of the numerous types of self-

management options available, it is important 

for patients to appraise the impacts of specific 

approaches and avoid depleting resources on 

unhelpful strategies. It is also important not to 

abandon a potentially helpful approach without 

a fair trial. Yet, the frustrations of carrying out 

new behaviors without the benefit of systematic 

tracking of use and effects, may cause the pa-

tient to reject a strategy prematurely.
23

  Self-

monitoring is common practice—and can be 

life-saving in conditions such as diabetes and 

hypertension, where methods can be concrete 

(glucose testing, blood pressure) and the results 

easily grasped.  Self-monitoring is also used in 

weight loss programs to promote awareness of 

eating habits, but self-monitoring tools must be 

user-friendly to enhance the likelihood of their 

successful use.
24

  Many FM patients attempt to 

monitor their illness with journals or diaries, but 

problems with memory and concentration make 

it difficult to track symptoms reliably or process 

information in an organized or systematic way. 

However, successful self-monitoring holds great 

potential of illuminating dynamics of the illness.  

For example, in a study of 63 FM patients who 

participated in one week of daily pain, sleep 

quality, and fatigue assessment, path analysis 

revealed that poor sleep quality alone fully ac-

counted for the positive relationship between 

pain and fatigue, thus substantiating the media-

tional role of sleep quality.
25

 

This report describes the design and ini-

tial clinical evaluation of a proprietary, inter-ac-

tive, user-friendly, web-based, systematic ap-

proach to self-management of FM.   

Design and Method 

Subject Recruitment.  The study was 

conducted with cooperation of the MaineHealth 

Learning Resource Center (MHLRC), the 
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patient education program of the MaineHealth 

Network consisting of ten non-profit medical 

centers, hospitals and outpatient clinics serving 

the ten counties of southern, central and western 

Maine.  The IRB was the Maine Medical Center 

Research Institute.  Primary publicity was a 

mailing regarding the “Fibromyalgia Wellness 

Project” to self-identified FM patients in the 

MHLRC program mailing list. The mailing 

guided prospective applicants to the study web-

site to read details of the project, download the 

consent document, download a required Medical 

Information Form, and complete a secure on-

line application. 

The on-line application collected contact 

information, demographics and date of FM di-

agnosis.  Data were entered into the applicant’s 

personal database on the project’s secure server, 

and automatically forwarded to the PI via email.  

Upon receipt the PI contacted the applicant for a 

telephone interview to cover eligibility criteria: 

(1) a diagnosis of primary FM (i.e., not second-

ary to lupus, rheumatoid arthritis, or other con-

dition) according the official American College 

of Rheumatology criteria (documented on 

Medical Info Form); (2) not under current treat-

ment for another serious medical condition; (3) 

able to read and speak English and complete the 

assessment forms; (4) physically able to attend 

the introductory meeting; and (5) daily access to 

the internet.  Eligible applicants mailed or faxed 

the Medical Information Form signed by their 

physician attesting to criteria 1 and 2 above, 

with the date of diagnosis.  After receiving this 

and the signed consent form, the subject was 

assigned a user-name and password to access 

the project web site to complete the first 

Monthly Survey.  Recruitment was terminated 

once 40 subjects completed this process: using 

statistical power analysis this sample size was 

determined to be sufficient to detect a moderate 

increase in longitudinal survey scores with one-

tail p<0.05 and 90% power. 

Data Collection.  All data collection was 

conducted via the project website using SMART 

Log software, with data for a given subject 

stored in the subject’s personal database.  Each 

subject completed a Monthly Survey five times, 

on days 1, 30, 60, 90 and 120 of the study.  

Compensation was $20 each time.  Monthly 

survey instruments used were the Fibromyalgia 

Impact Questionnaire
26

 or FIQ (uses a one-week 

recall period to obtain ratings of pain, physical 

functioning, fatigue, depression, anxiety, stiff-

ness, morning tiredness, job difficulty, days of 

paid work missed, number of good days in the 

past week, and total score); the SF12
27

 (uses a 

four-week recall period to obtain ratings of role 

limitations due to illness or emotional problems, 

physical functioning, bodily pain, mental health, 

vitality, social functioning, and general health 

perceptions); Self-Efficacy for Chronic Disease 

Scale
28

 or SECDS (uses a six-item scale rating 

self-confidence in managing the challenges of 

illness); and the Health Locus of Control Scale
29

 

(HLCS), Form C (condition-specific for FM and 

obtaining ratings of perceived control in terms 

of internality, chance externality, and powerful 

others externality for doctors and other people).  

The first two administrations of the Monthly 

Survey were treated as baseline data, and the 

last three treated as intervention phase data. 

Data on utilization of SMART Log con-

sisted of weekly counts of submissions on the 

project website.  Ratings of satisfaction with the 

program, and of the perceived relevance of the 

program to the subject’s health, were recorded 

by subjects at the end of each usage of SMART 

Log using four-point Likert-type rating scales 

anchored at the extremes by “not at all” and 

“completely”. 

The Intervention.  After completing the 

second baseline Monthly Survey each subject 

attended a three-hour orientation meeting intro-

ducing SMART Log and supporting features on 

the project website: five meetings each with 3-

12 subjects were conducted, one meeting per 

subject.  Subjects were instructed how to use the 

SMART Log and requested to use it at least 

three to four times per week.  It was explained 
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that the more they used it, the more powerful 

would be their personal database in its ability to 

provide meaningful feedback via the SMART 

Profile.  Subjects were compensated $2 each 

time the used the system up to five times per 

week, although they were free to use the system 

for as many days as they wished.  Compensation 

for travel and time was $50. 

One of the greatest challenges in any 

behavioral intervention is compliance.  We 

chose the prescription of “at least three to four 

times per week” to be a reasonable goal given 

the illness burden and stress load commonly 

experienced by people with FM.  We did not 

want compliance to be perceived as an added 

burden (e.g., “required every day”), yet we 

needed enough submissions to capture sufficient 

data within the 13-week use period of the study 

to perform the desired statistical analyses.  As 

per the instructions, a mean of 3.5 uses per week 

was considered full compliance in this study. 

Immediately after the orientation meet-

ing (day 31 of the project) the SMART Log 

function was activated on the web site and came 

available for subject use.  SMART Log consists 

of two sections. First, the Inputs Checklist cap-

tures 24-hour reporting of lifestyle behaviors 

and self-management strategies and stressors in 

five categories: sleep and rest; meals and 

snacks; self-care; general activities; and “unique 

items”—up to five user-defined inputs unique to 

each individual. Second, the Symptom Rating 

Scale captures user ratings of ten of the most 

prominent FM symptoms over the past 24 hours. 

After 30 days of using SMART Log 

(day 60 of the project), a SMART Profile was 

posted on a weekly basis on the subject’s private 

database until the end of the project (day 120).  

To accomplish this, each week, each subject’s 

cumulative SMART Log data were analyzed 

using exact single-subject statistical methods via 

optimal data analysis (ODA): power analysis 

simulating a moderate effect revealed univariate 

optimal discriminant analysis (UniODA) was 

appropriate for a sample of 22 to 47 days, and 

hierarchically optimal classification tree analy-

sis (CTA) was appropriate thereafter.
30

  Find-

ings for each subject were individually summa-

rized in a narrative (“Profile”) comprising 

statements about statistically significant associ-

ations found between the subject’s Inputs 

Checklist and  ratings of specific symptoms.  

After logging in a subject could click the 

SMART Profile tab and access the latest Profile.  

Over time, as more data accumulated for the 

subject, more (and more detailed) statements 

became possible.  Subjects received a total of 

ten weekly Profiles by the end of the project. 

If a subject’s data did not yield at least 

one significant association, then a general Pro-

file statement as follows was received: 

 “Your SMART Profile does not yet 

show significant connections between your 

inputs and symptom levels.  Either you need 

more submissions, or there’s not enough 

variation in your data so far, or both. 

 More submissions: To date you have 15 

SMART Log submissions.  As you add 

more you are more likely to accumulate 

enough data to show connections in future 

Profiles.  More frequent use of SMART Log 

may help get you there sooner.  For exam-

ple, if you’ve been submitting only two or 

three times per week, increase to four or 

more. 

 More variation: You can also boost your 

odds of finding connections by adding more 

variation to your inputs.  If you’re doing the 

same things all the time (the same inputs), 

your symptom levels are more likely to stay 

the same.  This is good reason to begin 

changing inputs you think could possibly af-

fect your symptoms—like your bedtime, 

eating schedule, meal sizes, work hours, 

self-care practices, stressors, or other inputs.  

Consider some changes you can try and 

begin experimenting with them.” 
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 If the subject’s data yielded at least one sig-

nificant association, then a Profile in the fol-

lowing format was received: 

 “Your SMART Profile shows significant 

connections between your inputs and symp-

tom levels.  Keep in mind the more you use 

SMART Log, the more likely you are to see 

other connections in future Profiles. Also 

remember that if you’re doing the same 

things all the time (same inputs), your symp-

tom levels are more likely to stay the same.  

This is good reason to try changing inputs 

you think could possibly affect your symp-

toms—like your bedtime, eating schedule, 

meal sizes, self-care practices, work hours, 

stressors or other inputs.  Consider some 

changes you can try and begin experiment-

ing with them. 

Your Profile for this week: Your pain 

level is least when you have lunch by 1:37 

PM. Your concentration problems are least 

when your afternoon nap is no longer than 

25 minutes.  Your stiffness is least when 

work or school-related activity is longer than 

2 hours 36 minutes AND morning exercise 

is longer than 5 minutes.  Your fatigue level 

is least when domestic activity is no more 

than mildly stressful. Your gastrointestinal 

symptoms are least when your afternoon 

snack is very light OR childcare stress is 3 

or less.” 

Results and Discussion 

For this study usability criteria comprise 

data on recruitment and retention, utilization  

and compliance, and satisfaction. 

Recruitment and Retention.  A total of 

40 women having an official diagnosis of FM 

(ACR criteria) enrolled in the project.  The 

study was originally planned for adults 18 or 

over, but one 16 year-old appealed for an excep-

tion, and with the permission of the NIAMS 

program officer, the IRB and her parent, she 

was enrolled in the study.  A summary of demo-

graphic features of the total recruited alpha test 

sample are summarized in Table 1. 

 

Table 1: Sample Demographic 

Characteristics 

Age Mean 46.5 (SD 12.4) 

Range 16-66 

Sex Female: 40 

Male: 0 

Ethnicity/ 

Race 

White: 34 

African American: 3 

Hispanic/Latino: 2 

Native American: 1 

Years FM 

Diagnosed 

Mean 7.9 (SD 5.7) 

Range 0.8-27.3 

Marital 

Status 

Married: 27 

Not married: 13 

Education 

 

Some HS: 1 

HS grad: 2 

Some college: 17 

BA: 9 

Some grad school: 5 

Grad degree: 6 

Employment 

 

Full time: 9 

Part time: 11 

Seeking: 1 

Retired: 3 

Disabled: 14 

Student: 2 

 

Utilization. Aggregate and individual 

measures of utilization are considered presently: 

utilization and compliance were high and stable 

over the course of the use period. 

Aggregate Utilization.  Because subjects 

were instructed to utilize the SMART Log at 

least three to four times per week, perfect com-

pliance is operationalized as a mean of 3.5 times 

per week.  Considered as a whole, the sample of 

39 patients completing the study submitted a 
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mean of 4.05 (SD=1.61) SMART Log entries 

per week over the 13-week study period.  This 

corresponds to a 95% confidence interval (95% 

CI) of 3.65 to 4.45 mean submissions per week, 

or mean aggregate compliance between 104.2% 

and 127.2% over the duration of the study.  

