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Preface to Volume 1, Release 1

Paul R. Yarnold, Ph.D.

Optimal Data Analysis, LLC

Manucripts published in Optimal Data
Analysis (ODA) are parsed in sections, more of
which will be added as new domains of inquiry
are discovered. Not every Release of every Is-
sue will present articles in every section. Sec-
tions represented in this Release, and the articles
they host, are briefly described below.

Invited. This section features articles
written in response to the Editor’s invitation.
The only manuscript in this section in the first
Release is written by Fred Bryant (ODA’s Co-
Editor), a member of the faculty at Loyola Uni-
versity Chicago (LUC). Outside the Optimal
Data Analysis company laboratory, Fred has
most experience in using ODA and CTA, and
teaching these methods to colleagues and stu-
dents: he has been there from the beginning.
Fred describes the ontogenesis and etiology of
the use of optimal methods by faculty and stu-
dents in the Department of Psychology at LUC.

Review. This section offers reviews of
theory, method, or empirical findings relating to
the ODA paradigm. The sole article in this sec-
tion is written by Paul Yarnold (ODA’s Editor)
and Robert Soltysik (ODA’s Co-Editor), and
presents an introductory review of crucial con-
cepts in the ODA paradigm, including both uni-
variate and multivariable ODA methods.

Method. This section presents articles
discussing technical aspects of optimal and heu-
ristic algorithms and analytic processes. Paul
and Robert lead four of the five articles in this
section in this Release. The first manuscript
discusses how to maximize the classification

accuracy of any nonlinear model via a new op-
timal pruning methodology.

The second paper offers a multivariable
optimal data analysis (MultiODA) formulation
we developed years ago and decided to publish
now, which has proven extremely powerful in
the laboratory in a wide domain of frontiers.

The third article demonstrates that it is
not necessary to “control” for “covariates” by
forcing them into a classification model before
entering the attributes of theoretical interest.
Indeed, it is shown that such forced entry can
result in a model that is substantially weaker in
performance than another model—based on ex-
actly the same attributes, but arranged in a dif-
ferent (algorithm-determined) geometry.

The fourth article, led by Barbara Maria
Yarnold, discusses how UniODA may be used
to maximize the accuracy of a model derived by
probit analysis.

The fifth and final article in this section
is a research note exploring precision and con-
vergence properties of Monte Carlo simulation
used to estimate exact Type | error.

Versus. This section features articles in
which alternative methodologies (at least one of
which is an optimal method) compete against
each other. Paul and Robert lead four of the
five articles in this section in this Release (set-
ting the table, it is hoped, for interested others to
add to the series). The first paper compares the
use of aggregated (e.g., ethnicity) vs. referenced
(e.g., white vs. African-American, white vs. His-
panic, etc.) categorical variables in CTA.
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The second article is the first of a series
comparing the findings of CTA performed man-
ually vs. using automated software. The appli-
cation in this article involves predicting mortal-
ity from Pneumocystis carinii pneumonia, a
topic which has been investigated via CTA
more times and over a longer period of time
than any other specific area of inquiry. Dr.
Charles L. Bennett, M.D., Ph.D., graciously
offered Paul and Robert use of data which we
previously published, generated from his NIH-
funded projects which completed approximately
a decade ago, for expository purposes.

The third article, led by Rachel Coakley,
is the second article in the “Manual vs. Auto-
mated CTA” series. The original manuscript
was recently published, and used a manually-
derived CTA. The original model is contrasted
with a new model developed using automated
CTA software.

The fourth article uses Gen-UniODA to
model discrimination in organizations, for an
application which was problematic for log-lin-
ear model.

The fifth and final manuscript in this
section for this Release reveals how ordinal data
are commonly misidentified as being categori-
cal, and incorrectly analyzed by chi-square. This
paper demonstrates the appropriate, straightfor-
ward UniODA analysis.

Application. This section features arti-
cles using optimal statistical analysis methods to
address applied topics in any academic disci-
pline. The first manuscript in this section, led
by Robert Soltysik, identifies and corrects para-
doxical confounding present in serial meteoro-
logical measurements, then uses automated
weighted CTA to predict temperature and pres-
sure anomalies across the USA and the northern
hemisphere. A heretofore unexplained recent
Avrtic ice flux event is also demystified.

The second manuscript in this section,
led by Jennifer Howard Smith, uses manually-
derived CTA to model college freshman attri-
tion. The paper is based on her dissertation,

which is believed to be the first to use CTA, and
represents the first CTA conducted outside the
Optimal Data Analysis company laboratory.

The final paper in this section derives
from Hideo Suzuki’s thesis, and uses manually-
derived CTA to model the development of juve-
nile delinquency. Hideo has used UniODA soft-
ware to derive CTA models for many years, and
is well-versed in traditional multivariate classi-
fication methodologies. A member of ODA’s
Board of Editors, Hideo agreed to be the emis-
sary of ODA to the nation of Japan. We wish to
transliterate all articles involving optimal meth-
ods and published in Japanese, and republish
them in ODA to further dissemination and ac-
celerate progress in this area. Japanese journals
wishing to transliterate articles originally pub-
lished in ODA for republication should contact
the Editor. In all cases, citations will credit the
original work.

Software. Articles in this section dis-
cuss design or operation of existing or theoreti-
cal software systems which explicitly maximize
(weighted) classification accuracy, and subop-
timal heuristic systems which seek maximum
accuracy. The first manuscript, led by Robert,
discusses the motivation, reporting and use of
automated of the CTA software which is now
commercially available, including a list of the
control commands and example analyses. The
second article, a brief report written by Fred at
the Editor’s request, discusses how to use a
widely-available software system to produce a
data file needed to optimize the classification
accuracy of a logistic regression model.

Integrated System. This section fea-
tures articles which discuss theoretical or exist-
ing closed-system “black-box™ or “robotic” ap-
plications which are engineered using optimal
analytic methods. The sole manuscript in this
section in this Release is written by William
Collinge, a member of ODA’s Editorial Board.
The manuscript discusses the alpha test of a
web-based, interactive, structured patient diary
using CTA to identify targetable behavioral an-



Optimal Data Analysis
2010, Vol. 1, Release 1 (September 17, 2010)

Copyright 2010 by Optimal Data Analysis, LLC
2155-0182/10/$3.00

tecedents of symptoms for individual fibrom-
yalgia patients.

Consulting. This section features arti-
cles highlighting areas which constitute con-
sulting opportunities for application of optimal
analytic methods. The first manuscript in this
section—and final manuscript in this release, is
led by Fred and describes a now classic court
case addressing paradoxical confounding.

Other. Finally, this section functions
like a bulletin board. This Release features

links to author instructions; advertiser instruc-
tions; how to obtain optimal software; how to
obtain bound copies and reprints; and seven
Special Calls.

Author Notes

Mail correspondence to the author at:
Optimal Data Analysis, 1220 Rosecrans St.,
Suite 330, San Diego, CA 92106. Send eMail
to: Journal@OptimalDataAnalysis.com.
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The Loyola Experience (1993-2009):
Optimal Data Analysis in the Department

of Psychology

Fred B. Bryant, Ph.D.

Loyola University Chicago

This article traces the origins and development of the use of opti-
mal data analysis (ODA) within the Department of Psychology at
Loyola University Chicago over the past 17 years. An initial set of
ODA-based articles by Loyola faculty laid the groundwork for a
sustained upsurge in the use of ODA among graduate students
which has lasted for more than a decade and a half. These student
projects subsequently fueled an increase in ODA-based publica-
tions by other Loyola Psychology faculty, who directly supervised
the various student projects. Thus, ODA initially trickled down
from faculty to students, but later grew up in the opposite direc-
tion. The most frequent use of ODA in Loyola’s Psychology De-
partment has been to conduct classification tree analysis, with less
common uses of ODA including optimal discriminant analysis and
the iterative structural decomposition of transition tables. As more
Loyola Psychology graduate students find academic jobs and con-
tinue using ODA in their research, we expect that they will repli-
cate the Loyola experience in these new academic settings.

When you discover a new tool that you believe
is superior to other tools you’ve used before,
naturally you want not only to use the new tool,
but also to tell others about it so they can enjoy
its benefits too. Such has been the case in the
Department of Psychology at Loyola University
Chicago since early 1993, when the first version
of Optimal Data Analysis (ODA) 1.0 for DOS
became publicly available. The purpose of this
brief article is to describe the 17-year process
through which the use of ODA sprang up, took
hold, and spread among graduate students and
faculty in Loyola’s Psychology Department.

The Early Days of ODA at Loyola

| have known Paul Yarnold and Rob
Soltysik since they first began working on the
problem of optimal classification in the early
1980s. | served as a beta-tester for both the
original DOS-based® and more recent Windows-
based? versions of the ODA software. In late
1992, | cheered from the sidelines as Paul and
Rob put the finishing touches on ODA 1.0 for
DOS. And when ODA 1.0 for DOS appeared in
print, | wrote the first published review of the
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new software® and began using ODA in my
research. Later | also ZPublished the first review
of ODA for Windows.

Having fallen in love with the power,
versatility, and elegance of ODA, | began pub-
lishing research articles using ODA as a statisti-
cal tool in 1994.° | first directly collaborated
with departmental colleagues to use ODA in
1996, in publishing an article using optimal dis-
criminant analysis as an alternative to Student’s
t test with two Loyola clinicians in the Journal
of Consulting and Clinical Psychology.® At the
same time, | continued publishing ODA-based
research on my own, and began extolling the
capabilities of the new ODA software to my
graduate students. Interestingly, it was the

graduate students, rather than the faculty, who
more eagerly embraced ODA as a statistical tool
in their research.

How Loyola Researchers Have Used ODA

At Loyola, researchers have used ODA
in multiple ways to address a wide variety of
different research questions in clinical psychol-
ogy, social psychology, neuropsychology, be-
havioral medicine, and biochemistry. Table 1
summarizes the 12 faculty publications and 12
graduate student projects (11 dissertations and 1
master’s thesis) in Loyola’s Psychology De-
partment that have used ODA over the past 16
years (1994-2009).

TABLE 1: Published Journal Articles and Graduate Student Projects (Master’s Theses and
Dissertations) in Loyola’s Psychology Department Using ODA by Year (1993-2009)

Year Student Projects

1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009

ONONWPFOOFNOOPKFF OOOOo

[N
N

TOTAL

Published Journal Articles

o

NP P PFPORFPPFPOOOOOOWLPREEPEk

[EY
N



Optimal Data Analysis
2010, Vol. 1, Release 1 (September 17, 2010)

Copyright 2010 by Optimal Data Analysis, LLC
2155-0182/10/$3.00

Figure 1 illustrates the cumulative num-
ber of faculty publications (red) and graduate
student projects (blue) from 1993 to 2009.