Aggregate SMART Log utilization was 

also examined weekly for the total sample.  

Seen in Table 2, lowest aggregate mean weekly 

utilization (indicated in red) occurred in the first 

week of data collection: this was the only week 

for which the upper bound of the 95% CI was 

lower than 100% mean aggregate compliance.  

Four of the six highest mean aggregate utiliza-

tion weeks (indicated in blue) occurred within 

the first six weeks of data collection: for these 

the lower bound of the 95% CI exceeded 100% 

mean aggregate compliance.  And, four of the 

six intermediate mean aggregate utilization 

weeks (indicated in black) occurred within the 

final six weeks of data collection: for these the 

95% CI overlapped 100% mean aggregate com-

pliance.  The temporal trend was unreliable: the 

correlation between study week and mean util-

ization was insignificant (r=-0.31, p<0.30), indi-

cating mean weekly aggregate utilization was 

consistent over the data collection period.  Ex-

amination of 95% CI overlap indicated that 

lowest mean aggregate utilization occurred in 

the first week of data collection, and that mean 

aggregate utilization in weeks 2 and 4 were 

greater than in weeks 8, 10, 11 and 12. 

Individual Utilization was defined using 

measures of relative quantity, and change over 

the three-month use period.  Utilization quantity 

was defined via a mean-split procedure whereby 

the mean number of SMART Log entries per 

week for an individual is compared against the 

aggregate mean number of SMART Log entries 

per week: individuals having a mean which is 

greater than the aggregate mean are considered 

“higher utilizers” (N=20, 51% of sample), and 

those having a mean lower than the aggregate 

are considered “lower utilizers” (N=19, 49% of 

sample).  Absence of skew in weekly utilization 

data yielded nearly identical samples sizes using 

this procedure. 

 

 

Table 2: Weekly SMART Log
 

Mean Aggregate Utilization 
                                                                   

                                                         Corresponding 

Week   Mean (SD)       95% CI       % Compliance 

    1      2.95 (1.70)     2.54 – 3.36      72.6 – 96.0 

    2      5.00 (1.93)     4.56 – 5.44    130.2 – 145.4 

    3      4.44 (1.73)     4.02 – 4.86    114.8 – 138.8 

    4      5.00 (2.70)     4.48 – 5.52    128.0 – 157.8 

    5      3.97 (1.93)     3.53 – 4.41    100.8 – 126.0 

    6      4.70 (2.41)     4.20 – 5.18    120.0 – 148.0 

    7      4.00 (2.41)     3.51 – 4.49    100.2 – 128.2 

    8      3.94 (2.54)     3.44 – 4.46      98.2 – 127.4 

    9      4.26 (3.29)     3.68 – 4.84    105.2 – 138.2 

  10      3.36 (3.08)     2.80 – 3.92      80.0 – 112.0 

  11      3.21 (2.88)     2.67 – 3.75      76.2 – 107.2 

  12      3.51 (2.95)     2.96 – 4.06      84.6 – 116.0 

  13      4.26 (4.18)     3.61 – 4.92    103.2 – 140.6 

Note: For % compliance values, lowest values are 

indicated in red, intermediate values in black, and 

highest values in blue.  

 

Change in utilization across time was 

operationalized using lag-1 autocorrelation, or 

ACF(1): for a single individual all pairs of 

measurements recorded at times i and i-1 are 

constructed, the data pairs are combined, and 

the i and i-1 data are correlated.
31

  The result is a 

Pearson correlation coefficient bounded by 1.0 

and -1.0: a negative value of ACF(1) indicates 

scores recorded recently are lower than scores 

recorded previously, and thus the individual is 

making fewer SMART Log entries (decreasing 

utilization) as the study proceeds.  A positive 

value of ACF(1) indicates scores recorded 

recently exceed scores recorded previously, and 

thus the individual is making more SMART Log 

submissions (increasing utilization) as the study 

proceeds.  Presently, 16 subjects (41% of sam-
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ple) had ACF(1)>0 and thus increasing SMART 

Log utilization, and 23 (59% of sample) had 

decreasing utilization. The small number of data 

pairs available to compute ACF(1) had weak 

statistical power to identify reliable ACF(1) 

coefficients, yet two negative and three positive 

statistically reliable (p<0.05) coefficients mater-

ialized.  Quantity of utilization and change in 

utilization over time were negatively correlated 

(r=-0.52, p<0.0009), indicating moderate (r
2
= 

0.27) regression to the mean.
31

   

Satisfaction.  Using consistent method-

ology and obtaining results consistent with those 

obtained for utilization, aggregate as well as in-

dividual satisfaction measures were considered 

presently: mean ratings of perceived relevance 

and overall satisfaction with the intervention 

were scaled as “mostly satisfied” over the 

course of the study; data were stable (the 95% 

CI for both variables overlapped across all use 

weeks); and an aggregate decline in satisfaction 

over time was attributable to outlying negative 

ratings, as the majority of participants reported 

increasing satisfaction over time. 

Aggregate Satisfaction.  After every use 

of the SMART Log its relevance (i.e., “How 

satisfied are you that today's SMART Log 

addressed matters relevant to your well-being?”) 

and satisfaction (“On the whole, how satisfying 

has your use of this program been to date?”) 

was rated by the patient.  The sample of 39 pat-

ients recorded a mean relevance rating of 3.20 

(SD=0.57, 95% CI=2.96–3.44), and a mean 

satisfaction rating of 3.16 (SD=0.64, 95% CI= 

2.90–3.41).  Considered in relation to the rating 

response scale used (1=not at all, 2=somewhat, 

3=mostly, 4=completely), both the mean ratings 

correspond to “mostly satisfied.”  Examination 

of weekly aggregate relevance and overall satis-

faction data indicated that for both measures the 

95% CI for weekly aggregate means overlapped 

across all weeks.  Mean aggregate relevance (r= 

-0.63, p<0.02) and satisfaction (r=-0.56, p<0.05) 

declined over time, but analysis of individual 

satisfaction shows the decline was attributable 

to outlying ratings of a minority of patients.  

Individual Satisfaction.  Paralleling the 

individual utilization measures, individual pro-

gram relevance and satisfaction ratings were 

conceptualized in terms of both quantity and 

change over time.  Quantity was operational-

ized by a mean split procedure: mean relevance 

and satisfaction scores for an individual were 

compared against mean aggregate scores.  Indi-

viduals having a mean relevance score greater 

than the aggregate mean considered the SMART 

Log relatively “more relevant” to their well-

being (N=14, 35.9% of sample), and individuals 

having a mean lower than the aggregate mean 

considered the SMART Log relatively “less 

relevant” (N=25, 64.1% of sample).  Similarly, 

individuals having a mean satisfaction score 

greater than the aggregate mean were relatively 

“more satisfied” (N=16, 41.0% of sample), and 

individuals having a mean lower than the aggre-

gate mean were “less satisfied” (N=23, 59.0% 

of sample). 

And, also paralleling treatment of utili-

zation data, analysis of temporal effects in indi-

vidual relevance and satisfaction measures was 

operationalized by ACF(1) coefficients.  Insuf-

ficient variance made computation of ACF(1) 

impossible for the relevance data of 14 patients, 

and for the satisfaction data of 16 patients.  For 

relevance, 20 patients (80% of sample) had 

ACF(1)>0  and perceived increasing relevance, 

and five patients (20% of sample) reported de-

creasing relevance.  For satisfaction, 19 patients 

(78.3% of sample) had ACF(1)>0 and reported 

increasing satisfaction, and four patients (21.7% 

of sample) reported decreasing satisfaction.  

Negative trends across time were noted for ag-

gregate mean scores dominated by outlying rat-

ings made by a few dissatisfied patients, but the 

majority of the sample had positive trends when 

their data were examined individually: a type of 

Simpson’s Paradox.
32

  In spite of weak statisti-

cal power to test the reliability of the ACF(1) 

coefficients, for relevance 12 ACF(1) coeffi-
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cients had p<0.05 (6 exceeded 0.92), and for 

satisfaction 13 coefficients had p<0.05 (9 ex-

ceeded 0.89).  Quantity and change over time 

were unrelated for relevance (p<0.38) and satis-

faction (p<0.94) ratings. 

Outcome Data. In the present study the 

outcome data were obtained from instruments 

administered in the Monthly Survey. 

Utilization.  First, UniODA and CTA
30

 

were used to identify relationships involving the 

quantity of utilization.  Higher utilization pre-

dicted greater reduction over the use period in 

FIQ Anxiety scores (p<0.04), as 13/15 (86.7%) 

patients reporting decreased Anxiety were 

higher utilizers, and 6/11 (54.6%) patients with 

increased Anxiety were low utilizers of SMART 

Log. The effect was moderate (ESS=41.2%) and 

stable in jackknife validity analysis. 

Higher utilization also predicted greater 

increase over the use period in SF12 Physical 

Functioning (p<0.05): 5 of 10 (50.0%) patients 

with increased Physical Functioning over the 

use period were higher utilizers of the SMART 

Log, while 12 of 13 (92.3%) patients reporting 

decreased Physical Functioning over the use 

period were lower utilizers. The effect was mod-

erate (ESS=42.3%) and jackknife-stable. 

Higher utilization was marginally pre-

dictive of improvement over the use period in 

Health Locus of Control (HLC) versus lower 

utilization (p<0.09): 10 of 18 (55.6%) patients 

reporting decreased Chance locus of control 

over the use period were higher utilizers, while 

14 of 18 (77.8%) patients reporting increased 

Chance locus of control were lower utilizers. 

The effect was moderate (ESS=33.3%) and 

stable in jackknife analysis. 

Higher utilization was also marginally 

predictive of older age (p<0.09): 17 of 20 

(77.8%) patients who were at least 43 years of 

age were higher utilizers, and 10 of 19 (52.6%) 

patients who were 42 years old or younger were 

lower utilizers.  The effect was moderate (ESS= 

37.6%) and stable in jackknife analysis. 

Finally, CTA was used to compare high- 

versus low-utilizers, and a two-attribute model 

emerged.  Five of six (83.3%) patients reporting 

increased SF12 Physical Functioning over the 

use period were higher utilizers, versus one of 

six (16.7%) who were lower utilizers (p<0.05).  

Five of six (83.3%) patients reporting reduced 

Physical Functioning and decreased external 

(Doctor) locus of control over the use period 

(p<0.005) were higher utilizers, versus 7 of 7 

(100%) lower utilizers who instead reported 

increased external (Doctor) locus of control.  

The effect was strong (ESS=77.8%) and stable 

in jackknife validity analysis. 

UniODA and CTA were next employed 

to identify relationships involving change in 

utilization over time, and only one statistically 

marginal association emerged involving Internal 

locus of control (p<0.07).  Of patients having 

positive ACF(1) coefficients (indicating increas-

ing utilization of the SMART Log over the use 

period), 13 of 15 (86.7%) reported increased 

Internal locus of control over time; of patients 

having negative ACF(1) coefficients (indicating 

decreasing use over time), 10 of 21 (47.6%) pat-

ients reported a decreased Internal locus of con-

trol over time.  This effect was moderate (ESS= 

34.3%), and stable in jackknife validity analysis.  

In summary, higher utilization predicted 

significantly greater improvement over the use 

period in anxiety and physical functioning, and 

marginally greater improvement over the use 

period in internal health locus of control.  The 

strength of these associations was moderate, and 

the findings are likely to cross-generalize to an 

independent random patient sample.  There was 

also a significant positive association between 

change in utilization and change in health locus 

of control over the use period. 

Satisfaction.  Next, UniODA and CTA 

were used to identify relationships involving the 

quantity of satisfaction.   Ratings of satisfaction 

and relevance were nearly perfectly associated: 

all 16 patients reporting higher satisfaction had 

a mean relevance score greater than 3.12, and 22 



Optimal Data Analysis     Copyright 2010 by Optimal Data Analysis, LLC 

2010, Vol. 1, Release 1 (September 17, 2010)       2155-0182/10/$3.00 

  

 

 

171 
 

of 23 (95.6%) patients with lower satisfaction 

had a mean relevance score of 3.12 or lower: p< 

0.0001, ES=95.6%.  Accordingly, only ratings 

of satisfaction are considered further.  The only 

statistically significant association identified 

involved change in Stiffness over time (p<0.04): 

8/14 patients reporting increased satisfaction 

reported decreased Stiffness over the use period, 

and 14/17 (82.4%) patients reporting decreasing 

satisfaction over the period reported increasing 

Stiffness: this moderate effect (ESS = 39.5%) 

was stable in jackknife validity analysis.   

Profiles Delivered.  As a direct measure 

of the performance of the SMART system in 

fulfilling the intended function of delivering 

person-specific SMART Profile reports, we 

assessed system velocity—the quantity of statis-

tically reliable feedback reports produced by the 

SMART system for patients as a function of 

time, over the use period.  The first four weeks 

of the 13-week SMART Log use period was 

used to build the subject’s personal database.  

At the end of the fourth week the SMART 

Profile function was activated and subjects 

began receiving weekly reports.  As described 

earlier, Profiles were of two types: if the anal-

ysis yielded no significant associations between 

inputs and symptom levels, the patient received 

a general SMART Profile statement explaining 

how the Profile is produced and encouraging 

further submissions and variation of inputs.  If 

the analysis yielded one or more significant 

associations (“significant profile”) the patient 

received a general SMART Profile statement 

appended with the associations found. 

As expected, the number of subjects 

receiving significant profiles increased over 

time as databases accumulated more SMART 

Log data.  As seen in Table 3, in the first week 

of SMART Profile production 20% of subjects 

had significant associations, and this percentage 

increased until reaching asymptote at a mean of 

88% over the final five weeks. 

Qualitative Data.  All 39 subjects who 

completed the study provided qualitative data at 

follow-up via focus groups.  Response content 

received from participants was analyzed via 

QSR-N6 software.
33

 

 

Table 3: Weekly Number of 

Statistically Significant 

SMART Profiles 

 

Week 

Number of Significant 

Profiles Divided by 

Number of Patients 

Percent 

Significant 

Profiles 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

  8/40 

16/40 

28/40 

30/39 

31/39 

34/39 

34/39 

35/39 

35/39 

34/39 

20.0 

40.0 

70.0 

76.9 

79.5 

87.2 

87.2 

89.7 

89.7 

87.2 

 

Concerning overall impression of the 

SMART Log instrument, 54% of responses 

were unqualified positive, and an additional 

41% were positive with qualifications.  Issues 

identified included time pressures due to family, 

travel, work, tiredness, and some confusion as to 

how to apply some SMART Profile statements 

in one’s daily life.  Overall, 95% of the respon-

ses expressed were favorable to the tool.  A 

modal comment was that the use of SMART 

Log raised consciousness regarding day-to-day 

activities and their effects on the individual 

independently of the content of the Profiles. 

 Concerning overall impression of the 

SMART Profile reports, 74% of responses were 

coded as “useful.”  Dissenting respondents 

indicated they failed to submit SMART Log 

entries often enough over the study period, and 

thus didn’t receive as many significant SMART 

Profile statements as they would have liked.  
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Concerning relevance of the reports to 

one’s health, 79% of responses reflected a posi-

tive evaluation. Components singled out as 

especially relevant were eating patterns, 

exercise, spirituality, meditation, social activity, 

getting out, behavior awareness, use of routines, 

and sleep habits. 

All subjects identified a “most 

important” personal discovery achieved as a 

consequence of using the SMART system.  

Most frequently mentioned discoveries involved 

consciousness-raising regarding the impact of 

daily behavior choices (48%); the importance of 

self-care activities (27%); the need for more 

information on the disease and its effects, both 

personally as well as on others (14%); the value 

of socialization as a form of support (7%); and 

the role of daily exercise in well-being (2%). 

Finally, during follow-up focus group 

discussions, obstacles or difficulties in using the 

SMART system were framed in terms of life 

getting in the way, time commitments, work, not 

being much of a computer user, family commit-

ments, vacation, time of year, depression reduc-

ing motivation, and limited computer access. 

Eighteen-Month Follow-Up.  A total of 

22 subjects in the Phase I study were located 18 

months after the study terminated and asked to 

complete a nine-item self-report survey, and 19 

subjects returned responses that could be 

analyzed.  Subjects were asked to answer three 

questions about each of three different time 

periods—just before the Phase I project began, 

right after the Phase I project terminated, and 

now.  The first question was: “about how many 

hours per day were you able to be productive?” 

The second question was: “about how many 

hours per day did you want to be productive?” 

The third and final question was: “on a scale 

from one to ten (“not at all” to “completely”, 

respectively), how satisfied were you with your 

productivity?” Productivity was defined to 

subjects as: “what you would consider being 

productive in your life. This could include work, 

school, homemaking, or taking care of others, 

whatever it means to be productive.”  Table 4 

gives the mean (and standard deviation) for 

survey items. 

 

Table 4: Mean Productivity Self-Ratings 

 

Survey Item 

 

Baseline 

 

Study End 

18-Months 

Post-Test 

Hours ABLE 

to be productive 

6.4 (4.1) 7.5 (3.9)   7.6 (4.0) 

Hours WANT 

to be productive 

10.5 (3.4) 10.4 (3.5) 11.0 (3.0) 

SATISFACTION 

with productivity 

4.1 (2.3) 6.2 (2.5) 5.7 (2.7) 

 

As seen, patients reported a 17% 

increase in the mean number hours per day they 

were able to be productive by the end of the 

study (p<0.008), and this gain was maintained 

after the study terminated.  Desired mean daily 

productivity did not vary across rated time 

periods (p>0.17).  Mean satisfaction increased 

51% by the end of the study (p<0.0004) and 

diminished slightly but not reliably (p<0.55) to 

an increase in mean satisfaction of 39%, 18 

months after the study terminated (p<0.02). 

Thus, exposure to the SMART Log interven-

tion significantly increased mean self-reported 

productivity and satisfaction ratings, and these 

gains were maintained in follow-up. 

Consistent with the thesis of the discon-

firmation paradigm
34

, diminishing difference 

between actual and desired hours of productivity 

was significantly correlated with increasing sat-

isfaction for ratings made before the study 

(p<0.02) and at 18-month follow-up (p<0.0005), 

and marginally for ratings obtained when the 

study ended (p<0.12). 

Conclusion 

For this four-month pilot study with 39 

patients retention was very high and compliance 

with use of the intervention—a significant 
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challenge in most behavioral medicine research, 

and especially with FM—was high and stable 

across the study period.  Retention, compliance, 

and satisfaction ratings indicate that the 

intervention has high usability. 

Analyses revealed moderate to strong 

clinical benefits predicted by the subject’s 

frequency of utilization of the SMART system.  

Specifically, higher utilization was associated 

with significantly greater positive change over 

the use period in anxiety, physical functioning 

and health locus of control.  These effects were 

stable in jackknife validity analysis, indicating 

they are likely to cross-generalize to indepen-

dent random patient samples.  Discussed earlier, 

impaired physical functioning and emotional 

well-being are central aspects of the disease 

burden of FM, and increased health locus of 

control is essential to patients taking an active 

role in self-management.   

An important qualitative finding was 

that subjects reported the systematic and regular 

use of SMART Log raised their awareness of 

the impacts of daily behaviors independently 

from the feedback they received from SMART 

Profile.  Focus groups revealed instances where 

subjects became aware of impacts and changed 

behavior even though their SMART Profile had 

not yet provided feedback about that issue.  

Thus, one mechanism of benefit of using the 

SMART system may be a heightened sense of 

self-awareness that it engenders.  This is 

important because subjects are not guaranteed 

that a given SMART Profile will present signifi-

cant associations, as there may not always be 

enough submissions, sufficient variability, or 

actual underlying association within their sub-

mitted data to show reliable associations.  It thus 

appears that the success of the SMART Log 

program does not derive exclusively from 

contents of SMART Profile. 

 Preliminary findings reveal the SMART 

system is a user-friendly, structured and system-

atic approach to self-management of a chronic 

illness affecting 6 to 12 million Americans.  The 

success of the alpha project motivated a beta test 

using a substantially larger sample of FM pa-

tients, which is currently underway in our lab-

oratory. 
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Junk Science, Test Validity, and the 

Uniform Guidelines for Personnel 

Selection Procedures: The Case 

of Melendez v. Illinois Bell 
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This paper stems from a recent federal court case in which a stand-

ardized test of cognitive ability developed by AT&T, the Basic 

Scholastic Aptitude Test (BSAT), was ruled invalid and discrimi-

natory for use in hiring Latinos.  Within the context of the BSAT, 

we discuss spurious statistical arguments advanced by the defense, 

exploiting certain language in the current Uniform Guidelines for 

evaluating the fairness and validity of personnel selection tests.  

These issues include: (a) how to avoid capitalizing on chance; (b) 

what constitutes “a measure” of job performance; (c) how to judge 

the meaningfulness of group differences in performance measures; 

and (d) how to combine data from different sex, race, or ethnic 

subgroups when computing validity coefficients for the pooled, 

total sample.  Pursuant to the Uniform Guidelines’ standard for un-

fairness, when one ethnic group scores higher on an employment 

test, the test is deemed “unfair” if this difference is not reflected in 

a measure of job performance.  Although studies validating selec-

tion instruments often survive the unfairness test, such data are 

vulnerable to bias and manipulation, if appropriate statistical pro-

cedures are not used.  We consider both the benefits (greater clarity 

and precision) and the potential costs (loss of legal precedent) of 

revising the Uniform Guidelines to address these issues.  We fur-

ther discuss legal procedures to limit “junk science” in the court-

room, and the need to reevaluate validity generalization in light of 

Simpson’s “false correlation” paradox. 

 

 The purpose of this paper is to share our 

insights from a recent federal court case, which 

we refer to as Melendez, involving a claim of 

employment discrimination in personnel selec-

tion, Melendez v. Illinois Bell Telephone Com-

pany, No. 90 C 5020 (N.D. Ill. Sept. 16, 1994), 
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aff’d, 79 F.3d 661 (7th Cir. 1996).
1
  These in-

sights arise from certain defenses advanced by 

the employer, in which dubious statistical proce-

dures were justified by language from current 

federal guidelines for validating personnel se-

lection tests, the Uniform Guidelines for Em-

ployee Selection Procedures, promulgated joint-

ly by the United States Equal Employment Op-

portunity Commission and the United States De-

partments of Labor, Justice, and the Treasury 

[43 Fed. Reg. 38,290 (August 25, 1978); EEOC, 

29 CFR Part 1607].  We refer to these as the 

Uniform Guidelines. 

 After providing some background to the 

particular legal case involved, we describe the 

original validation studies that formed the heart 

of the litigation, and present research evidence 

which was the main point of contention at trial.  

After summarizing the evidence against the vali-

dity of the personnel selection test in question—

the Basic Scholastic Aptitude Test (BSAT)—we 

highlight some apparent ambiguities in the Uni-

form Guidelines.  Comparable ambiguities exist 

in both the Standards for Educational and Psy-

chological Testing
2 

and in the Society for Indus-

trial and Organizational Psychology’s
 
Principles 

for the Validation and Use of Personnel Selec-

tion Procedures.
3
  Ironically, although the Uni-

form Guidelines are intended to promote equal-

ity of employment opportunity regardless of 

race, religion, and gender, they do not expressly 

prohibit the use of certain research practices that 

produce spurious artifacts, and which actually 

perpetuate discrimination in the workplace. 