FIGURE 1: Loyola Psychology Department
Publications (Red) and Dissertations/Theses
(Blue) Using ODA From 1993-2009

&

Cumulative Sum

0=

Note the patterns that emerge across the
17-year span. The Loyola Psychology Depart-
ment’s experience with ODA originated in the
early publications by department faculty. This
initial set of articles laid the groundwork for a
sustained upsurge in the use of ODA by Loyola
graduate students over more than a decade and a
half. These graduate student projects subse-
quently fueled the increase in ODA-based pub-
lications by other Loyola Psychology faculty,
who directly supervised the various student
projects. Thus, although ODA initially trickled
down from faculty to students, it later grew up
in the opposite direction.

Classification Tree Analysis

By far, the most frequent use of ODA at
Loyola has been to conduct multiattribute classi-
fication tree analysis (CTA). For example,
Loyola graduate students have used CTA to

identify predictive models for discriminating
students who drop out versus return to college
following the first year’, children’s emotional
responsiveness versus unresponsiveness during
psychotherapy®, child molesters versus non-
molesters®, positive versus nonpositive adapta-
tion to childhood®, convicted juvenile delin-
quents versus non-delinquent youth, positive
versus negative morbidity and mortality out-
comes following bone marrow transplant*?, high
versus low effect sizes in a meta-analysis of
methodological and intervention characteristics
associated with primary prevention programs
for children and adolescents®®, engaging versus
not engaging in risky sexual behavior among
minority adolescents™* and adult male homosex-
uals®, high versus low social competence
among children with spina bifida'®, and state
mental health care agency decisions to commit
children to residential treatment versus foster
homes.” In addition, department faculty and
graduate students have jointly published journal
articles using CTA to predict early sexual debut
among adolescents'®, positive adaptation to
childhood"®, psychiatric hospital admission de-
cisions for children in foster care?®, malingering
in forensic neuropsychological examinations®,
change in job status following traumatic brain
injury®?, and clinically significant sexual con-
cerns in a child welfare population.?®

Optimal Discriminant Analysis

The next most common use of ODA in
Loyola’s Psychology Department has been to
conduct optimal discriminant analysis, as an
exact-probability alternative to parametric dis-
criminant analysis or Student’s t test. For ex-
ample, Loyola faculty publications have used
ODA in this fashion to discriminate Type As
versus Type Bs using the Type A Self-Rating
Inventory® and the Students Jenkins Activity
Survey*’, males versus females in self-ratings of
affective intensity®, high- versus low-quality
child therapy sessions based on therapist dis-
course®, and physicians versus undergraduates
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in levels of sympathy and empathy.?® Layden et
al. used this form of discriminant analysis to
identify an optimal cut-score for using psychiat-
ric ratings to assess toxicity in patients under-
going lithium treatment for bipolar depression.?’

Iterative Structural Decomposition

Another Loyola dissertation in clinical
psychology used ODA to conduct an analysis
for which no alternative statistical test exists. In
this particular project, the student had couples
discuss an area of disagreement in their mar-
riage for 15 minutes, and then used an estab-
lished interaction scoring system to code these
interactions. Based on existing theory, the stu-
dent predicted that couples having only one de-
pressed spouse would engage in the following
sequence of behaviors: (a) depressive behavior,
followed by (b) spouse’s supportive behavior,
followed by (c) more depressive behavior, fol-
lowed by (d) spouse’s incongruent behavior,
followed by (e) angry/defensive behavior, fol-
lowed finally by (f) spouse’s critical/rejecting
behavior. Following procedures outlined by
Yarnold and Soltysik® (pp. 209-222), the data
were organized into transition tables represent-
ing the frequencies of various verbal exchanges
between spouses over time. Supporting the hy-
pothesized temporal model, an iterative struc-
tural decomposition of the transition tables re-
vealed that the data conformed to the predicted
sequence of behaviors significantly more than
would be expected by chance alone.?® It is un-
clear how one would test the hypothesized be-
havioral sequence using any other inferential
statistical tool.

The Future of ODA in Psychology

If the past is any indication of the future,
then ODA has a bright future, not only at Loy-
ola but elsewhere. The recent availability of
ODA-based software that automatically con-
structs classification tree models is likely to ac-
celerate the use of CTA across a wider variety

of research disciplines. In the future, enumer-
ated CTA models may well replace traditional
hierarchically-optimal CTA models, particularly
given the superior classification accuracy of the
former. The automated CTA software also of-
fers the ability to analyze class variables that
have more than two levels, thereby enabling
new forms of nonlinear optimal regression mod-
eling. We can foresee a vast array of new appli-
cations for CTA, including meta-analysis, cross-
cultural tests of similarities and differences, and
optimal path analysis.

Obviously, it is relatively easy to export
the Loyola Experience with ODA to other uni-
versities. All that is needed is a faculty member
to lay the groundwork through an initial set of
ODA-based publications, along with graduate
students who are seeking to analyze data for
their dissertation or master’s thesis. As more
Loyola Psychology graduates find academic
jobs and continue to use ODA in their research,
we expect that they will replicate the Loyola
experience in these new academic settings.

I close by noting an unanticipated aspect
of the Loyola experience with ODA. Namely,
some of the graduate students who have used
ODA in their dissertation research have later
had the opportunity to teach introductory statis-
tics in psychology at the undergraduate level,
both at Loyola and at other colleges and univer-
sities. Naturally, these graduate instructors have
taught their students about ODA and its statisti-
cal advantages, and these undergraduates are
now approaching faculty members in psychol-
ogy at Loyola and elsewhere to supervise inde-
pendent research projects and honors theses that
use ODA. Once again, the process of learning
has come full circle, as the students themselves
become teachers and disseminate statistical
methods to students, faculty, and beyond.
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Optimal Data Analysis:
A General Statistical Analysis Paradigm

Paul R. Yarnold, Ph.D., and Robert C. Soltysik, M.S.

Optimal Data Analysis, LLC

Optimal discriminant analysis (ODA) is a new paradigm in the
general statistical analysis of data, which explicitly maximizes the
accuracy achieved by a model for every statistical analysis, in the
context of exact distribution theory. This paper reviews optimal
analogues of traditional statistical methods, as well as new special-
purpose models for which no conventional alternatives exist.

Rarely does a technical report concerning an
apparently focused and arcane classification
methodology, such as optimal discriminant
(data) analysis—ODA, stand a realistic chance
of appealing to a diverse scientific community.
Even more rarely, however, does one have the
opportunity to report the emergence of a new
paradigm in the statistical analysis of data.!
ODA is a highly intuitive, powerful, and exact
methodology for the general statistical analysis
of data, and this paper reports on the emergence
of this paradigm.

ODA is the methodology that explicitly
maximizes the accuracy of any type of statistical
model for the training sample—that is, for the
data upon which statistical analysis is per-
formed and upon which the statistical model is
based. An increasing awareness of the intuitive
appeal of maximizing accuracy (and minimizing
errors), and commercial availability of dedicated
software, are fueling increasingly widespread
application of ODA.* Nevertheless, because
ODA is relatively new, and therefore relatively
few introductory and review resources covering
the paradigm are yet widely available, this paper
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introduces many major concepts and methods of
the ODA paradigm.

Initial Assumptions

An ODA model explicitly maximizes the
number of correctly classified observations for a
specific application. Observations are consider-
ed correctly classified when the model assigns
them to the class of which they are, in reality, a
member, and are misclassified otherwise. The
number of misclassifications arising in a given
analysis is referred to as the "optimal value.” It
is clear that derivation of a distribution theory
for ODA requires investigation of distributions
underlying optimal values. Using the simplest
possible data structure to illustrate derivation of
exact distribution theory, imagine a hypothetical
application having the following three features.

First, assume one binary class variable.
In ODA, a class variable is what one is trying to
predict, discriminate, or classify. Examples of
binary class variables might include gender
(male, female), therapy (drug, placebo), or out-
come (success, failure). Class variables may of
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course consist of more than two levels, but two
levels is the simplest case.

Second, assume one random continuous
attribute. In ODA, an attribute is a variable that
will be employed in an effort to predict the class
variable. The continuity assumption implies that
every observation will achieve a unique score
on the attribute (no ties). Nothing is assumed
about the shape of the distribution underlying
scores on the attribute, but only that the scores
are random—for example, uniform or normal.
Single-attribute ODA analyses are referred to as
univariable ODA, or UniODA. Because the
present case involves a continuous attribute, we
are discussing a “continuous UniODA design”.

Finally, assume three observations: two
from one class, and one from the other class
(three observations are required because with
two the problem is trivial: the mean of two
observations’ scores on a continuous attribute is
a perfect discriminant classifier for those two
observations). Though it is arbitrary, refer to
these as classes “1” and “0”, respectively.
Hereafter, the total number of observations is
referred to as n, and the number of observations
in class c as nc.

Note that only the continuity assumption
is capable of being violated by “real-world” data
(we return to this point later). The first (binary
class variable) and third (n in each class)
assumptions can never be violated because they
exactly define the structure of the design. That
is, we are considering a UniODA design with a
binary class variable, and with n;=2 and ny=1:
any deviation from this structure, such as more
than two class levels or different sample sizes,
simply defines another specific UniODA design.

The UniODA Model

For clarity we give an example of a two-
category continuous UniODA model. Imagine
that a cardiologist wished to determine if heart
rate variability (HRV)—the standard deviation
of one's heart rate over a 24-hour period (the
continuous attribute), can discriminate patients
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who die (class 0) versus live (class 1). For a
given sample UniODA would provide at least
one optimal model, consisting of a cutpoint and
a direction, which when used together explicitly
maximize forecasting accuracy: percent accurate
classification, or PAC. For example, a UniODA
model could be: "if HRV score is greater than
(direction) 12.2 (cutpoint), assign that person to
class 0; otherwise, assign that person to class 1."

A UniODA model is said to be optimal
because the total number of misclassifications
resulting from application of the model to the
data is minimized, and the number of correct
classifications is maximized. In the example, no
alternative combination of HRV cutpoint and
direction would yield fewer misclassifications
than the model which UniODA identified.

Multiple optimal models which all yield
the same maximum PAC may occur for a given
data set. For example, two different HRV cut-
points might result in the same overall number
of misclassifications, yet one model may have
greater sensitivity (ability to accurately classify
members of class 1) and lower specificity
(ability to accurately classify members of class
0) than the other model. In such cases, it is
necessary to select one optimal model, prefer-
ably before conducting the analysis, using an
appropriate decision heuristic.!  Examples of
such selection heuristics include the sensitivity
or specificity heuristic (select the model having
greatest sensitivity or specificity, respectively),
or the balanced performance heuristic (select the
model with the smallest difference between
sensitivity and specificity).*

Exact Distribution Theory

We are now ready to derive the theoreti-
cal distribution of optimal values for a two-
category continuous UniODA design with n;=2
and no=1. First, it is necessary to determine the
set of all possible outcomes that could occur if
the attribute were continuous and random. In
order to differentiate the two observations from
class 1, they will be called “1A” and “1B.”
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There are six possible outcomes: one is
that the value of the attribute for observation 1A
is greater than that for observation 1B, which in
turn is greater than that for the observation from
class 0. Symbolically, {1A > 1B > 0}. The five
other possible outcomes are: {1A > 0 > 1B};
{1B > 1A > 0}; {1B > 0 > 1A}; {0 > 1A > 1B};
and {0 > 1B > 1A}. Because the attribute was
random, each of these six possible outcomes is
equally likely, with a probability of 1/6.