 In this paper we share our observations 

with professionals within the psychological 

testing, statistical analysis, human resources and 

legal communities; discuss the application of 

Uniform Guidelines in maintaining consistency 

vis-à-vis professional standards; and conclude 

by recommending a reevaluation of the proce-

dure of validity generalization in light of Simp-

son’s “false correlation” paradox (i.e., paradox-

ical confounding). 

Historical Context 

 What was this trial all about?  Plaintiff 

Carmelo Melendez claimed he was denied equal 

employment opportunity in applying for a job 

with defendant Illinois Bell Telephone Com-

pany.  Mr. Melendez was born and raised in 

Puerto Rico, and moved to East Chicago in the 

middle of his grade school years.  Though he 

spoke no English, Mr. Melendez was placed in a 

monolingual English classroom.  A straight-A 

student in Puerto Rico, in the United States he 

got F’s.  By struggling hard, he learned English, 

taught himself the skills he needed to advance, 

and raised his grades until, by the time he gradu-

ated from high school, he was earning B’s. 

 It was then, however, that Mr. Melendez 

first encountered an obstacle that he could not 

overcome, and that he would confront through-

out his adult life: standardized ability tests.  He 

performed miserably on the SAT, and could not 

attend college.  He decided to apply for an 

entry-level position in metallurgy at the local 

steel mill.  He failed the standardized entry 

examination, however.  Yet another standardi-

zed test kept him out of the military. 

 Mr. Melendez persevered, and eventu-

ally got his college degree.  He also became a 

certified x-ray technician, and he eventually 

worked for the federal Civil Rights Commis-

sion.  He went on to become the host of a Chica-

go-area television talkshow.  Then, in 1988, he 

applied for a job as Assistant Manager of Urban 

Affairs for Illinois Bell. 

 The job description called for a person 

who could interface with the local Latino com-

munity, to assess emerging urban trends for use 

in marketing telecommunications services.  The 

successful applicant should be able to interact 

with community leaders and residents, and to 

communicate effectively in a bilingual setting, 

orally and in writing. 

 Illinois Bell required all external appli-

cants for its first-level management jobs to sur-

mount three separate pass-fail hurdles.  Appli-

cants had to have a college diploma, graduating 
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in the top half of the class.  Applicants had to 

pass a structured, standardized interview, dem-

onstrating a sufficient level of leadership.  Fin-

ally, applicants had to take the standardized 

Basic Scholastic Aptitude Test (BSAT), scoring 

at or above a raw pass-fail cutoff score of 196.  

This cognitive ability test was the central focus 

of the court case. 

 The BSAT is a standardized paper-and-

pencil test, purporting to assess verbal and quan-

titative ability, much like the SAT.  It also incl-

udes questions designed to tap the ability to fol-

low directions, in which one must indicate an-

swers while listening to a tape-recording which 

contains complex, conflicting instructions. Each 

subsection of the test is timed, or “speeded,” and 

the entire test takes about one hour. 

 Despite his college degree and his suc-

cess on the leadership interview, Mr. Melendez 

failed the BSAT.  He grew depressed and des-

pondent, and became estranged from his family 

for more than a year.  Not long after his reject-

tion by Illinois Bell, however, Melendez won a 

position with the federal government.  He has 

performed successfully there ever since, and has 

risen to a position of authority. 

 Based on his experience, Mr. Melendez 

believed that the BSAT was unfair because it 

was not job-related.  He saw no connection be-

tween the skills required to do well on the job of 

Assistant Urban Affairs Manager, and the skills 

required to pass the BSAT.  To right the wrong, 

he filed suit against Illinois Bell for employment 

discrimination. 

Adverse Impact of the BSAT 

 Before turning to the evidence concern-

ing test validity, we first consider the BSAT’s 

impact on applicants of different ethnicity (i.e., 

the BSAT pass-fail rates for different racial or 

ethnic groups).  Table 1 presents pass-fail rates 

for whites, African-Americans and Latinos on 

the BSAT separately for two time periods: 1979 

and 1987-88.  The 1979 statistics are for 591 

managerial applicants, and are taken directly 

from the original AT&T validation report: in 

1979, about 3 in 4 whites passed the test, versus 

1 in 5 African-Americans, and 1 in 2 Latinos.
4 

 

Table 1: Rates of Success and Failure on the 

BSAT for Different Racial Groups 
--------------------------------------------------------------------- 

                                       Racial Group   

                          White          Black         Latino 

                        ------------   ------------   ----------- 

Time Period       P      F       P       F        P       F 

----------------   -----  -----   -----   -----   -----  ----- 

1979         n     265    79 42    151      25     29 

                 %      77    23 22      78      47     53 

1987-88    n     344    51 83      62      50     44 

                 %      87    13     57      43      53     47 
---------------------------------------------------------------------- 

       Between-Group Pairwise Comparisons 

                   via Fisher’s Exact Test 

             W79       W87       B79       B87       L79 

W87   .000459 

B79    .000001      .000001 

B87    .000018      .000001    .000001 

L79    .000010      .000001    .000827       .21 

L87    .000014      .000001    .000001       .60           .50 

---------------------------------------------------------------------- 

Note: Pairwise comparisons were performed using two-

tailed Fisher’s exact test computed using ODA software.
5
  

Row and column headings indicate both ethnic class (W= 

white, B=Black, L=Latino) and time period (79=1979, 

87=1987-88).  Tabled for each unique combination of row 

and column is the p-value (six significant digits) for the 

exact test comparing pass/fail rates of the corresponding 

samples.  P-values indicated in red are statistically signifi-

cant at experimentwise p<0.05 based on an appropriate 

Bonferroni criterion (see discussion in paper: p<.05/1115, 

or p<0.000046); p-values indicated in blue are statistically 

significant at the generalized criterion (per-comparison p< 

0.05); p-values indicated in black are not significant.
5
 

 

 The 1987-88 pass-fail statistics are from 

Illinois Bell’s records, from a sample of 634 
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applicants for first-level management positions.  

During the 1987-88 period, most whites—nearly 

9 in 10—passed the test, versus 6 in 10 African-

Americans and 5 in 10 Latinos. 

 To evaluate these pass-fail rates, there is 

a guideline for judging the impact of an employ-

ment test on different ethnic groups.  This rule-

of-thumb is known as the “four-fifths rule.”  

According to this guideline, a test has an adver-

se impact on an ethnic group whose pass rate is 

less than four-fifths the rate of the group with 

the highest test pass-rate: “A selection rate for 

any race, sex, or ethnic group which is less than 

four-fifths (4/5) (or eighty percent) of the rate 

for the group with the highest rate will generally 

be regarded by the Federal enforcement agen-

cies as evidence of adverse impact, while a 

greater than four-fifths rate will generally not be 

regarded by Federal enforcement agencies as 

evidence of adverse impact” (Uniform Guide-

lines, §1607.4.D).  The Uniform Guidelines de-

fine “adverse impact” as: “A substantially dif-

ferent rate of selection in hiring, promotion, or 

other employment decision which works to the 

disadvantage of members of a race, sex, or eth-

nic group” (Uniform Guidelines, §1607.16.B). 

 In 1979, for example, whites had the 

highest pass-rate on the BSAT, at 77% (see 

Table 1).  The BSAT, then, had an adverse im-

pact on any group in 1979 whose BSAT pass-

rate falls below four-fifths of 77% (or below 

61.6%).  The 1979 pass-rates for African-Amer-

icans (22%) and Latinos (47%) are clearly lower 

than the four-fifths mark of 61.6%. 

 For the 1987-88 period, under the Uni-

form Guidelines’ four-fifths rule, the BSAT had 

an adverse impact on any group whose pass-rate 

falls below four-fifths of the white pass rate of 

87% (or below 69.6%).  Because pass rates for 

African-Americans (57%) and Latinos (53%) 

are below this four-fifths mark of 69.6%, the 

BSAT had an adverse impact on both of these 

groups during 1987-88, according to the Uni-

form Guidelines’ standard. 

 This evidence of strong and consistent 

adverse impact makes test validity even more 

vital.  Rejecting such a large number of minority 

applicants might be defensible, if the test accu-

rately predicted important on-the-job perform-

ance.  For example, imagine using a valid test of 

visual acuity to select fighter-pilots; if minority 

applicants have worse eyesight than majority 

applicants, then so be it.  It is an entirely differ-

ent matter, however, if the test has nothing to do 

with on-the-job performance.  If minorities do 

not actually have worse eyesight, then the test 

unfairly denies them equal employment oppor-

tunity.  In the case of the BSAT, the evidence 

for test validity is particularly critical, given the 

unequivocal adverse impact on minorities.  In 

the words of the Uniform Guidelines: “Reliance 

upon a selection procedure which is signifi-

cantly related to a criterion measure, but which 

is based upon a study involving a large number 

of subjects and has a low correlation coefficient 

will be subject to close review if it has a large 

adverse impact...” (Uniform Guidelines, §1607. 

14(B)(6). 

BSAT Validation Studies 

 Two validation studies of the BSAT 

formed the heart of the litigation, and the trial 

gravitated around certain research evidence 

from these studies.  In the late 1970s, AT&T in-

dustrial/organizational psychologists developed 

the BSAT, using test components originally 

written by the Educational Testing Service 

(ETS), which also developed the SAT, LSAT, 

GRE, and other cognitive ability tests.  One of 

the AT&T psychologists drafted the final re-

search report containing two validation studies, 

which assessed the relationship between BSAT 

scores and job performance.  These studies pur-

ported to evaluate the BSAT’s predictive vali-

dity, i.e., its ability to predict subsequent on-the-

job performance.  Illinois Bell relied on these 

validation studies in using the BSAT to screen 

its job applicants.   
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 The first of the two validation studies, 

referred to as the Preliminary Study, focused on 

entry-level managers already hired at 8 different 

company locations throughout the country.  This 

Preliminary Study included 229 managers who 

had earlier taken a large battery of standardized 

tests, including the School and College Ability 

Test (SCAT) and the predecessor of the BSAT, 

the Bell System Qualification Test (BSQT).  

One year after these applicants were hired their 

job performance was evaluated by their super-

visors, who rated each applicant’s job perform-

ance using a set of 13 criterion measures, 

developed through a job analysis of manage-

ment positions, including ratings of skills in 

planning, decision making, oral and written co-

mmunications, leadership, resistance to stress, 

interpersonal awareness, and a global rating of 

overall job performance.  The test developers 

then selected a subset of verbal and math items 

based on correlations with supervisor ratings, 

and these items became the BSAT.  Researchers 

then examined the relationship between test 

score and rating of overall job performance to 

establish a pass-fail cut-score for the test, which 

was implemented throughout AT&T companies. 

 The second validation study, referred to 

as the Followup Study, focused on 286 job app-

licants who were applying for entry-level man-

agement positions in 11 different AT&T com-

pany locations.  Applicants selected for partici-

pation were given the BSAT (using the pass-fail 

cut-score determined in the Preliminary Study), 

and then one year later, their supervisors were 

asked to rate each employee on a set of 15 per-

formance criteria.  As in the Preliminary Study, 

researchers examined the correlation between 

test scores and performance ratings, trying to 

cross-validate the findings from the Preliminary 

Study. Thus, both validation studies concern the 

predictive validity of the test, that is, whether 

the test accurately predicts job performance and 

is therefore job-related. 

 

Validity Evidence for the BSAT 

 What evidence is there concerning the 

predictive validity of the BSAT?  The primary 

validity evidence in the validation studies con-

sists of Pearson product-moment correlation 

coefficients relating applicants’ test scores to 

supervisors’ performance ratings. 