Next, it is necessary to determine the
optimal value for each of the six possible
outcomes. This, of course, means that UniODA
must be performed for each of the six possible
data configurations." Two of the six possible
outcomes (those in which the attribute of the
class 0 observation lies between the attributes of
the two class 1 observations) have an associated
optimal value of 1 misclassification, because at
least one observation will be misclassified
regardless of where the cutpoint is placed). The
other four possible outcomes (in which the two
class 1 observations can be perfectly separated
via a cutpoint from the class 0 observation) have
an optimal value of 0 misclassifications. Cumu-
lating optimal values over the set of possible
outcomes gives the theoretical distribution of
optimal values for this UniODA design: the
probability of an optimal value of 0 is 4/6, and
the probability of an optimal value of 1 is 2/6.

Enumerating in this manner the theor-
etical distribution of optimal values for balanced
(equal number of class 0 and 1 observations),
continuous, two-tailed (no a priori hypothesis
was specified) UniODA designs required a
CRAY-2 supercomputer—which only achieved
results for n<30 due to exponential increases in
the number of combinations.” Examination of
the resulting table of optimal values for post hoc
UniODA revealed organization which motivated
discovery® and proof* of a closed-form solution
for one-tailed confirmatory UniODA.
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Inexact Measures

What if data aren’t continuous, and there
are ties—violating the continuity assumption?
Discontinuity in empirical data is thought to
reflect imprecise measurement, and not as com-
promising of theoretical probabilities®, but this
begged the question of exactly how imprecise
can measurement become before the theoretical
probabilities become compromised? This line of
thinking naturally led to the question of what
would occur for a binary attribute—and it was
then that we understood that the binary attribute
problem was the optimal analogue to chi-square
analysis, and the continuous attribute problem
was the optimal analogue to t-test. Proceeding
with binary enumeration we found the binary
and continuous distributions differ. This finding
motivated two important insights.

First, there is a theoretical dimension—
which we call precision—which may be used to
describe the metric underlying the attribute for
any specific UniODA problem. The precision
dimension is bounded at the extremes by binary
data (least precise) versus continuous data (most
precise). Just as specific distribution theory can
be derived for the extreme poles of the precision
dimension, so too can exact distribution theory
be derived for every specific attribute measure
metric: for example, if the attribute is measured
using a 7-point Likert scale, then derive distri-
bution theory by assuming a 7-point Likert scale
was used. As it is possible to derive distribution
theory that assumes that the specific measure
metric actually used in a given application was
in fact used, distribution theory for ODA can be
based strictly on structural features of a prob-
lem, and such distribution theory will never be
violated by data for a given application.

The second insight is that UniODA is an
optimal alternative to common conventional
statistical methods: Student's t-test is often used
to analyze data involving a binary class variable
and a continuous attribute, and chi-square is
often used to analyze data involving a binary
class variable and a binary attribute. UniODA



Optimal Data Analysis
2010, Vol. 1, Release 1 (September 17, 2010)

Copyright 2010 by Optimal Data Analysis, LLC
2155-0182/10/$3.00

may also be used, and exact distributions may
be determined for, designs that lie anywhere on
the precision dimension—anywhere between the
binary and continuous polar extremes. This is
not true for conventional statistical procedures.

ODA as an Alternative to Conventional
Statistical Methodologies

Encouraged by early success, we began
programmatic research to assess the domain of
experimental designs and data configurations
that may be addressed using UniODA. We next
investigated multicategory problems involving
class variables with more than two levels. For a
continuous attribute, multicategory UniODA is
analogous to oneway analysis of variance, and
for a binary attribute it is analogous to log-linear
analysis.®’

UniODA, and other models within the
ODA paradigm, clearly can be used to analyze
different data configurations that are evaluated
using a host of different conventional statistical
methods. Why should ODA be used rather than
a host of conventional methods?

First, only ODA explicitly maximizes
(weighted) classification accuracy and provides
a forecasting model for every application. Not
only do conventional methods fail to explicitly
maximize PAC, but many, such as t-test or chi-
square, also fail to provide a forecasting model.

Second, no matter what the nature of a
particular data configuration might be—for
example, the number of class levels, attribute
metrics, or class sample-size imbalances, the
classification performance of every ODA model
IS summarized using a normed measure of effect
strength, called effect strength for sensitivity, or
ESS.' On this index O represents the level of
classification performance that is expected by
chance, and 100 represents perfect, errorless
classification. No such intuitive, universal index
can be used to compare the effect strength of
different conventional methods such as analysis
of variance, logistic regression, and tau.
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Third, conventional methods require
assumptions regarding the nature of the data.
Unlike ODA—for which distribution theory is
exact for every design, conventional methods
are inappropriate when the data violate their
assumptions. Whereas the assumptions of ODA
must conform to the data, data must conform to
the assumptions of conventional methods.

Finally, with ODA a single methodology
may be optimally applied to analyze a host of
problems, while with the conventional approach
a host of methods may be suboptimally applied
to analyze a single problem. ODA is therefore
simultaneously more unique and parsimonious
than conventional methods.

To illustrate the flexibility and power of
ODA as a general statistics paradigm, below we
describe different common data configurations
and conventional methods often used in their
analysis, and the corresponding ODA model.

Binary Class Variable
and BinaryAttribute

The most common conventional method
for analyzing data of this type is chi-square
analysis: the ODA analogue is two-category
binary UniODA. Chi-square is an approximate
statistic that should not be used when the
expected value for a given cell (cells are formed
by cross-tabulating the class variable with the
attribute) is less than five.® In contrast, binary
UniODA is an exact statistic with no such
restriction: one- and two-tailed estimated p by
UniODA and Fisher’s exact test are isomorphic
except in a hypothetical degenerate condition.’

It is easy to show that UniODA may be
particularly useful in small sample designs. For
example, imagine a problem with n = 6, three
observations from class 0 all scoring 0 on the
attribute, and three observations from class 1 all
scoring 1. Chi-square can’t be used to analyze
this problem, as the expected value is less than
five in all four cells. When analyzed using two-
tailed binary UniODA, a single optimal model
(if attribute < 0.5 then class = 0; else class = 1)
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emerged that achieved 100% PAC, p<0.032.
No systematic review/comparison of chi-square
versus binary UniODA has yet been reported.

Binary Class Variable
and Multiple Binary Attributes

The most common linear methods for
analyzing data of this type include log-linear or
logistic regression analysis. Completely binary
problems are easiest for ODA to solve, but can
be problematic for conventional methods, with
aspects including marginal imbalance, sparse
cells, singularities, and structural zeros (some
design cells don’t exist), for example, rendering
binary data difficult or impossible to analyze.
The optimal linear analogue is binary Multi-
ODA—a linear model which uses two or more
attributes to explicitly maximize classification
accuracy (discussed ahead).

For example, we reanalyzed data from a
study designed to predict if 120 persons with
AIDS would require home care or structured
long-term care (the class variable) on the basis
of three binary attributes which assessed the
attitudes of patient and physician towards long-
term care, and whether the patient had mental
impairment. The data were “ill-condiioned”
and thus could not be analyzed by log-linear or
logistic regression methods. MultiODA, how-
ever, found a two-attribute model that achieved
93.3% PAC in <1/20 CPU second on a 33MHz
386 microcomputer running a special-purpose
ODA search algorithm (discussed ahead).

Binary Class Variable
and Continuous Attribute

Among the most frequently reported of
statistical tests, Student’s t-test is a common
conventional procedure for analyzing data of
this type. The ODA analogue is two-category
continuous UniODA.

It is easy to construct a hypothetical
problem for which t-test fails to find a signifi-
cant intergroup mean difference on the attribute,
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while UniODA detects nearly perfect intergroup
discriminability. Imagine that ten class A obser-
vations each score a value of 0 on the attribute;
nine class B observations all score 1, and a tenth
class B observation scores -9. Because the mean
difference on the attribute between groups is
zero, t-test would conclude that the groups can’t
be discriminated whatsoever by the attribute.
But, with UniODA, 95% of the observations are
correctly classified—nearly perfect intergroup
discriminability. Systematic research contrasting
UniODA and t-test is not yet available.

Binary Class Variable
and Multiple Continuous Attributes

Common linear methods for analyzing
data in this configuration are linear discriminant
analysis, logistic regression analysis, and one-
way multivariate analysis of variance.®’ The
linear ODA analogue is continuous MultiODA,
but UniODA has been used with great success
to maximize accuracy achieved by suboptimal
models.**

Monte Carlo research is often used to
contrast continuous MultiODA versus conven-
tional statistical methods."*® A difficulty with
such simulation research is that the experimental
data are generated using idealized routines that
meet criteria—such as normally distributed data
and coincident covariance, which are important
for conventional statistical methodologies but
which are no substitute for “real-world” data
collected by naturalistic empirical observation.
Our strategy has been to analyze a variety of
different applications using MultiODA, and then
compare the performance against suboptimal
methods such as Fisher's discriminant or logistic
regression analysis, using training and validity
data. Early results are encouraging, but more
research is needed to compare “in the field”
classification performance of MultiODA versus
conventional procedures.®***®
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Binary or Multicategory Class Variable
and Continuous and Binary Attributes

Multinomial logistic regression analysis
is a commonly employed conventional analysis
for problems of this type. The linear optimal
analogue is MultiODA, with weights used to
reduce problem size by eliminating redundant
data profiles (discussed ahead). Little research
using either approach is available, and to our
knowledge no prior research comparing these
approaches has yet been published (until now).

Analyzing credit screening data for a
British bank, our objective was to develop a
model to predict credit worthiness (the class
variable) for a sample of 325 credit applicants.
Attributes were two binary variables and a third
4-point ordinal attribute. A nonparametric class-
ification methodology that performed sample
stratification based on a recursive chi-square
procedure identified four interaction terms used
as attributes in follow-up analysis. With these
data logistic regression analysis and MultiODA
both achieved 90.5% PAC in training analysis,
but the latter model used one less term (and thus
was more efficient and parsimonious) than the
former model. Comparing the two models using
jackknife validity analysis revealed that PAC for
the MultiODA model was stable, but regressed
to 83.1% for the obviously over-determined
logistic regression model.

Multicategory Class Variable
and Polychotomous Attribute

Common conventional methodologies
for analyzing these designs include chi-square,
log-linear, or multinomial logistic regression
analysis. The optimal analogue is multicategory
UniODA. As was true for designs that involved
one binary class variable and multiple binary
attributes, issues such as structural zeros, sparse
cells, imbalanced marginal distributions, small

15

samples, and multicollinearity may spell disaster
for conventional designs. As discussed earlier,
these are not problems for ODA.

It is easy to construct an example for
which conventional analyses are inappropriate,
but for which multicategory UniODA is ideal.
For example, imagine a problem with a three-
category (A, B, C) class variable, with each
category having three observations. Further
imagine all three class A observations scored a
value of 1 on the attribute; all three class B
observations scored a 2, and all three class C
observations scored a 3. Although the small
sample renders conventional methods inappro-
priate, a multicategory UniODA achieved 100%
PAC, two-tailed p<0.01.

Multicategory Class Variable
and Continuous Attribute

The most common conventional analysis
used for such designs is oneway analysis of
variance, and the optimal analogue is multicate-
gory UniODA. As for t-test, distribution theory
for analysis of variance is highly sensitive to
assumption violations.> Such data can present
insurmountable problems for multinomial logis-
tic regression, because of small samples, sparse
cells, and marginal imbalance, particularly when
polychotomous attributes are thrown in the mix:
for example the analysis will fail if a degenerate
attribute—which has fewer response categories
than the class variable has levels—is included in
the analysis.

As an example of a three-category Uni-
ODA, imagine the following hypothetical data
set, problematic for conventional methods due
to the small sample, the presence of outliers,
heterogeneity, the presence of zero variance for
one group, and non-normality (in Table 1, X is
the attribute).
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TABLE 1: Hypothetical data set for three-category UniODA

Class X Class
A 29 B
A 30 B
A 31 B
A 50 B

In this example the mean X of classes A,
B, and C is exactly equal, so F=0. However, the
UniODA model (if X < 33 then class = A; if X
> 38.5 then class = C; else class = B) correctly
classified 10 of the 12 data points: overall and
mean PAC over all three groups is 83.3%, two-
tailed p<0.05.

Ordered Class Variable
and Continuous and/or Binary Attributes

Among the many types of nonparametric
methods in use, Kendall's tau is arguably the
least problematic procedure conventionally used
to evaluate associations among ordinal (ranked)
data.’® Tau is a computed index for evaluating
the relationship between two ordered variables:
collect data, compute tau, and “it is what it is.”
Ahead we show that multicategory MultiODA
can be used to determine criterion weights for
two or more attributes to generate a summary
score which explicitly maximizes tau.

Receiver Operator Curve
(Signal Detection) Analysis

Bayesian classification methods are
commonly used to evaluate the discriminating
power of attributes.’” Such procedures typically
aim to maximize the sensitivity, specificity, or
some combination of sensitivity and specificity
achieved using an attribute. Since ODA models
may be derived which explictly maximize sensi-
tivity, specificity, or any weighted composite of
sensitivity and specificity, either for individual
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X Class X
35 C 5
35 C 42
35 C 43
35 C 50

attributes or for sets of attributes, we call this
application “optimal signal detection analysis.”

In summary, it is a common practice to
employ multiple different statistical methods,
each requiring data to satisfy different essential
assumptions, to analyze a given sample of data
in numerous “different” (actually related) ways.
We recommend using a single statistical method
to analyze data with one objective function in
mind: maximizing accuracy. The utility of this
approach will undoubtedly receive increased
attention as researchers learn more about the
unrivaled generalizability and power of ODA
across different data configurations.

Fast MultiODA Solutions

Early research was highly productive,
and new applications for UniODA models were
discovered routinely as new data structures were
considered.’  As data configurations became
increasingly complex, so did ODA models, and
researchers began formulating and investigating
optimal linear models for designs with a binary
class variable and two or more ordinal and/or
binary attributes: an optimal analogue of logis-
tic regression or Fisher’s discriminant analysis.
These multivariable ODA models are called
“MultiODA,” for short.

Although UniODA problems can easily
be solved for enormous samples, MultiODA
problems may be computationally intractable
for tiny samples, even on the fastest computers.
Several procedures affording reductions of an
order of magnitude or more in solution time for
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MultiODA problems were recently developed,
and analysis is feasible for enormous samples in
favorable circumstances. Review of MultiODA
here will be brief: so much work has focused on
MultiODA models that a review is warranted.
Below we review two fast new methods to solve
MultiODA problems: MIP45 is a mixed integer
formulation, and WARMACK a special-purpose
search algorithm. These methods are extended
for nonlinear and multicategory MultiODA.

MIP45

The first approach to computing a Multi-
ODA solution that we shall discuss is a mixed
integer linear programming formulation called
MIP45, in which the discriminant function is
normalized so the sum of the absolute values of
the coefficients adds to one.'® This enables one
to determine, for each constraint, a lower bound
for the value of the problem parameter, M. This
is in distinction to previous formulations of this
problem, where M is defined as “a very large
number.” Since the value of M can be kept low
for each constraint, the branch-and-bound
procedure can fathom branches more quickly
than other formulations. Also, fewer branches
need to be stored in memory, and computation
time is reduced.

We compared computational resources
needed to solve a problem in classification of
medical residency applicants using MIP45 and a
recent formulation that did not limit M. The
problem had 3 attributes and 49 observations.
Running the SAS/OR optimization package on
an IBM 3090/600 mainframe computer, MIP45
solved the problem in 48 CPU seconds, versus
268 CPU seconds using the other formulation:
MIP45 analyzed 2,896 branches, versus 14,549
branches using the other formulation.

MIP45 can be extended to obtain Multi-
ODA solutions which maximize the weighted
number of satisfied inequalities. As for Uni-
ODA, this is useful in two different contexts.

First, the weights may represent the
return obtained in the correct classification of an
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observation. For example, consider the problem
of predicting whether the price of a stock will
rise or fall over a given time horizon, given a
series of market indicators and price measure-
ments. If the prediction is for a rise in the stock
price, the stock will be purchased. Conversely,
if a fall in the price is predicted, the stock will
be sold short. The weighted MultiODA solution
of this problem would maximize the trading
return over the set of observations.

The other context in which the weighted
criterion is useful occurs when the number of
observations in each class differs. In this case,
the weighted MultiODA solution balances the
number in each class by maximizing the mean
PAC over the two classes.

A useful extension of MIP45 involves
fixing the sign of the discriminant coefficients
(e.g., in a confirmatory design). In fact, bounds
or any linear constraints on the coefficients may
be imposed. Yet another type of constraint
which can be modeled is any Boolean function
of actual or predicted class membership among
the observations. One example of this would be
forcing certain observations to be classified
correctly in the MultiODA solution (if this is
feasible). Another example would be forcing
observation A to be assigned to a certain class
only if observation B is similarly classified.

Finally, a method for reducing the prob-
lem size can be applied when multiple observa-
tions share identical values for all attributes. In
this case, these observations may be aggregated
into a single observation, with a weight applied
to the objective function. This procedure is
especially useful with binary attributes: we
solved binary MultiODA problems having five
attributes and one million observations in less
than ten CPU seconds on an IBM 3090/600.

WARMACK

A second approach to obtaining fast
solutions to MultiODA problems involves our
adaptation of a fast search algorithm initially
developed by Warmack and Gonzalez (hence
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the origin of the name we use to refer to the
method).”® With this method we obtained a
reduction of an order of magnitude or more in
computation time versus the MIP45 approach.
We conducted Monte Carlo research to
investigate the computer resources required by
this algorithm as a function of n, the number of
attributes, and the relative discriminability of
the data. Problems having 2 attributes and 700
observations can be solved in less than one CPU
minute on an IBM 3090/600. This is also true
for problems with 3 attributes and 200 observa-
tions, or 4 attributes and 100 observations. Our
findings show that the number of attributes
exerts greater influence on computation time
than n or relative discriminability of the data.

Extension of MultiODA to Nonlinear and
Multicategory Problems

MultiODA may be extended to a large
class of nonlinear separating surfaces. This is
accomplished by defining attributes which are
polynomial functions of the original attributes.
Any nonlinear function which is linear in the
parameters of the original attributes may be
modeled in this manner.

It is also possible to solve multicategory
problems involving more than two class levels
using either MIP45 or WARMACK. There are
two ways to accomplish this. If there are k class
categories, the first method is to determine the
ODA solution obtained with k-1 separating
surfaces in parallel with each other. From a
computational standpoint, this is equivalent to
adding an extra attribute for each additional
class.

The second method involves the deter-
mination of k different discriminant functions:
an observation is assigned to the class for which
the maximum value is obtained over these func-
tions. If there are p original attributes, this is
equivalent to a MultiODA problem with p times
k attributes.

In conclusion, MIP45 and WARMACK
make feasible the solution of much larger Multi-
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ODA problems than have been possible to solve
previously, particularly for binary problems.
Optimal analogues to conventional statistical
methods are now available to researchers. How-
ever, ODA is far more than simply an optimal
analogue to conventional statistics.

Special-Purpose ODA Models

The flexibility of the ODA methodology
lends itself to special-purpose classification
applications for which there are no alternative
conventional statistical procedures. Indeed, the
number of different ODA models that may be
created is limitless, due to the inherently infinite
number of possible unique classification appli-
cations. Nevertheless, below we describe some
specialized ODA models that should be of great
utility across a variety of applications.

Minimizing the Number of Termsin a
MultiODA Solution

When performing an analysis, it is des-
irable to obtain a solution with as few terms as
possible, in light of the principle of parsimony.
This can be achieved in the context of the
MIP45 formulation: an upper bound is set on the
number of misclassifications, and the number of
attributes used in the solution is minimized.
This results in a more parsimonious model, with
a corresponding increase in statistical power.

Optimal Attribute Subsets

A related problem is the determination
of an optimal subset of attributes with exactly k
members. This also is an extension of MIP45.
This procedure is useful when the ratio of
number of attributes to number of observations
is too high to yield a meaningful model, or when
redundant (multicollinear) attributes are present.

For example, we used this procedure to
discriminate 15 Type A from 15 Type B (class
variable) undergraduates using a subset of 20
items (attributes) from the Bem Sex-Role Inven-
tory. With k specified at 2 attributes, MultiODA
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identified a single solution that achieved 93.3%
PAC; with k specified at 3 attributes MultiODA
identified a single solution with 100% PAC.
These problems required 91.9 and 73.9 CPU
seconds to solve on an IBM 3090/600 computer
running SAS/OR. When the attributes selected
by MultiODA were evaluated using logistic
regression analysis, 90% PAC was achieved for
both the 2- and 3-attribute models. The best 2-
attribute model identified using stepwise logistic
regression achieved 90% PAC, and the best 3-
attribute model achieved 93.3% PAC.

Integer-Valued Coefficients

UniODA may be used to solve Multi-
ODA problems in which the model weights for
the attributes (the discriminant coefficients) are
constrained to take on a small set of values. For
example, in a problem having p attributes, the
discriminant coefficients restricted to the values
0, 1, or -1, and the threshold coefficient uncon-
strained, all optimal solutions may be found by
solving 3°/2 UniODAs. In general, for k pos-
sible coefficient values and p attributes, k°/2
UniODAs are solved. If k and p are relatively
small, then few computational problems arise
due to the fast speed of UniODA. An additional
benefit of this analysis is that optimal attribute
subsets of every size are evaluated. We solved a
problem with 3 coefficient values, 8 attributes,
and 900 observations in 716 CPU seconds on a
33Mhz 386 microcomputer.™

Optimal Selection of Observation Subsets
with Unknown Class Membership

In some problems, observations are
available for which class membership is
unknown. Typically, exactly k of these observa-
tions are to be acted upon in some manner. The
initial phase of the MultiODA approach to this
problem involves partitioning observations into
two sets: the decision set, consisting of observa-
tions with unknown class membership, and the
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evaluation set, consisting of observations with
known class membership.