 Preliminary Study.  Turning first to 

Table 2, note that the Preliminary Study reports 

no figures for Latinos.  Instead, for African-

Americans and whites separately and for the 

pooled data set, it reports correlations between 

BSAT scores and each of the 13 performance 

ratings.  Note that the BSAT shows a statis-

tically significant correlation with ratings of 

overall job performance for the total sample, 

r(151)=0.38, p<0.00001.  For whites, however, 

only 4 of the 13 criterion measures show a sta-

tistically significant (p<0.05) relationship with 

BSAT score.  Indeed, BSAT scores had no sig-

nificant relationship with ratings of overall job 

performance for whites.  Averaging across all 

correlations for whites (mean r=0.128, p<0.08), 

the BSAT predicts about 2% of the variance in 

whites’ performance ratings.  This represents a 

Hedges corrected effect-size of 0.26, equivalent 

to an experimental effect in which the treatment 

group scores about one-quarter of a standard de-

viation above the control group. 

 Also note that, for African-Americans, 7 

of the 13 performance ratings (including overall 

job performance) show a statistically significant 

relationship with BSAT score.  Averaging 

across all correlations (mean r=0.314, p<0.006), 

the BSAT explains about 10% of the variance in 

African-Americans’ performance ratings (Hed-

ges corrected g=0.65).  Considered together, this 

evidence from the Preliminary Study suggests 

that the BSAT is largely invalid for use with 

whites, but has marginal validity for use with 

African-Americans.  We return later to the first 

column of Table 2, giving validity coefficients 

for the total group. 
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Table 2: Preliminary Study Correlations 

Between BSAT Score and Job Performance 

Ratings for Different Groups 

---------------------------------------------------------- 

                 Groups 

   Total       White     Black 

        Job Skills            n=153       n=94      n=39 

------------------------- --------    --------    --------- 

Organizing and 

Planning   .28
*
      .09         .34

*
 

Decision Making  .30
*
      .20

*
         .27

 
 

Decisiveness   .39
*
      .25

*
         .36

*
 

Oral Communi- 

cations               .23
*    

      .08         .43
*
 

Written Communi- 

cations               .28
*
      .21

*
         .26 

Leadership   .36
*
      .02          .54

*
 

Interpersonal 

Awareness   .25
*
      .09         .30

*
 

Behavior 

Flexibility              .20
*
      .04         .20 

Fact Finding   .38
*
      .29

*
         .24 

Resistance 

to Stress              .21
*
      .11         .18 

Energy    .15      .04          .08 

Management 

Potential   .42
*
      .11         .42

*
 

Overall Job 

Performance   .38
*
      .13         .46

*
 

---------------------------------------------------------- 
Note: Adapted from Tables 4 and 8 of the original valida-

tion report.
4
  An asterisk (*) indicates p<0.05 at the gener-

alized (per-comparison) criterion.
5
  N for the total sample 

is greater than the sum of the ns for the white and black 

groups because the Preliminary Study included 16 His-

panics and 4 “other minorities” whose data were pooled 

in the analysis of the total sample.  Discussed further 

ahead in the paper, the “false correlation paradox” (para-

doxical confounding) is present when an index for pooled 

samples lies outside the range of index values for indivi-

dual samples considered separately (indicated in red). 

 Followup Study.  Table 3 gives validity 

coefficients for the Followup Study.  Again the 

BSAT shows a significant correlation with rat-

ings of overall job performance for total sample, 

r(284)=0.21, p<0.001.   For whites, 4 of 15 per-

formance ratings show a significant relationship 

with BSAT score: averaging coefficients (mean 

r=0.077, p>0.19), the BSAT predicts about 2% 

of the variance in whites’ performance ratings 

(corrected g=0.19).  For African-Americans, 8 

of 15 validity coefficients are significant: aver-

aging coefficients (mean r=0.215, p<0.01), the 

BSAT predicts about 6% of the variance in Afri-

can-Americans’ performance ratings (corrected 

g=0.44).  BSAT score was significantly related 

to ratings of overall job performance for both 

whites and African-Americans, though these 

effect sizes again were relatively small. 

 The fourth column in Table 3 reports the 

only direct empirical evidence available con-

cerning the validity of the BSAT for use in 

hiring Latinos.  Only one of the 15 validity coef-

ficients was significantly different from zero for 

Latinos (r=0.24, p<0.05, one-tailed) for Latinos.  

The sole significant coefficient (for coordina-

tion) was reported as nonsignificant in the orig-

inal validation study.  Essentially, this means 

that the BSAT does no better than chance in 

predicting how Latinos will perform on the job 

(mean r=0.093, p>0.32, corrected g=0.21). 

 In relation to the present case, this is the 

single most relevant piece of validity evidence 

in the entire report.  Plainly, these data do not 

support the validity of using the BSAT to hire 

Latinos. 

Inflation of Apparent Validity Vis-à-Vis 

Extensive Analysis: The “Trolling” Problem 

 It would be one matter if the coefficients 

were the only analyses in the validation studies.  

If this were the case, then there would be 49 

tests of statistical hypotheses in the Preliminary 

Study (Table 3) and 60 tests in the Followup 

Study (Table 4), for a total of 109 tests. 
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Table 3: Followup Study Correlations Between BSAT Score 

and Job Performance Ratings for Different Groups 

---------------------------------------------------------------------------------------------------------------------------- 

                                                                                                        Groups   

                    Total        White             Black                Latino 

               Job Skills                (n=286)               (n=147)            (n=76)                (n=57) 

------------------------------------               ----------               ----------               ---------                --------- 

Organizing and Planning      0.17
*
         0.08      0.19       0.15 

Decision Making       0.18
*
        -0.12    0.21

*
      -0.08 

Oral Communications                  0.17
*
         0.10    0.26

*
       0.01 

Written Communications      0.28
*
         0.18

*
    0.44

*
       0.10 

General Administration      0.11
*
         0.09    0.22

*
       0.07 

Supervision        0.01          0.02    0.10       0.09 

Coordination                   0.19
*
         0.01    0.30

*
       0.24

*
 

Behavior Flexibility                  0.10
*
         0.03    0.20       0.08 

Fact Finding                   0.25
*
         0.10    0.33

*
       0.18 

Problem Solving       0.22
*
         0.17

*
    0.25

*
       0.08 

Resistance to Stress         0.05          0.06    0.05       0.05 

Ability to Learn and Develop        0.16
*
         0.05    0.17       0.10 

Tolerance of Ambiguity      0.12
*
         0.08    0.17       0.07 

Management Potential      0.16
*
         0.16

*
    0.08       0.12 

Overall Job Performance      0.21
*
         0.14

*
    0.26

*
       0.14 

---------------------------------------------------------------------------------------------------------------------------- 
Note: Adapted from Table 18 of the original validation report .

4
  N for the total sample is greater than the sum of the ns for 

the three subgroups because the Followup Study included six Asians whose data were pooled for total sample analysis.  An 

asterisk (*) indicates p<0.05 at the generalized (per-comparison) criterion.  The coefficient indicated in red was reported as 

being nonsignificant in the original validation report, but is actually statistically significant at the generalized criterion 

(p<0.05, one-tailed). 

 

 Tallying across the entire validation 

report, however, reveals that more than a thou-

sand statistical tests were performed—all using 

the p<0.05 level of statistical significance.  Of 

those 1000 tests, 50 would be expected simply 

by chance alone to be statistically significant at 

per-comparison p< 0.05, although exactly which 

effects are attributable to chance cannot be 

known.  The validity evidence is thus inflated, 

as the excessive statistical testing adds a sub-

stantial number of chance correlations to the 

true correlations.  Accordingly, well-known pro-

cedures for controlling the experimentwise Type  

 

 

 

I error-rate should be used.
5
  For example, 

among the most commonly employed methods 

for reducing the number of “false-positive” 

results when conducting numerous statistical 

tests is the so-called “Bonferroni adjustment, in 

which an adjusted p-value is obtained by divid-

ing the desired alpha-level by the number of p-

values examined.  For the BSAT validation 

report, a Bonferroni-adjusted p-value would be 

roughly .05/1100, or p<0.00005.  This is the 

cost for undertaking vast numbers of analyses 

indiscriminately, when analyses can and should 

be more clearly focused.
5,6 
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Table 4: Followup Study Means and Standard Deviations for the 15 Job Performance Ratings, 

and for BSAT Score for Whites (n=147) and Latinos (n=57) 

                                                   Whites         Latinos 

                                                   ---------------          --------------- 

               Job Skills     Mean     sd          Mean      sd 

------------------------------------     -------   ------         -------   ------ 

Organizing and Planning     5.22     1.13          4.99      1.04 

Decision Making      5.15     0.93          4.93      0.84 

Oral Communications      5.31     1.15          4.88      1.18 

Written Communications     5.24     1.16          4.82      1.23 

General Administration     5.12     1.06          4.68      0.87 

Supervision       4.98     1.23          4.92      1.32 

Coordination       5.39     1.00          4.85
 
     0.90 

Behavior Flexibility      5.25     1.17          4.83      1.08 

Fact Finding       5.38     1.11          4.88
 
     1.06 

Problem Solving      5.18     1.03          4.86      1.10 

Resistance to Stress      5.22     1.11          5.25      0.97 

Ability to Learn and Develop     5.71     1.01          5.41      1.20 

Tolerance of Ambiguity     5.08     1.13          4.81      0.86 

Management Potential     6.02     1.93          6.65      2.08 

Overall Job Performance     5.35     1.06          5.11      1.08 

----------------------------------------------------------------------------- 

BSAT score              218.62   13.89      209.78
  
   15.49 

----------------------------------------------------------------------------- 

                                 Note:  Adapted from Tables 14 and 17 of the original validation 

                                 report.
4
   Scores on the 7-point  rating scales have been reversed 

                                 so that high scores reflect better ratings.  Means indicated in red 
                                                 

differ from the mean for whites with  p<0.05 by Tukey's Honest  

                                 Significant  Difference  multiple  range test.   These statistically 

                                 significant group differences were found when following up sig- 

                                 nificant F-values from initial one-way analyses of variance with 

                                 white, Latino, and African-American groups. 

 

 

 In the Melendez case, we took the “mid-

dle-ground” approach of adjusting the criterion 

to p<0.05 in the validation studies.  This reduces 

spurious effects (Type I errors), without unduly 

increasing false no-difference conclusions (Type 

II errors) due to low statistical power.  Evalua-

ted at this criterion, there are no significant val-

idity coefficients in the Followup Study. 

 Illinois Bell defended its inflationary sta-

tistical procedures with a statement in the Uni-

form Guidelines that one should usually use the 

p<0.05 level in establishing statistical signifi-

cance: “...Generally, a selection procedure is 

considered related to the criterion, for the pur-

poses of these guidelines, when the relationship 

between performance on the procedure and per-
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formance on the criterion measure is statisti-

cally significant at the p<0.05 level of signifi-

cance” (Uniform Guidelines, §1607.14.B(5)).  

The Uniform Guidelines nonetheless require the 

use of “professionally acceptable statistical pro-

cedures” in computing validity coefficients 

(Uniform Guidelines, §1607.14.B(5)), and also 

caution users to avoid using procedures that 

capitalize on chance: “Overstatement of validity 

findings.  Users should avoid reliance upon 

techniques which tend to overestimate validity 

findings as a result of capitalization on chance 

unless an appropriate safeguard is taken.  Reli-

ance upon a few selection procedures or criteria 

of successful job performance when many selec-

tion procedures or criteria of performance have 

been studied, or the use of optimal statistical 

weights for selection procedures computed in 

one sample, are techniques which tend to inflate 

validity estimates as a result of chance.  Use of a 

large sample is one safeguard; cross-validation 

another.” (Uniform Guidelines, §1607.14.B.(7). 