To illustrate this, consider the problem
of selecting k job applicants from a pool of
applicants. The attributes may reflect measures
of previous employment experience and skills
required to perform the job task. The evaluation
set is comprised of previously hired individuals
who have been measured on these attributes.
Each individual in the evaluation set is weighted
by a performance index, in this case a measure
of job performance. The decision set is compri-
sed of the pool of job applicants, k of whom are
to be selected for employment, and all of whom
have been measured on the attributes. Multi-
ODA identifies a solution which maximizes the
weighted number of inequalities in the eval-
uation set, such that exactly k inequalities in the
decision set are satisfied.

Or, consider the problem of selecting
prisoners to be released under a court mandate
which requires that exactly k must be released,
due to overcrowding. Here the decision set is
the current population of prisoners, and the eval-
uation set are those prisoners who previously
were released. The performance index, which is
to be minimized, is a measure of mayhem pro-
duced by the previously released prisoners.

Other interesting applications of this
method lie in the areas of market research,
investment selection, and pattern recognition.

Ordered Class Variables

Another fruitful area of investigation
relates to the use of MultiODA in analysis of
data which have been sorted into ordered
(ranked) categories. MultiODA is used to maxi-
mize the goodness of fit between the actual and
predicted category assignments. Kendall’s tau
is a similarity index widely used for comparison
of two ranked sequences, and is proportional to
the number of satisfied inequalities between
paired observations. Thus, MultiODA finds a
linear discriminant function which maximizes
the value of Kendall’s tau. It is worthwhile to
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note that this situation differs from the multi-
category case in that the latter corresponds to
the analysis of unordered categories.

Optimal Nonparametric
Linear Multiple Regression

A distribution-free approach to multiple
linear regression is available using the Kendall’s
tau procedure. Initially observations are ranked
according to their values on the dependent
measure. MultiODA is then used to find the
optimal predicted rank sequence. As a final
step, an inequality-constrained multiple linear
regression problem is solved for each optimal
rank sequence. This quadratic program uses
sum-of-squared-error as the objective function,
and the inequalities corresponding to the paired
observations as constraints. The linear model
produced by this procedure is the model with
the highest R? for which the value of Kendall’s
tau is the maximum achievable overall. If
multiple optimal sequences exist, the solution
with the highest R? is selected. We have solved
such a problem with 3 independent variables
and 22 observations in 49 CPU seconds on a 50
MHz 486 microcomputer.

Optimal Templates

Another interesting application of Multi-
ODA lies in the design of optimal templates. To
illustrate this, imagine an individual is given a
list of questions and set of possible responses
for each question, one of which is to be selected
as the individual’s answer to that question.
Each question is answered by filling in a circle
(e.g., on an “IBM answer form”) corresponding
to a selected answer. The class membership of
each individual is known. The objective of this
MultiODA procedure is to produce a template,
that is, a series of holes on an opaque sheet, so
that overlaying the template on the answer sheet
and counting the number of filled-in holes pro-
duces a discriminant score for the individual.
This score is compared to the cutpoint obtained
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by MultiODA in order to assign class member-
ship to individuals. This assignment minimizes
the number of classification errors.

This problem was formulated as a pure
integer program. As an example, consider the
application of creating a template for personnel
selection purposes. A 38-item questionnaire,
with each item answered as true or false, was
completed by 107 employees of a corporation,
70 of whom were known desirable workers, and
37 of whom were known undesirable workers.
MultiODA identified a template which resulted
in 74.8% PAC, requiring 26 CPU minutes on an
IBM 3090/600 running SAS/OR.

MultiODA with Boolean Attributes

The ODA approach of minimum error
may also be applied to classification problems
with purely logical attributes. In this case, the
decision rule involved in the assignment of an
observation to a class is a Boolean function of
logical attributes which have been measured for
that observation. We wish to find a Boolean
function with at most k terms which minimizes
the number of misclassifications. Alternatively,
we may look for a function with at most k mis-
classifications which minimizes the number of
logical terms. These problems can be formula-
ted as integer programs, or solved in crude brute
force manner via exhaustive enumeration.

Consider the following application as an
example of this procedure. A pair of emergency
physicians independently diagnosed 51 patients
with hip trauma for bony abnormality. Each
physician rated each patient as abnormal or
normal based a measure of sound conduction,
and also based on physical inspection. Presence
of bony abnormality (the class variable) was
independently determined radiographically. A
Boolean MultiODA identified a single optimal
solution that achieved 96% overall PAC. The
optimal decision rule was: if either physician
rates either attribute as abnormal, then classify
the observation as abnormal; else classify the
observation as normal.
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Classification Tree Analysis

Hierarchically optimal classification tree
analysis, or CTA, is an algorithm which chains
UniODA analyses together so as to stratify the
sample in a manner that explicitly maximizes
ESS.? As for MultiODA, discussion of CTA
lies outside the domain of this manuscript:
sufficient work using CTA has accumulated so
that a comprehensive review is warranted.

Summary

Research described herein, indeed the
sum total of all of the world’s knowledge in this
field to date, merely scratches the surface of
what ODA entails, what ODA offers. Although
we can only imagine what we must be missing,
it is clear to see that ODA is a powerful new
paradigm in the statistical analysis of data. It is
intuitively appealing, in the mathematical
modeling of any process, that the model should
make as few mistakes as possible. This is the
essence of the ODA approach. Its fruitfulness,
particularly in its application to the analysis of
problems previously unanalyzable, is an indica-
tion of its value as a general-purpose problem-
solving tool. Because ODA is inherently distri-
bution- and metric-free, it avoids the necessity
of making distributional assumptions required
by conventional parametric methods. In ODA,
powerful modeling capabilities of mathematical
programming are joined with the inferential
capabilities of statistics. Furthermore, one may
combine different ODA methods so that every
problem can be formulated in terms of its own
unique characteristics. It thus seems appropriate
to postulate that, in the area of optimal statistics,
the best surely is yet to come.
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Maximizing Accuracy of Classification
Trees by Optimal Pruning

Paul R. Yarnold, Ph.D., and Robert C. Soltysik, M.S.

Optimal Data Analysis, LLC

We describe a pruning methodology which maximizes effect strength for sensitivity

of classification tree models. After deconstructing the initial “Bonferroni-pruned”
model into all possible nested sub-branches, the sub-branch which explicitly maximizes
mean sensitivity is identified. This methodology is illustrated using models predicting
in-hospital mortality of 1,193 (Study 1) and 1,660 (Study 2) patients with AIDS-related

Pneumocystis carinii pneumonia.

Classification tree models typically begin with a
root variable which has two eminating branches
and separates the sample into two partitions. In
such applications the tree model may be said to
consist of two parts: the left-hand side, and the
right-hand side. Extending this methodology to
applications involving more than two eminating
branches is straightforward: for example, with
three eminating branches there are the left-hand,
middle, and right-hand branches. To facilitate
clarity, this article considers applications having
two eminating branches.

Identifying the tree model which explicitly
maximizes mean sensitivity—and thus the effect
strength for sensitivity (ESS), first necessitates
identifying every possible sub-branch for every
branch eminating from the root variable. For
example, imagine a left-hand branch consisting
of three nodes: A (root), B (middle attribute)
and C (at the end of the branch). This branch
has two nested sub-branches: one involves only
nodes A and B (C collapsed into B), and the
other involves only node A (C and B collapsed
into A). For clarity of exposition refer to the left
branch with three attributes (A, B, C) as “L3”;
to the trimmed left branch with two attributes
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(A, C collapsed into B) as “L2”; and to the
trimmed left branch with one attribute (C and B
collapsed into A) as “L1”. Also imagine this
hypothetical tree model had a right-hand branch
consisting of two nodes: A (sides have the same
root attribute) and D (at the end of the branch).
The right branch involving two attributes (A, D)
is called “R2”, and the trimmed right branch
with one attribute (D collapsed into A) is called
“R1”. The first step of optimal pruning involves
obtaining a confusion table (rows are the actual
class category, columns are the predicted class
category) for all (sub)branches of the original
tree model: here, for L1, L2, L3, R1, and R2.

The second step in finding the tree model
having maximum sensitivity involves obtaining
every unigue combination of left and right
(sub)branch: in the present example the six
unique combinations are L1-R1, L2-R1, L3-R1,
L1-R2, L2-R2 and L3-R2. Next, combine (or
“integrate”) the confusion tables for each of the
six different combinations. Finally, the table
with greatest mean sensitivity may be identified
by direct observation. The optimized model is
the combination of (sub)branches with associa-
ted confusion table having maximum ESS.
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An Example of Optimal Pruning:
Predicting In-Hospital Mortality

The major cause of hospitalization and
death for people with HIV infection early in the
AIDS epidemic, Pneumocystis carinii pneumo-
nia or PCP had in-hospital mortality rates as
high as 60% in the 1980s.! Here we demonstrate
pruning to maximize ESS for a model obtained
via classification tree analysis (CTA) to predict
in-hospital mortality due to PCP.> Analysis was
performed for 1,193 patients (89% of the total
sample) with complete data for model attributes,
who were discharged alive (N=988) or who died
in-hospital (N=205). Derived manually using

<49.5mm Hg

<492 Yr
p < 0.0005

8.1%
N =602

>49.2Yr

<19.6 kg/m?

p < 0.0001

> 19.6 kg/m?

UniODA software®* the CTA model involved
four attributes: alveolar-arterial oxygen gradient
(AaPoy) is the difference in partial pressure of
oxygen between the pulmonary system and the
blood (elevated values indicate more severe
pneumonia); body mass index is a measure of
nutritional status that is predictive of poor short-
and long-term survival rates; and prior AIDS
indicates if the current episode of PCP is the
first clinical evidence that full-blown AIDS has
developed (at the time the data were collected,
patients with prior history were more likely to
be severely ill, develop multiple complications
of AIDS, and die). The CTA model (Figure 1)
yielded ESS=21.2, a relatively weak effect.

>49.5mm Hg

Prior AIDS

Yes

35.4%
N =113

<513Yr >51.3Yr
43.8% 8.8% 23.1% 33.3%
N=16 N =34 N =359 N =69

Figure 1: Initial Non-Pruned CTA Model of In-Hospital Mortality

The root variable of the initial non-pruned
CTA model has two eminating branches and
therefore left and right sides, and each side has
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three nodes. For Step 1 of the optimal pruning
procedure, Figure 2 gives schematic illustrations
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of L1-L3 and R1-R3, and their corresponding
confusion tables, respectively.

Figure 2A:
L1 Sub-Branch and Confusion Table

<49.5mm Hg

9.0%
N =652

L1 Predicted

Alive Dead
Alive 593 0
Actual
Dead 59 0
Figure 2B:

L2 Sub-Branch and Confusion Table

<495 mm Hg

<492 Yr >49.2Yr

8.1% 20.0%
N =602 N =50

L2 Predicted

Alive Dead
Alive 553 40
Actual
Dead 49 10
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Figure 2C:
L3 Sub-Branch and Confusion Table

<49.5mm Hg

<492 Yr

8.1%
N =602

<19.6 kg/m?