 Clearly, performing 1100 statistical tests 

at the p<0.05 level is a procedure that capitali-

zes on chance.  Under the Guidelines, an adjust-

ment to the alpha-level is in order, minimally 

one such as using p<0.01.  To reduce jury con-

fusion over these technical issues, the Uniform 

Guidelines should include specific recommend-

dations (e.g., Bonferroni adjustments) for reduc-

ing Type I error when a large number of statisti-

cal tests have been conducted. 

Filling the Validity Gap with Junk Science: 

Reinventing Statistics 

 Through the above evidence, plaintiff 

demonstrated that the BSAT had, at most, 

negligible validity for white applicants, and no 

validity for Latino applicants.  And how did 

Illinois Bell respond to plaintiff’s showing?  

Illinois Bell’s expert witness, an organizational 

psychologist, asserted that if the BSAT truly had 

a nonsignificant (i.e., zero) statistical relation-

ship with job performance for Latinos, then half 

of the validity coefficients for Latinos should 

have been positive, and half negative.  In other 

words, if the true value of the correlation in the 

population is zero, then there should be just as 

many positive validity coefficients as negative.  

He noted, however, that 14 of the 15 coeffi-

cients for Latinos in the Followup Study were 

positive (if not statistically significant).  He then 

calculated the binomial probability of obtaining 

14 positive coefficients and 1 negative, given a 

0.50 probability for obtaining either sign (i.e., 

z=3.30, p<0.0005).  From this scenario, he 

deduced that, despite the complete lack of any 

correlation in the AT&T validation study, the 

BSAT was nonetheless valid for Latinos—and 

at a highly significant p-value! 

 By pitting one expert’s statistical anal-

ysis against the other’s, this form of “junk 

science” has great potential to confuse the jury.  

To clarify the issue for the layperson, what is 

needed is a logical, easy-to-follow explanation 

of the difference between the two opposing 

views of the same data.  However, this is not 

always easily developed. 

 In the Melendez case, we explained the 

statistical issue in commonsense terms by using 

an archery analogy.  Testing the validity of the 

BSAT is like an archery contest.  An archer fires 

15 arrows at a target; to determine his profi-

ciency, we count how many arrows hit the tar-

get.  Using the BSAT to predict the 15 perform-

ance criteria for Latinos, we count how many 

times it shows a statistically significant relation-

ship between test score and job performance.  

Table 3 shows that for Latinos, all 15 arrows 

missed the mark.  By the rules of the game, the 

archer does not score, and the BSAT is off tar-

get (and invalid). 

 By Illinois Bell’s logic, however, 14 of 

the 15 arrows flew in the target’s general direc-

tion (i.e., 14 of the 15 validity coefficients were 

positive) and only 1 arrow flew in the opposite 

direction (i.e., there was only one negative vali-

dity coefficient), and so therefore the archer was 

a success (and the BSAT is valid for Latinos 

because only one of its validity coefficients was 



Optimal Data Analysis     Copyright 2010 by Optimal Data Analysis, LLC 

2010, Vol. 1, Release 1 (September 17, 2010)   2155-0182/10/$3.00 

 

 

 

185 
 

negative).  This is fallacious.  At issue is the 

magnitude of the validity coefficients in the pos-

itive direction, not just whether the signs of 

these coefficients are positive or negative.  For 

the BSAT, the magnitudes were insufficient to 

establish a statistically significant relationship.  

As the Seventh Circuit ruled on appeal, there 

was “strong evidence of the BSAT’s inability to 

predict job performance,” which supported the 

trial court’s finding that “the BSAT’s discrimi-

natory impact was unjustified by Illinois Bell’s 

legitimate business needs” (79 F.3d at 669).  

That is, the BSAT explains too little variance in 

performance ratings to be considered valid for 

use in hiring Latinos.  If the BSAT does not pro-

vide useful, job-related information, then its use 

cannot be justified, given the strong evidence of 

its adverse impact. 

 The Admissibility of “Junk Science” 

in the Courtroom 

 Illinois Bell’s spurious defense, that its 

test is “valid” because of its positive (though not 

statistically significant) correlations with perfor-

mance ratings, exemplifies the dangers of “junk 

science” in the courtroom.  As the U.S. Supreme 

Court has cautioned: “Expert evidence can be 

both powerful and quite misleading because of 

the difficulty in evaluating it.” (Daubert, 509 

U.S. at 595 (quoting Weinstein, 1992)).  Due to 

defendant’s discovery abuse, Melendez was able 

to bar, altogether, the testimony of the com-

pany’s expert witness.  More typically, dubious 

science is precluded through a ruling by the trial 

court that the information is inadmissible under 

the Federal Rules of Evidence. 

 Expert testimony is specifically govern-

ed by Federal Rule of Evidence 702, which es-

tablishes ground rules for admitting expert 

testimony: “If scientific, technical, or other spe-

cialized knowledge will assist the trier of fact to 

understand the evidence or to determine a fact in 

issue, a witness qualified as an expert by know-

ledge, skill, experience, training, or education, 

may testify thereto in the form of an opinion or 

otherwise” (Fed. R. Evid. 702).  As interpreted 

in the landmark Daubert decision, Rule 702 

allows expert testimony when it is both relevant 

and scientifically reliable.  In Daubert the Court 

appointed the trial judge as the “gatekeeper” of 

expert testimony, asserting: “[t]his entails a 

preliminary assessment of whether the reason-

ing or methodology underlying the testimony is 

scientifically valid and of whether that reason-

ing or methodology properly can be applied to 

the facts in issue.” (Daubert, 509 U.S. at 592-

593).  The Court went on to explain: “The inqu-

iry envisioned by Rule 702 is, we emphasize, a 

flexible one.  Its overarching subject is the sci-

entific validity—and thus the evidentiary releva-

nce and reliability—of the principles that under-

lie a proposed submission. The focus, of course, 

must be solely on principles and methodology, 

not on the conclusions that they generate”  

(Daubert, 509 U.S. at 594-595). 

 More recently, the U.S. Supreme Court 

held unanimously that a trial court’s decision to 

admit or exclude expert evidence should be 

accorded great deference (Joiner, 118 S.Ct. 

512).  Noting that trial judges typically are not 

scientists, Supreme Court Justice Stephen 

Breyer encouraged judges to take the initiative 

to clarify scientific issues (Joiner, 118 S.Ct. 

512, 520-521 (Breyer, J., concurring)).  They 

may, for example, utilize their authority to ap-

point their own experts, or use pretrial hearings 

to explore the issues.   The Daubert Court ex-

plains that the goal is a middle ground, between 

“a ‘free-for-all’ in which befuddled juries are 

confounded by absurd and irrational pseudo-

scientific assertions”, and “a stifling and repre-

ssive scientific orthodoxy” (Daubert, 509 U.S. 

at 595-596).  The Court recalled the differences 

between scientific inquiry and the law, emphasi-

zing that Federal Rules of Evidence are “design-

ed not for the exhaustive search for cosmic un-

derstanding but for the particularized resolution 

of legal disputes” (Daubert, 509 U.S. at 597). 
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The Concept of Test “Fairness” 

 Besides adverse impact and validity, an-

other critical concept in judging whether or not 

a test in discriminatory is test “fairness.” 

Although researchers have suggested numerous 

definitional frameworks and statistical models 

of test fairness
7-12

, two approaches are often 

used in litigation to define “unfairness,” and to 

determine whether a test is “unfair.” 

 Anne Cleary
13

 pioneered one of these 

definitions at the Educational Testing Service.  

According to Cleary’s model, a test is consid-

ered “unfair” when it predicts performance dif-

ferently for different ethnic groups.  This differ-

ential prediction is detected in the form of statis-

tically significant differences between groups in 

the slopes and in the intercepts of the regression 

lines relating test scores to performance.  Thus, 

a test is considered “fair” when there are no sig-

nificant differences in errors of prediction be-

tween groups, using a common regression line.  

Ironically, by a strict application of Cleary’s 

definition, an invalid test could be deemed 

“fair.”  It would not be unfair, for example, to 

use a coin-flip to hire job applicants, because 

this selection procedure does not predict perfor-

mance better for one ethnic group than for an-

other.  It is equally invalid for both groups. 

 Another definition of “unfairness” pro-

minent in the courts is that used in the Uniform 

Guidelines, under which a test is “unfair” when: 

“...members of one race, sex, or ethnic group 

characteristically obtain lower scores on a selec-

tion procedure than members of another group, 

and the differences in scores are not reflected in 

differences in a measure of job performance...” 

(Uniform Guidelines, §1607.14.B(8)(a)). 

 In practice, one determines whether a 

test is “unfair” by comparing group means on 

the test, then looking for comparable mean-dif-

ferences in group performance ratings.  If one 

group scores higher on the test, it must also do 

better on the job.  Stated differently, a test is 

“unfair” if it denies job opportunities to a group 

whose actual job performance is up to par. 

 Applying the Uniform Guidelines’ defin-

ition of “unfairness” to the BSAT Followup 

Study, Latinos had significantly lower BSAT 

scores than whites, and passed the test at a signi-

ficantly lower rate (77% vs. 47% in 1979; 87% 

vs. 53% in 1987-88; Table 1).  In contrast, on 12 

of the 15 performance criteria, Latino and white 

performance ratings did not differ significantly 

(Table 4).  In other words, 80% of the perfor-

mance measures (including overall job perfor-

mance) failed to show lower scores for Latinos 

than whites.  Considered together, this evidence 

shows that the BSAT is “unfair” to Latinos 

within the meaning of the Uniform Guidelines. 

Twisting the Uniform Guidelines 

to Establish Test “Fairness” 

 In a spurious defense of the BSAT, Illi-

nois Bell purported to rely on the Uniform 

Guidelines’ definition of test unfairness.  At trial 

the defense argued that the company adhered to 

the letter of the Uniform Guidelines, and advan-

ced two lines of defense based on the Guide-

lines.  Neither the law nor professional stand-

ards support these arguments. 

 What constitutes “a measure of job per-

formance”?  On cross-examination, the defense 

read to the jury the Uniform Guidelines’ defini-

tion of test unfairness in Section 14.B(8)(a), and 

then asked: 

Q: “Am I correct, Doctor, that this says that 

the differences in scores are not reflected 

in differences in a measure of job 

performance?  Do you see that, Doctor?” 

A: “Yes, I do.” 

Q: “And you have just testified that here 

there are three measures of job 

performance at which Whites score 

statistically higher than Hispanics, is that 

correct Doctor?” 

A: “That’s correct.” 
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Q: “So according to this definition which 

you have been relying on, there is not 

unfairness in this test, isn’t that right, 

Doctor?” 

 The trial court struck this line of ques-

tioning.  Illinois Bell’s interpretation of the Uni-

form Guidelines’ definition of “test unfairness” 

lacks any scientific or legal basis.  While the 

term “measure” may signify either a single item, 

or a set of items measuring a single latent con-

struct, this is no mere semantic quibble.  What 

constitutes a “measure,” in a given context, 

must be determined through appropriate legal 

and statistical analysis. 

 As a legal matter, Illinois Bell’s interpre-

tation of Section 14.B(8)(a) ignores its precise 

language.  Through the use of the phrase “dif-

ferences in a measure,” the Uniform Guidelines 

plainly contemplate “a measure” as comprising 

more than one item.  This conclusion is reinfor-

ced by the language of the definition of “unfair-

ness” in the “Definitions” section of the Uni-

form Guidelines: “Unfairness of selection pro-

cedure.  A condition in which members of one 

race, sex, or ethnic group characteristically ob-

tain lower scores on a selection procedure than 

members of another group, and the differences 

are not reflected in differences in measures of 

job performance.  See section 14.B.(7)” (Uni-

form Guidelines, §1607.16.V) [emphasis add-

ed].  The two definitions of “unfairness” must 

be read together, and thus do not support reli-

ance on an isolated difference in measurement 

(“Definitions” section of the Uniform Guide-

lines mandates “[t]he following definitions shall 

apply throughout these guidelines” (Uniform 

Guidelines, §1607.16) [emphasis added]). 

 Illinois Bell’s argument, moreover, 

would permit an employer to ignore the vast 

weight of unfavorable evidence, so long as any 

favorable evidence existed at all.  Defendant’s 

interpretation would render the unfairness stand-

ard meaningless.  The term “measure” cannot be 

applied arbitrarily, but requires a fact-sensitive 

analysis. 

 In the Melendez case, we reanalyzed the 

correlations among the 15 performance ratings 

using both exploratory and confirmatory factor 

analysis.
14

  We found that the 15 criteria are 

most accurately represented as a single, global 

measure of job performance.  Statistically, the 

15 ratings are sufficiently interrelated so that 

they comprise not 15 independent measures, but 

rather only one underlying measure.  The separ-

ate performance ratings cannot properly be con-

sidered individually. 

 Factor analysis should be used routinely 

in deciding whether to employ single items or 

composite scales to measure job performance.  

This would preclude test developers from treat-

ing sets of unidimensional criterion measures as 

multiple single-item indicators, and then select-

ing and highlighting, as evidence of test “fair-

ness,” any criteria on which the majority group 

has a higher mean.  Confirmatory factor analy-

sis, not subjective preference, should answer the 

question: “what is a measure?” 

 Factor analytic methodology adheres to 

the Uniform Guidelines, which proscribe “...rel-

iance upon techniques which tend to overesti-

mate validity findings as a result of capitaliza-

tion on chance....  Reliance upon a few... criteria 

of successful job performance when many... 

criteria of performance have been studied... 

tend[s] to inflate validity estimates as a result of 

chance.” (Uniform Guidelines, §1607.14.B(7)). 

 By what criterion should one judge dif-

ferences in group means?  On cross-examina-

tion, the defense inquired where the unfairness 

standard in the Uniform Guidelines requires that 

group differences be statistically significant.  

The Uniform Guidelines do not authorize excur-

sions into chance associations, but the unfair-

ness standard does not explicitly require statis-

tical significance as a decision criterion.  It 

should be noted, however, that the “Documenta-

tion” requirements of the Uniform Guidelines 

mandate the reporting of methods of data analy-

sis, as well as the magnitude, direction, and sta-

tistical significance of results.  It expressly re-
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quires that “[s]tatements regarding the statistical 

significance of results should be made (essen-

tial).” (Uniform Guidelines, §1607.15.B(8)).  

This section of the Guidelines specifically refers 

to measures of central tendency (e.g., means) 

and studies of test fairness.  Illinois Bell argued, 

in essence, that professional statistical standards 

may somehow be suspended in evaluating em-

ployment test data. 

 Abandoning professional standards is 

scientifically and legally untenable.  The Uni-

form Guidelines are themselves founded on the 

standards of the psychological profession.
 
 The 

Uniform Guidelines, §1607.1.C, states: “These 

guidelines have been built upon court decisions, 

the previously issued guidelines of the agencies, 

and the practical experience of the agencies, as 

well as the standards of the psychological pro-

fession.” 

 Test developers should always adhere to 

professional standards for drawing inferences 

from data.  The Guidelines do not require re-

searchers to clear the memory of their calculator 

between computations, but researchers typically 

do so as a matter of course.  Nor can employers 

ignore the Guidelines’ prohibition against reli-

ance on chance (Uniform Guidelines, §1607.14. 

B(7)).  And yet, that is precisely the result if one 

relies on apparent group differences that lack 

statistical significance. 

Illusory “Fairness” and 

Artifactual “Validity” 

 Under the Uniform Guidelines’ “unfair-

ness” standard, if one ethnic group scores higher 

than another on an employment test, and this 

difference is not reflected in a measure of job 

performance, the test is deemed “unfair.”  The 

BSAT failed this standard.  Despite great dispar-

ities in test scores, whites and Latinos perform-

ed on the job with substantially similar success. 

 Importantly, under the Uniform Guide-

lines, the mere fact that majorities outscore mi-

norities on an examination, while securing more 

favorable performance evaluations, does not 

affirmatively establish that the test is “fair.”  It 

does not prove the positive, that the test is “fair” 

and “job related,” but it does disprove one pos-

sible negative.  The standard, that is, should not 

be understood as establishing an affirmative de-

fense for employers.  Evidence that a test is not 

“unfair” merely forestalls the inference of dis-

crimination that arises in cases when the group 

that excels on the test, garnering the greater 

share of job opportunities, does not actually do 

the job appreciably better.  To prove or disprove 

“fairness,” the parties may introduce other 

evidence. 

 Ironically, the pattern of data contem-

plated by the Uniform Guidelines’ unfairness 

standard may result in a serious distortion of the 

validity evidence.  If the data from different eth-

nic groups are simply (and improperly) combin-

ed in a pooled analysis, the distribution of the 

data will typically create the illusion of a corre-

lation between test scores and performance rat-

ings.  Scatterplotting the data, the group with 

higher test scores and performance ratings will 

tend to fall in the upper right quadrant of the 

scatterplot.  The group with lower test scores 

and performance ratings will tend to fall in the 

lower left quadrant of the scatterplot.  This pat-

tern will create an apparent correlation between 

test scores and performance ratings, despite the 

lack of any true relationship, and it will inflate 

obtained validity coefficients for the total sam-

ple.  This problem is a variation of a phenom-

enon known as Simpson’s paradox.
15,16

 

 The following hypothetical example 

demonstrates how the “false correlation” para-

dox can occur.  Imagine that you are in the mid-

dle of a job interview.  The interview is going 

well, so you broach the topic of salary.  “How 

much would I be paid?”  “Well,” replies the in-

terviewer, “take off your shoes, and let’s find 

out.”  Requesting an explanation, you are told 

that the company has found that shoe size is a 

valid predictor of a person’s worth.  The com-

pany routinely measures the size of job appli-

cants’ feet, and then uses the results of that 
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measurement to determine salary.  Still skepti-

cal, you ask to see the validity evidence, and the 

interviewer hands you a copy of a table from a 

research document (see Table 5). 

TABLE 5: Validating Shoe Size as a Predictor of Salary: Hypothetical Raw Data for Women and Men 

   Women  Occupation  Shoe Size  Annual Salary 

--------------  --------------  ------------  ----------------- 

Ann   secretary        3      $ 22,000 

Beatrice  actress         4      $ 14,000 

Carol   teacher         4      $ 30,000 

Diane   librarian        5      $ 20,000 

Edna   lab technician        5      $ 40,000 

Florence  baby sitter        5      $ 10,000 

Gwen   journalist        6      $ 28,000 

Harriet   bank teller        6      $ 18,000 

Iris   nurse         7      $ 32,000 

Jacqueline  waitress        7      $ 16,000 

                                    Mean :        5.2      $ 23,000 

 

    Men   Occupation  Shoe Size  Annual Salary 

-------------  --------------  ------------  ----------------- 

Al   salesman        8      $ 48,000 

Bob   airline pilot        8      $ 62,000 

Carl   chef         9      $ 50,000 

Don   chemist       10      $ 55,000 

Ed   executive       10      $ 70,000 

Frank   mechanic       10      $ 40,000 

Greg   plumber       11      $ 52,000 

Harold   electrician       11      $ 59,000 

Ian   detective       12      $ 45,000 

John   architect       12      $ 65,000 

                                                         Mean                              10.1              $ 54,600 

--------------------------------------------------------------------------------------------------- 

                   Exact Test of Gender Difference:            p<0.000001                   p<0.000547 

--------------------------------------------------------------------------------------------------- 

 This table presents raw (hypothetical) 

data for a sample of 10 men and 10 women, list-

ing their first name, occupation, shoe size, and 

salary.  Reported at the bottom of the data table 

are the results of exact nonparametric statistical 

analyses
5
 comparing men’s and women’s mean 

shoe-size (predictor) and salary (criterion).  Wo-

men have smaller feet than men, and have com-

parably smaller salaries.  Therefore, by the Uni-

form Guidelines’ unfairness standard, it is not 

“unfair” to men or to women to use shoe size to 

determine salary. Validity coefficients relating 

shoe size to salary, and scatterplots of shoe size 

and salary, are presented in Figure 1.  
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Figure 1: Correlating Shoe Size and Salary using Pooled Hypothetical Raw Data for Women and Men

 Examination of validity coefficients for 

men and women reveals there is no linear rela-

tionship between shoe size and salary for either 

group: r=0.05 for men, r=0.07 for women, ps> 

0.05. But, if men’s and women’s raw data are 

pooled, the men’s data fall into the upper right-

hand quadrant of the scatterplot, and the 

women’s data fall into the lower left-hand quad-

rant (men score higher than women on predictor 

and criterion measures).  When the correlation 

between shoe size and salary is computed for 

the total group of 20 subjects, r=0.78, p<0.001)!  

Based on this evidence and in accordance with 

the Uniform Guidelines, it is concluded that it is 

both fair and valid to use shoe size to determine 

salary.
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 This hypothetical scenario is no more 

absurd than the BSAT validation work.  In the 

Preliminary Study, for example, African-Amer-

icans had lower BSAT scores than whites, and 

they also had comparably lower performance 

ratings (thus the test does not meet the definition 

of unfairness, under the Uniform Guidelines’ 

definition). 

 Figure 2 displays scatterplots of the 

group means on the BSAT and on overall job 

performance from the two validity studies.  

Clearly, these mean differences will inflate the 

apparent linearity of the relationship between 

BSAT and performance.   

 This inflation of correlations strikingly 

appears in the table of validity coefficients from 

the Preliminary Study (Table 2).  Comparing the 

correlations of white, African-American, and 

total groups on the various performance meas-

ures, we find an anomalous pattern. 

 Consider the performance criterion of 

Decision Making.  Its validity coefficient is 

r=0.20 for the group of 94 whites, and r=0.27 

for the group of 39 African-Americans.  For the 

Total Group, however, the r=0.30 correlation is 

higher than that for either subgroup.  Similarly, 

the validity coefficients for Written Communi-

cations are r=0.21 for whites, r=0.26 for Afri-

can-Americans, and r=0.28 for the Total Group; 

for Resistance to Stress, r=0.11 for whites, r= 

0.18 for African-Americans, and r=0.21 for the 

Total Group; and for Energy, r=0.04 for whites, 

r=0.08 for African-Americans, and r=0.15 for  

the total group.  Cases such as these, in which 

the correlations for the pooled group actually 

exceed the correlations found in each consti-

tuent subgroup, are a tell-tale sign of the “false 

correlation paradox,” where in fact the “whole” 

is deceptively greater than the sum (or weighted 

average) of its parts.
16

 

 This technical problem is particularly 

critical because Illinois Bell rested its claim that 

the test was valid largely based on one num-

ber—one validity coefficient: the correlation be-

tween BSAT score and the rating of overall job 

performance, for the Total Group in the Prelimi-

nary Study.  That coefficient is r=0.38, signifi-

cant for the total sample of 153 subjects at p< 

0.00001 (see Table 2). 