>49.2Yr

>19.6 kg/m2

43.8% 8.8%
N =16 N =34
L3 Predicted
Alive Dead
Alive 584 9
Actual
Dead 52 7
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Figure 2D:
R1 Sub-Branch and Confusion Table

>49.5 mm Hg

27.0%
N =541

R1 Predicted

Alive Dead

Alive 0 395
Actual

Dead O 146

Figure 2E:

R2 Sub-Branch and Confusion Table

>49.5 mm Hg

Prior AIDS

No Yes
24.8% 35.4%
N =428 N=113

R2 Predicted

Alive Dead

Alive 322 73
Actual

Dead 106 40
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Figure 2F:
R3 Sub-Branch and Confusion Table

>49.5mm Hg

Prior AIDS

Yes

35.4%
N=113

<492 Yr >49.2 Yr
23.1% 33.3%
N =359 N =69

R3 Predicted

Alive Dead
Alive 276 119
Actual
Dead 83 63

Figure 2: All Possible Sub-Branches of the
Initial Non-Pruned CTA Model, and
Corresponding Confusion Tables

For the final step of the optimal pruning
procedure, Table 1 gives integrated confusion
tables for all nine possible combinations of left
(L1-L3) and right (R1-R3) sub-branches, and
their associated mean sensitivity and ESS. As
seen in Figure 3, the combination L1-R3 has the
greatest mean sensitivity (66.9%), correspond-
ing to optimized ESS=33.7.
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Table 1: Classification Results for Every Combination of Left (L1-L3) and Right (R1-R3) Sub-Branch

Model Confusion Table
L3-R3 Predicted
Alive Dead
Alive 860 128
Actual
Dead 135 70
ESS=21.2
L2-R3 Predicted
Alive Dead
Alive 829 159
Actual
Dead 132 73
ESS=19.5
L1-R3 Predicted
Alive Dead
Alive 869 119
Actual
Dead 142 63
ESS=18.7
<49.5 mm Hg
<492 Yr

8.1%
N =602

<19.6 kg/m?

43.8%
N=16

Model Confusion Table Model Confusion Table
L3-R2 Predicted L3-R1 Predicted
Alive Dead Alive Dead
Alive 906 82 Alive 584 404
Actual Actual
Dead 158 47 Dead 52 153
ESS=14.6 ESS=33.7
L2-R2 Predicted L2-R1 Predicted
Alive Dead Alive Dead
Alive 875 113 Alive 553 435
Actual Actual
Dead 155 50 Dead 49 156
ESS=13.0 ESS=32.1
L1-R2 Predicted L1-R1 Predicted
Alive Dead Alive Dead
Alive 915 73 Alive 593 395
Actual Actual
Dead 165 40 Dead 59 146
ESS=12.1 ESS=31.2

>49.5 mm Hg

27.0%
N =541

>49.2 Yr

> 19.6 kg/m?

8.8%
N =34

Figure 3: Optimized CTA Model
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Compared to the initial CTA model, the
pruned maximum sensitivity version of the CTA
model (L1-R3) provided 10.4% greater mean
sensitivity (60.6% versus 66.9%, respectively),
corresponding to ESS values of 21.2 (relatively
weak effect) versus 33.7 (moderate effect) res-
pectively, and reflecting a 59.9% improvement
in ESS for the optimized model. The optimized
model used one fewer node than the non-pruned
model, rendering it 98.7% more efficient than
the initial model (i.e., averaging 8.4 versus 4.24
ESS-units-per-attribute, respectively).

A Second Example of Optimal Pruning:
Predicting In-Hospital Mortality

The years 1995 to 1997 witnessed early
adoption of highly active antiretroviral therapy
for HIV, and the in-hospital morality rate from
PCP had fallen to approximately ten percent.
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Here we demonstrate pruning to maximize ESS
for a model obtained CTA) to predict in-hospital
mortality due to PCP during this time period.
Analysis was performed for 1,194 patients (72%
of the total sample) with complete data for
model attributes, who were discharged alive
(N=1,054) or who died in-hospital (N=140).
Derived manually using UniODA software, the
CTA model involved four attributes: AaPo,,
albumin, and wasting (rapid decline of 20% or
more in overall body weight). The non-pruned
CTA model (Figure 4) yielded ESS=21.2, a rel-
atively weak effect.

p<0.0001

<53.4
mm Hg

p<0.0001 |\ >52.6

p<0.0001

mm Hg

3.7%
N =589

8.5%
N =189

<2.55 g/dl p<0.0001 \ >2.55 g/dl

49.1%
N =57

23.3%
N =60

Figure 4: Initial Non-Pruned CTA Model
of In-Hospital Mortality from PCP

Shown in Figure 5, the optimized model
achieved 53.8% sensitivity (correct prediction of
dead patients) and 84.3% specificity (correct
prediction of live patients), and has much more
robust endpoint denominators than did the origi-
nal model. The moderate ESS=45.2 achieved
by the optimized model represents a 36.6%
improvement versus the ESS for the non-pruned
model. And, by averaging 22.6 ESS units-per-
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attribute, the optimized model is 173% more
efficient than the original model.

No Yes

p <0.0001

22.9%
N =306

<53.4 mm Hg >53.4 mm Hg

p < 0.0001

3.7%
N =589

16.1%
N =299

Figure 5: Optimized CTA Model of
In-Hospital Mortality from PCP

Table 3 is used for assigning a severity-
of-illness score to patients based on the findings
of the optimized CTA model: rows are model
endpoints reorganized in increasing order of
percent of class 1 (dead) membership. Stage is
an ordinal index of severity of illness, and pgean
a continuous index: increasing values on these
indices indicate worsening disease. Compared to
Stage 1, paeann 1S 4.4-times as high in Stage 2, and
6.2 times as high in Stage 3.

Table 3: Staging Table for Predicting
In-Hospital Mortality From PCP

Stage Wasting AaPo, N Pgeatn

1 No <53.4 589 0.037 1:26
2 No >53.4 185 0.161 1:5
3 Yes 306 0.229 27

To use the table to stage disease severity
for a given patient, simply evaluate fit between
patient data and each stage descriptor. Begin at
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Stage 1, and work sequentially through stages
until identifying the descriptor which is true for
the data of the patient undergoing staging. For
example, consider a hypothetical patient with no
signs of wasting, and with AaP0,=55.7 mm Hg.
Stage 1 does not fit because the patient’s AaPo,
exceeds 53.4 mm Hg. However, because the
patient does not show signs of wasting, and has
AaP0,>53.4 mm Hg, Stage 2 fits the data of this
hypothetical patient.

Discussion

While there is no doubt that the method-
ology described here will always maximize the
mean sensitivity, and therefore the ESS, of any
classification model, it remains unknown with
what relative frequency, and to what extent,
optimal pruning will return a model which has
different structure than the original non-pruned
model. Furthermore, the advantage of optimal
pruning has only been demonstrated for models
derived using CTA, and should be generalized
to models developed by other nonlinear means.
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Two-Group MultiODA: Mixed-Integer
Linear Programming Solution with
Bounded M

Robert C. Soltysik, M.S., and Paul R. Yarnold, Ph.D.

Optimal Data Analysis, LLC

Prior mixed-integer linear programming procedures for obtaining
two-group multivariable optimal discriminant analysis (Multi-
ODA) models require estimation of the value of a parameter, M. A
new formulation is presented which establishes a lower bound for
M, which executes more quickly than prior formulations. A suf-
ficient condition for the nonexistence of classification gaps and
ambiguous solutions, optimal weighted classification, use of non-
linear terms, selecting an optimal subset of attributes, and aggre-
gation of duplicate observations are discussed. When the design
involves six or fewer binary attributes, MultiODA models may
easily be obtained for massive samples.

Classification models derived via multivariable
optimal discriminant analysis (MultiODA) are
linear discriminant classifiers which explicitly
maximize classification accuracy for a given
sample.!  Mixed-integer linear programming
formulations for two-group MultiODA models
require estimation of the value of a parameter,
M, commonly defined as “a prohibitively large
number.”? If the estimated value of M is too low
then suboptimal solutions may occur, and exces-
sively large values of M will decrease computa-
tional efficiency and may introduce numerical
(round-off) error.®> We present a goal program-
ming formulation which establishes a lower
bound for M, and then we discuss a sufficient
condition for the nonexistence of classification
gaps and ambiguous solutions, weighted classi-
fication, the use of nonlinear terms, selection of
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optimal subsets of attributes, and aggregation of
duplicate observations.

MIP45 Methodology

In a two-group linear MultiODA problem
with p attributes and m observations, a set of m
row vectors a; is given, the components of
which are p = n-1 observed values and a dummy
value of unity. Each observation i is a member
of either class 0 or class 1. A weight vector X is
determined so that i is predicted to belong to
class 0 when ajx <0, or to class 1 when ajx > 0.
Observation i is considered to be correctly
classified if its predicted class membership is
the same as its actual class membership, and
misclassified otherwise. Solutions of interest
yield maximum classification accuracy, that is,
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minimize the number of misclassified observa-
tions. This is achieved by determining x* which
satisfy the maximum number of inequalities in
the system:

a;x < 0 for observations in class 0,
aix >0 for observations in class 1. 1)

This problem may be formulated as a
mixed-integer linear programming model. To
accomplish this, the strict inequalities in (1) are
replaced with ajx < -g or ajx > & where £ > 0.
This is necessary due to the inability of simplex-
based algorithms for mixed-integer program-
ming to handle strict inequalities (mixed-integer
techniques based upon interior-point algorithms®
may not suffer this limitation). Letting ¢ be
strictly positive removes the ambiguity in the
classification status of observations i for which
aix = 0, but also introduces the possibility of a
classification gap. It will be shown that there are
conditions under which ambiguities can be re-
moved for £=0. Consider the following model:

m

MIP45: z=min 2 d; ()
i=1

subject to
n
Yaj (g -x)-Midi<-g i€ lo ©)
=1
n
Yaj(x -x)+Midizgiel (4)
=1
n
> (XJ'+ + Xj-) =1 (5)
=1
Xj+-ngO,j:1,..., n (6)
X +tgi<1j=1...,n )
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XX >0,j=1,.,n (8)
gj € {0,1},j=1,...,n 9
di € {0,1}, i=1,...m (10)
where

ajj is the jth component of observation &;

lo is the set of observations belonging to
class 0

I1 is the set of observations belonging to
class 1

M; = max |ag] + & (11)

J

z is the number of misclassified observations.
The weight vector x is obtained by

Xj = Xj+ - Xj-, j:l,..., n. (12)

Since constraints (6) and (7) ensure that not
more than one of the x;* and x; are positive for
any j, we can think of these values as the "pos-
itive" and "negative" parts of x;, respectively.
Note that g; = 1 when x; > 0 and g; = 0 when X; <
0. Also note that the g;, along with (6), (7), and
(9), may be dropped when &> 0.