 A possible methodology for circumvent-

ing such paradoxical confounding (the technical 

terminology for the “false-correlation problem”) 

is to remove mean differences on the x- and y-

variables before combining the data: for exam-

ple, standardizing the x- and y-scores separately 

for each group using a z-score transformation 

maps the data into the same metric.
16

 How does 

this work in the shoe size example?  After trans-

forming subjects’ raw data to z-scores separately 

within the male and female samples, and sub-

jecting these standardized data to correlation 

analysis, yields results given in Figure 3.  When 

properly analyzed, the correlation between shoe-

size and salary is r=0.05 for men, r=0.07 for 

women, and r=0.06 for the total group. 

 This cure for Simpson’s paradox (norm-

atively standardizing separately by sample) only 

works if the true relationship between x and y is 

consistent across the multiple samples.
16

  For 

example, if x and y are perfectly positively corr-

elated in sample A and perfectly negatively 

correlated in sample B, normatively standard-

izing the data separately by sample and then 

combining them will yield a correlation coeffic-

ient of zero.  Thus, it is necessary to verify ho-

mogeneity of covariance between x and y across 

samples before standardizing and pooling the 

data.
16-18

 

 Fortunately, instances of reverse validity 

rarely appear in the personnel selection litera-

ture.
19

  Indeed, some proponents of validity gen-

eralization have even argued against the notion 

of differential validity altogether, though the 

BSAT data clearly show stronger evidence of 

validity for African-Americans than for Latinos 

or whites.
10

  Thus, when analyzing the total 

sample, it should be routine practice before 

pooling data to normatively standardize separa-

tely within groups (after first verifying between-

group equivalence of covariance matrices). 
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Figure 2: Scatterplotting BSAT score and overall job performance for the Preliminary and Followup 

Studies.   Supervisors rated overall performance using a  9-point Likert-type scale in the Preliminary 

Study (1,2=exceptionally high; 3,4=very high; 5,6=moderately high; 7,8=moderately low; 9=unsatis-

factory) and 7-point Likert-type scale in the Followup Study (1=exceptionable; 2=very high; 3=high;     

4=average; 5=below average; 6=passable; 7=unacceptable).   Scores on these rating scales have been 

reversed for ease of presentation.
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Figure 3: Correlating shoe size and salary using hypothetical data normatively standardized sep- 

arately for women and men  

 

 Yet, typically researchers simply pool 

data across subgroups in total-sample analyses.  

This practice inflates total sample validities 

throughout the testing industry.  Among the 

most robust findings in the literature on cogni-

tive ability testing is that minorities score signi- 

ficantly lower on cognitive ability tests than do 

whites.
20

   And in validation studies,  minorities  

 

often receive significantly lower performance 

ratings.
21

  Ironically, if test scores are lower for 

minorities than for whites, to meet the Uniform 

Guidelines’ unfairness standard, minority per-

formance ratings must also be lower.  Although 

it is not unfair within the meaning of the 

Uniform Guidelines, this very situation will 

typically make tests appear more valid than they 
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really are, if data are simplistically pooled and 

correlated.  Test developers should avoid indis-

criminately pooling subgroup data, particularly 

when these subgroups have different means on 

the test and on the criterion. 

 The Uniform Guidelines provide a basis 

for addressing the distortions arising from the 

improper pooling of data.  Section 1607.14.B 

(4), entitled “Representativeness of the sample,” 

relevantly provides: Where samples are combi-

ned or compared, attention should be given to 

see that such samples are comparable in terms 

of the actual job they perform, the length of time 

on the job where time on the job is likely to 

affect performance, and other relevant factors 

likely to affect validity differences; or that these 

factors are included in the design of the study 

and their effects identified (emphasis added). 

 Hardly restricted to industrial/organiza-

tional psychology, this false-correlation problem 

pervades the life sciences: indeed it has been 

stated that the problem of paradoxical confound-

ing is the most significant and pervasive chal-

lenge to the validity of empirical quantitative 

analysis in all areas of inquiry.
22

  The practice of 

simply pooling data across subgroups inflates 

correlation coefficients whenever one group has 

higher mean scores than the other on both x and 

y.  For example, studies of naturalistic animal 

behavior often pool data across intact groups to 

examine relationships among social and behav-

ioral variables, without regard to possible mean 

differences.
23

  Similarly, personality psycholo-

gists often pool the data of males and females, 

examine the correlations among numerous 

measures of, for example, anxiety, neuroticism, 

and general maladjustment, and find a single, 

stable pervasive trait that they label negative 

affectivity.
24

  Given that women tend to report 

higher levels of negative experience in general 

than do men
25

, pooling male and female data 

without standardization will inflate the observed 

intercorrelations for the total group, exaggerate-

ing structural unidimensionality. 

 The problem of when and how to com-

bine the data of multiple groups remains largely 

ignored in the social sciences.
16

  Haphazardly 

pooling data across different groups (or time 

periods
16

) can produce unexpected, counterintu-

itive relationships, which researchers inevitably 

scramble to explain a posteriori.  If one group 

scores lower than the other on x but higher on y, 

for example, then simply pooling the data across 

groups can produce a negative correlation for 

the total sample, even if the x-y relationship is 

actually positive in each group (the group with 

lower x scores and higher y scores will fall in 

the upper-left quadrant of the scatterplot, where-

as the group with higher x scores and lower y 

scores will fall in the lower-right quadrant, 

yielding a false negative correlation).  As a case 

in point, when studying psychosocial adjustment 

to head injury, researchers often combine the 

data of patients who are aware of functional def-

icits with the data of patients who are unaware 

of functional deficits.  The correlation between 

severity of injury and emotional distress is then 

computed.  An unexpected negative correlation 

often emerges, with greater severity of injury 

predictive of less distress.
26-28

  It seems likely 

that the correlation between severity of injury 

and distress is actually positive within both the 

deficit-aware and deficit-unaware groups (i.e., 

greater severity linked to greater emotional dis-

tress), but that patients aware of their impair-

ment have less severe head trauma (lower x-

scores) and report higher levels of emotional 

distress (higher y-scores) than do patients who 

are unaware of their impairment, creating a false 

negative correlation for the pooled sample. 

 At first blush, the procedure of standard-

izing data separately within groups before com-

puting pooled validity coefficients may seem 

similar to so-called race norming.
29

  This latter 

practice seeks to ameliorate a test’s adverse im-

pact in personnel selection, by expressing indiv-

idual test scores in terms of their standing rela-

tive to the mean of their particular racial group.  

However, the two approaches have entirely 
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different objectives.  Race-norming uses stand-

ardization in deciding which job applicants to 

hire.  Standardizing raw data separately within 

groups before computing pooled validity coeffi-

cients, on the other hand, is done simply to 

avoid bias in estimating test validity, and is not 

used to select job applicants.  Whereas race 

norming disaggregates data to avoid comparison 

between groups when selecting applicants, 

standardizing before computing pooled validity 

coefficients allows data from different groups to 

be meaningfully aggregated when evaluating 

test validity if their covariance is homogeneous. 

Implications for Validity Generalization 

 Besides highlighting ambiguities in the 

Uniform Guidelines, the Melendez case also has 

implications for meta-analytic research on vali-

dity generalization.
10

  This area of research en-

tails synthesizing validity coefficients from 

studies attempting to validate personnel selec-

tion tests, in order to draw conclusions about the 

relationship between cognitive ability and job 

performance.  Typically, these meta-analyses 

have concluded that cognitive ability tests are 

generally valid in the workplace across a full 

range of different racial subgroups, different 

jobs, different tests, and different settings.
10

  

Although conclusions about validity generaliza-

tion have been criticized on a variety of statis-

tical and conceptual grounds
30

, the problem of 

paradoxical counfounding has been overlooked. 

 Validity coefficients based on pooled 

unstandardized data will be biased whenever the 

data contain subsamples that reliably differ on 

both the predictor and the criterion (e.g., racial 

subgroups, gender, types of jobs, different sites 

of data collection).  Synthesizing validity coeffi-

cients will yield biased conclusions when the 

coefficients share a common bias (e.g., whites 

had higher test scores and higher performance 

ratings than other racial subgroups, and the data 

of racial subgroups were simply combined).  

This suggests that previous meta-analyses of test 

validation studies using total sample correla-

tions have overestimated overall effect strength. 

 Although most statistical adjustments in 

meta-analysis serve to increase the strength of 

observed relationships by correcting for sources 

of unreliability
10

, a comparable adjustment is 

needed to remove the inflation in correlations 

due to paradoxical confounding.  If means and 

standard deviations are available for racial sub-

groups from the primary studies, for example, 

then group differences can be examined on the 

predictor (x) and the criterion (y).  When one 

group scores higher than others on x or y, a bet-

ter estimate of the pooled correlation coefficient 

is a weighted composite of the correlations for 

the separate subgroups, using r-to-z method-

ology.
18

  Paradoxical confounding exists when-

ever the coefficient based on pooled data differs 

from the weighted mean coefficient across sub-

groups. 

 In the name of validity generalization, 

extravagant claims have been made for the effi-

cacy of cognitive ability tests as personnel sel-

ection devices.  For example, it has been argued: 

“[R]eliable measures of the standard aptitudes 

(e.g., verbal, quantitative, and spatial abilities) 

are valid predictors of... performance on the job 

for all jobs in the occupational spectrum... 

[T]hese findings can be generalized to all jobs in 

the economy for which tests are used in selec-

tion... [T]here are no jobs or job families for 

which reliable measures of cognitive ability do 

not have validity”.
31

  Couching claims in cosmic 

hyperbole, validity generalization is likened to 

“the powerful telescopes used in astronomy,” 

and it is suggested that the theory is as well-

established as the measurement of the speed of 

light.
31

 

 Ironically, persistent disparities between 

test scores and performance evaluations of maj-

ority and minority employees is also what one 

would expect from a pervasive pattern of dis-

crimination.  Consistent use of discriminatory 

employment tests, coupled with racially-biased 

supervisory evaluations, would produce com-
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parable statistical outcomes.  For this result to 

obtain, overt and conscious racial discrimination 

need not exist.  For example, unconscious, sub-

jective perceptions favoring majority employees 

would tend to inflate the mean criterion measure 

for this subgroup; similarly, the impact of broad 

societal discrimination would tend to depress 

the mean test performance of a minority group.  

Where the data for such racial and ethnic groups 

are pooled without correcting for differences in 

means on predictor and criterion, the likely 

result is a distribution yielding false positive 

correlations.  The resulting evidence of “valid-

ity” would be illusory. 

 The implications for the theory of 

validity generalization are clear.  Meta-analysis 

is based in a vast pool of results from combined 

samples, drawn primarily from reported validity 

studies of employment tests.  A systematic bias 

throughout this data base would correspond-

ingly bias the meta-analysis.  Further empirical 

research is needed to isolate and assess the sta-

tistical impact of artifactual validity arising from 

paradoxical confounding. 

Conclusion 

 The case of Melendez v. Illinois Bell 

Telephone Company highlights ambiguities in 

the Uniform Guidelines for validating personnel 

selection tests.  Although the Guidelines could 

be revised to clarify these ambiguities, there is a 

potential drawback to this approach: namely, the 

possibility that hard-won legal precedents, 

gained over the years in the courts, might be lost 

if the Guidelines were substantially modified.
30

  

There is an inevitable trade-off here between 

more specificity in the Uniform Guidelines, and 

less applicability of previous court rulings. 

 Although the judgment in the Melendez 

case strengthens the legal means for removing 

invalid, discriminatory tests from the workplace, 

it does not immediately reduce the likelihood of 

such tests being developed in the first place, as 

might revisions in the Uniform Guidelines.  

Ultimately, however, the demise of invalid dis-

criminatory tests in the workplace may depend 

more on their perceived liability costs for the 

user than on the specificity of the guidelines for 

test development. 
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