Constraint (5) normalizes x so that
(13)

that is, the sum of the absolute values of the
discriminant weights is constrained to equal
one. This normalization prevents the trivial
solution x = 0 (when & > 0), and allows us to
establish a lower bound for the M;. It is neces-
sary for the M; to be large enough to force
compliance of the constraints (3) and (4). This
is accomplished by (11). To see this, consider
constraint (4). Since X, |x;| =1, itis clear that
J
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ax > - max | ajl (14)
j
and
aix + max |ajl +e> & (15)
i
Therefore, when d; = 1,
aix + Mid; > & (16)

Because the normalization (5) requires
that all optimal weight vectors x* lie on a 45°
properly rotated hypercube centered at the
origin, this formulation is referred to as MIP45.
It may be the case that more than one solution
for d may be optimal for a problem. This cor-
responds to the existence of multiple optimal
dichotomies of predicted class membership. It
is also generally true that a solution space for x
of positive volume exists for each dichotomy.
The issue of selecting among optimal x* may be
addressed by a number of methods, such as
linear programming® and a priori decision
heuristics.®

Resolving Classification Gaps
and Ambiguities

In the above formulation, at least n - 1 of
the ajx* are at zero when ¢ = 0 is specified.
From (1), it is seen that the criterion of strict
separation of the classes should be met. An
optimal value z* > 0 in the solution of the
following linear program guarantees that this
separation is maintained.

LP: maxz=y
subject to

n
Yaj -b)+y<0,ie lpand aix* <0
=1

17)
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n
aj (o -b)-y>0,ielyandax*>0
j=1

(18)
n
Z (o -b)=1 (19)
=1
by*, by, y >0 (20)
bj = bj+ + bj- . (21)

This LP may be executed for each optimal
dichotomy. If z* > 0O is obtained, b* is a new
discriminant vector which optimizes criterion
(1). Otherwise, ambiguity remains in the class-
ification status of observations for which ajb* =
0: such observations should not be classified.

The advantage of establishing a lower
bound for M is illustrated with an example in-
volving discriminating between excellent versus
less than excellent medical residents using
information obtained during their application for
residency training. Since rating applicants for
residency training is a difficult, time-intensive
decision-making task, a linear discriminant
classifier that successfully predicts resident
performance might be of great interest and
utility to admissions committees.

The sample was m = 49 residents
enrolled in a three-year internal medicine
residency program.” The clinical performance
(class) variable was based on the mean rating on
an explicit 10-point scale made by residents'
supervisors: a mean rating of nine or greater on
this scale reflected “excellent” (or better)
clinical performance (class = 1, m; = 27), and a
mean rating of less than nine reflected less than
excellent clinical performance (class = 0; mg =
22). The n - 1 = 3 application information
variables (attributes) included medical board
scores, faculty evaluations (a composite
measure reflecting ratings of letters of recom-
mendation and medical school grading system),
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and academic distinction (a composite measure
reflecting honors attained in medical school and
medical school status).

The computer resources required to solve
this problem using MIP45 versus Stam and
Joachimsthaler® was compared (other prior for-
mulations were slower). For MIP45, ¢ was set
at 0. For Stam and Joachimsthaler, values of 1,
10, 100, and 1000 were used for M, and a value
of 1 for £° All formulations were solved on an
IBM 3090/300 computer running SAS/OR.'
As seen in Table 1, except when M = 1, Stam
and Joachimsthaler required more computa-
tional effort (CPU time, pivots, and integer

branches) than did MIP45. UsingM =1, ¢=1
in Stam and Joachimsthaler resulted in a useless
solution, and using M = 10 or 100 resulted in
suboptimal solutions of (3). Since a decision-
maker using M = 10 or M = 100 would have no
direct evidence that these solutions were sub-
optimal, it would also be unclear whether the
solution attained by Stam and Joachimsthaler
(or other unbounded formulations) using M =
1000 was optimal. In contrast, since the value
of z* attained in LP was positive, a decision-
maker using MIP45 to solve this problem would
be certain that the solution was unambiguously
optimal: a clear advantage.

TABLE 1

Illustration of Comgutational Resources Needed by MIP45 Versus Stam and

Joachimsthaler

to Solve a Problem with 49 Observations and Three

Attributes, Using SAS/OR run on an IBM 3090/300 Computer

Objective CPU Integer
Formulation M & Value Seconds Branches Pivots
Stam 1 1 29 1.1 0 31
Stam 10 1 17 131.8 8,629 36,607
Stam 100 1 15 276.7 19,755 89,564
Stam 1000 1 14 268.4 14,549 57,351
MIP45 LB 0 14 48.0 2,896 15,333

Note: For MIP45 the M; were set at their lower bounds (LB). For solutions
resulting in the optimal value of 14 misclassifications, model coefficients
for board scores and faculty evaluation were positive, and the coefficient
for academic distinction was negative. For MIP45, z* = .004309.

Weighted Classification

Rather than weighting each observation
equally, we consider weighting each case in (2)
by a positive scalar c¢;. This is significant for
two reasons. First, the ¢; may represent the cost
of misclassifying observation i. In this case an
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optimal solution would minimize the cost of
misclassification (or, equivalently, maximize the
return of correct classification) for the sample.
Second, the c¢;i may represent factors which
balance the number of class 0 and class 1 obser-
vations when these are not equal. In this case an
optimal solution would maximize the number of
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correct classifications weighted by population
membership in each class. An example would
be c;i = 1/m, for observations in class 0, and ¢; =
1/m; for observations in class 1, where my and
m; are the number of observations in categories
0 and 1, respectively. This latter weighting
scheme is particularly useful in badly
imbalanced applications for which mg >> mg, or
visa versa: use of such “priors weights” forces
the model to classify observations from both
classes accurately, and inhibits the identification
of degenerate models which classify all
observations into a single class category.

Adding Nonlinear Terms as Attributes

Here we generalize the notion of maximum
pattern classification accuracy achieved by
separating hyperplanes to sets of nonlinear
separating surfaces. For example, consider
quadratic surfaces in p-measurement space of
the form:

> ajj Xj + 2 X aikd@iXu T ainXn (22)
] k<p I<k
for all i. The MultiODA solution can be attain-

ed by augmenting the & and x in the MIP45
model by the interaction terms in (22). This
solution produces a weight vector x which
yields the minimum number of misclassifica-
tions achievable by a quadratic separating
surface. This process may be applied to any
nonlinear discriminant function which is linear
in the parameters of the measurement space.

Optimal Attribute Subset Selection

In the foregoing we have assumed that all p
attributes are included in the MultiODA model.
However, we may wish to select a subset of k <
p attributes for the application of the model. For
example, imagine an application involving 50
observations and ten attributes. In order to
identify a model that may generalize if used to
classify independent random samples, we may
wish to maintain a minimum observation-to-
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attribute ratio of 10-to-1, so a maximum of five
of the ten potential attributes may be used. Of
all possible 5-attribute models, which yields
maximum accuracy? Optimal attribute subset
selection methodology can be incorporated in
the MIP45 model by defining n zero-one var-
iables g; and including the following constraints:

-0;<0,j=1,..,n (23)
gi+di<1j=1..,n (24)
and
n n
2 gt 2q= (25)
=1 j=1

In an optimal solution to such a MultiODA
model, measurement j is selected for inclusion
only if g; + g; = 1. The number of misclassifica-
tions obtained is the fewest achievable in any k-
dimensional subspace of the original p-dimen-
sional measurement space.

Aggregation of Duplicate Observations

If duplicate observations occur in the data
set (i.e., two or more observations have the
same value for every attribute measurement),
the following procedure may be used to
aggregate the duplicate observations into a
single observation, reducing the size of the
overall problem. The resulting problem is
equivalent to the original one, with m’ observa-
tions, and objective value z + v.

m:=m:sg=0:5=0:v:=0
foreachi=1,...,m’

foreach j<i

ifi € Igthen sy :=sy+cjelses; :=s; + ¢

m -1

1

2

3

4.  ifa=ajthen
5

6 remove observation i from list : m’ :=
7

end if
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8. nextj,i

9. foreachi=1,....m’

10. if sy > s, then

11, Wwji=sp-s1:vi=v+s,

12. elseif s; > sy then

13, Wji=s-Sp:vi=v+s,

14. else

15. v:=v+sy:remove observation i from list :
m :=m’-1

16. endif

17. nexti

This procedure is particularly useful when
aj is a zero-one vector (all attributes are binary).
Here all the patterns lie on the vertices of the p-
dimensional unit hypercube. If more than one
pattern lies on some vertex, then by using the
above procedure we may obtain a weighted
MIP45 model equivalent to the original model,
but with fewer constraints. If the number of
original patterns m is large relative to the
number of attributes p, a significant reduction in
the size of the model may be obtained. For
instance, regardless of the value of m, if p=8
then we end up with no more than 2° = 256
constraints of type (6) in the model. Since the
number of constraints is independent of m,
extremely large problems may be solved with
this procedure, provided p is moderately small.

In order to illustrate the potential solution
efficiency gained by using this special purpose
algorithm for problems involving entirely binary
data, we ran 30 Monte Carlo experiments. In
each experiment there were five binary
attributes, such that the total possible number of
different profiles was 2° = 32. Values on each
attribute were determined separately for each
observation on the basis of a random uniform
number between 0 and 1: numbers < 0.5 were
assigned the value of 0, and numbers > 0.5 were
assigned the value of 1. We ran five balanced
(mo = my) experiments for each total sample size
of 50, 100, 1000, 10*, 10°, and 10° total observa-
tions. All formulations were solved on an IBM
3090/300 computer running SAS/OR. As seen
in Table 2, as the number of observations
increased: (a) the number of distinct profiles
increased toward its theoretical upper bound
(the theoretical upper bound was achieved in all
of the problems involving 10° observations, and
in four of the five problems involving 10°
observations); (b) the misclassification rate
increased towards its theoretical upper bound
(i.e., for a balanced design with an even number
of observations, the theoretical upper bound for
the number of misclassifications is one less than
one-half of the total number of observations);
and (c) the mean number of CPU seconds
required to solve the problem was approx-
imately twenty seconds for problems with 1000
or more total observations.

TABLE 2

Results of Monte Carlo Experiments for Binary Data: Five Random Attributes

Number of Number of
Observations Profiles
50 19
50 23
50 20
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Number (%) of CPU
Misclassifications  Seconds

14 (28%) 45

13 (26%) 55

16 (32%) 8.4
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50 23
50 21
100 30
100 26
100 25
100 24
100 20
1000 32
1000 30
1000 31
1000 31
1000 31
10000 29
10000 31
10000 31
10000 29
10000 31
100000 32
100000 32
100000 31
100000 32
100000 32
1000000 32
1000000 32
1000000 32
1000000 32
1000000 32
Discussion

MIP45 solves two problems common to
prior goal programming formulations of two-
group MultiODA: M is automatically set at its
lower bound, and it is possible to determine
whether classification gaps or ambiguities exist.
Collateral benefits of MIP45 include its greater
computational efficiency and solution speed
relative to prior formulations, particularly for
applications involving binary attributes.

14 (28%) 125

12 (24%) 1.7

27 (27%) 14.2

34 (34%) 9.0

43 (43%) 10.5

37 (37%) 75

33 (33%) 3.0
432 (43%) 17.8
445 (44%) 25.1
449 (45%) 16.4
460 (46%) 24.3
454 (45%) 19.2
4870 (49%) 12.3
4838 (48%) 23.8
4842 (48%) 24.9
4828 (48%) 11.9
4839 (48%) 9.2
49545 (50%) 14.5
49532 (50%) 21.6
49526 (50%) 6.3
49475 (49%) 25.2
49376 (49%) 16.8
498331 (50%) 24.3
498759 (50%) 17.2
498450 (50%) 325
497861 (50%) 45
498837 (50%) 16.8
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This study contrasted the computational
characteristics of the MIP45 formulation of the
MultiODA problem to the formulation of
Joachimsthaler and Stam (see Table 1). Other
mixed-integer programming formulations have
appeared more recently. Rubin developed a
decomposition technique to solve the Multi-
ODA problem.** Silva and Stam developed a
partitioning method for MultiODA which was
reported to compare favorably with MIP45.2
Pfetsch developed a technique to optimize
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irreducible inconsistent subsystems (1IS) of
linear inequalities in order to determine a maxi-
mum feasible subsystem of these inequalities.™
Finally, Bremner and Chen developed a MIP
formulation for the halfspace depth problem
which uses IS cuts in a branch-and-cut algor-
ithm.'* We eagerly anticipate computational
comparisons between these formulations.
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Unconstrained Covariates
IN CTA

Paul R. Yarnold, Ph.D. and Robert C. Soltysik, M.S.

Optimal Data Analysis, LLC

In traditional statistical covariate analysis it is common practice to
force entry of the covariate into the model first, to eliminate the
effect of the covariate (i.e., “equate the groups”) on the dependent
measure. In contrast, in CTA the covariate is treated as an ordinary
attribute which must compete with other eligible attributes for
selection into the model based on operator-specified options. This
paper illustrates optimal covariate analysis using an application
involving predicting patient in-hospital mortality via CTA.

A study of 1,641 patients hospitalized
for Pneumocystis cariini pneumonia (PCP) used
logistic regression analysis to model in-hospital
mortality: after forcing a measure of severity-of-
illness into the model first, PCP prophylaxis was
the only attribute significantly associated with
lower hospital survival." During development
of an enumerated model involving only these
two attributes, a non-pruned® CTA model was
identified which is analogous to the logistic reg-
ression analysis, in that both models initially
adjusted for severity of illness. CTA analyses
were performed using automated software with
a minimum endpoint denominator of N=25 to
ensure sufficient statistical power.> The optimal
solution involved one parse of the root attribute
(i.e., the first and second attributes entering the
CTA model were both PCP severity-of-illness),
so the model has three emanating branches (see
Figure 1).

Consistent with findings using logistic
regression, this CTA model returned weak gain
versus chance in predicting mortality: 97.9% of
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PCP Severity
Score

p, < 0.0001
2

p, < 0.0001

5.9%
N =892

13.8%
N =616

PCP
Prophylaxis

p <0.001

No Yes

20.8% 50.8%
N=72 N=61

Figure 1: Algorithmic CTA Model Predicting
In-Hospital Mortality, Covariate Entered First
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1,457 living and 16.8% of 184 deceased patients
were correctly classified: ESS=14.8, efficiency=
14.8/2 or 7.4 ESS units-per-attribute. Though
the CTA model is weak, the right-most endpoint
indicates that the combination of a PCP severity
score of three or greater, and PCP prophylaxis,
predicted nearly 51% mortality for 61 patients.
Thus, for applications in which it is important to
identify particularly vulnerable strata, a variety
of different CTA models should be examined in
hopes of discovering one or more of such fruit-
ful branches (i.e., combinations).

In contrast, as illustrated in Figure 2, the
enumerated CTA model obtained using the
same two attributes has robust endpoint denom-
inators; correctly classified 67.9% of the 1,457
living and 61.4% of the 184 dead patients; and
obtained moderate strength (ESS=29.4) and eff-
iciency (9.8 ESS units-per-attribute).

PCP
Prophylaxis

p <0.001 p <0.001

4.7%
N =428

14.9%
N =403

8.1%
N =633

29.9%
N=177

Figure 2: Enumerated CTA Model Predicting
In-Hospital Mortality: Covariate Unconstrained

Table 1 gives the staging table for the
enumerated CTA model, used for predicting in-
hospital mortality from PCP. Table rows are
model endpoints reorganized in increasing order
of percent of class 1 (“dead”) membership.
Stage is an ordinal index indicating increasing
severity of illness, and pgean IS @ continuous
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index of disease severity. The 1% and 4™ strata
reflect a 6.4-fold difference in likelihood of
dying in-hospital: compared to Stage 1, pean IS
approximately two times higher in Stage 2, three
times higher in Stage 3, and six times higher in
Stage 4.

Table 1: Staging Table for Predicting
In-Hospital Mortality From PCP

PCP Severity
Stage Prophylaxis Score N pPgean Odds
1 No 1 428 0.047 1:20
2 Yes <2 633 0.081 111
3 No >2 403 0.149 16
4 Yes >3 177 0299 37

Although identical attributes were used
by the two CTA models and the original linear
logistic regression analysis, the attributes were
arranged in different geometries in the different
models. Of course, an analyst’s imposition of
attribute entry or sequence order in CTA, or any
chained optimal analysis, should be performed
on the basis of theory, that is, to directly address
a priori hypotheses.” However, the present case
clearly indicates the need for caution regarding
unchecked rigid adherence to methodological
traditions which may actually impede progress
achieved using emerging and new technologies.
Automated CTA software makes the compara-
tive analysis of multiple theoretical perspectives
feasible for most applications: challenging and
defeating unfruitful traditions ought to make for
interesting, if not exciting research.
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Maximizing the Accuracy of Probit
Models via UniODA

Barbara M. Yarnold, J.D., Ph.D. and Paul R. Yarnold, Ph.D.

Optimal Data Analysis, LLC

Paralleling the procedure used to maximize ESS of linear models
derived using logistic regression analysis or Fisher’s discriminant
analysis, univariate optimal discriminant analysis (UniODA) is
applied to the predicted response function values provided by a
model derived by probit analysis (PA), and returns an adjusted
decision criterion for making classification decisions. ESS obtains
its theoretical maximum value with this adjusted decision criterion,
and the ability of the PA model to return accurate classifications is
optimized. UniODA-refinement of a PA model is illustrated using
an example involving political science analysis of federal courts.

Probit analysis (PA) has gained in popularity as
research in political science seeks increasingly
accurate models of court decision-making.®
For applications having a binary class variable
and at two or more attributes, PA allows assess-
ment of the independent relationship between
class variable and attribute. Parameter estimates
are obtained by maximum-likelihood, and indi-
cate the amount of change in the cumulative
normal probability function that is associated
with a one-unit change in the attribute value.
Goodness-of-fit of PA models was traditionally
assessed using R? and chi-square, but this was
criticized.® The supreme criterion for all class-
ification models is their ability to make accurate
predictions. PA does not explicitly maximize
classification accuracy, but effect strength for
sensitivity (ESS) yielded by PA models may be
maximized by optimizing the models decision-
making criterion.’®** This note illustrates the
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use of UniODA-refinement to optimize a model
derived using PA.

Federal Court Decisions
in Asylum-Related Appeals

To illustrate this method we consider the
asylum-related appeals to the federal courts
covering the period of 1980-1987, constituting
137 cases having complete data. The class
variable indicated whether aliens won (N=59) or
lost (N=78) their appeal. Six binary attributes
used in PA included whether any organizations
were involved in the appeal; the alien was from
a country hostile to the USA; the alien was from
Europe; the court was located in the Western
USA; a high percentage of the judges involved
in the appeal were appointed by a Democratic
President; and whether there was a high level of
immigrant-flow into the circuit. The resulting
PA model correctly predicted 71.2% of the wins
and 55.1% of losses, resulting in ESS=26.4.
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UniODA was then used to optimize the
model: the PA model was first used to obtain Y*
for every observation, and then UniODA was
conducted on those Y* using the original class
variable coding.** The adjusted decision criter-
ion for the PA model was: if Y*>0.025 predict
class=1 (win); otherwise predict class=0 (loss).
The optimized PA model correctly predicted
64.4% of the wins and 71.8% of losses, yielding
ESS=36.2, representing a 37% improvement in
this index relative to the non-refined model.

Discussion

The objective of this note was to illustrate
how UniODA-refinement can improve classifi-
cation performance obtained by a model derived
by PA. The example demonstrated a substantial
increase in the level of training accuracy (ESS)
achieved by the model, a finding which is com-
mon when the decision criteria of suboptimal
models are optimized via UniODA-refinement.
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Precision and Convergence of Monte
Carlo Estimation of Two-Category

UniIODA Two-Tailed p

Paul R. Yarnold, Ph.D. and Robert C. Soltysik, M.S.

Optimal Data Analysis, LLC

Monte Carlo (MC) research was used to study precision and convergence
properties of MC methodology used to assess Type | error in exploratory
(post hoc, or two-tailed) UniODA involving two balanced (equal N)
classes. Study 1 ran 10° experiments for each N, and estimated cumula-
tive p’s were compared with corresponding exact p for all known
p values. Study 2 ran 10° experiments for each N, and observed the
convergence of the estimated p’s. UniODA cumulative probabilities
estimated using 10° experiments are only modestly less accurate than
probabilities estimated using 10° experiments, and the maximum ob-
served error (+0.002) is small. Study 3 ran 10° experiments for Ns
ranging as high as 8,000 observations in order to examine asymptotic

properties of optimal values for balanced designs.

A recursive, closed-form solution for the theor-
etical distribution of optimal values for one-
tailed “confirmatory” UniODA of random data
is discovered, and associated computation time
is linear in N.* In applications where an a priori
alternative hypothesis has been specified, Type |
error rate or alpha (p) can be computed for any
combination of optimal value and N. For two-
tailed “exploratory” applications, a closed-form
solution for the distribution of optimal values
has not yet been discovered. For post hoc
UniODA the enumerable open-form solution for
the theoretical distribution of optimal values is
computationally intractable for N>30, but the
one-tailed solution can be used to determine the
two-tailed distribution if overall classification
accuracy is at least 75%.! Other means are
needed to estimate the two-tailed distribution if
overall classification is less than 75%. This
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study uses Monte Carlo (MC) research to assess
precision and convergence properties of MC
methods used to estimate p for UniODA.

Precision

One million MC experiments were run for
each balanced design of N<30. A design is
balanced if the number of class 1 and O obser-
vations is identical for even N, or differs by one
for odd N. In every experiment, the attribute
was a uniform random number between zero
and one.” For even N experiments the first N/2
observations were assigned to class 1, and the
rest to class 0. For odd N experiments the first
(N-1)/2 observations were assigned to class 1,
and the rest to class 0. For each experiment the
optimal value was determined and stored. For
each N the estimated UniODA distribution was
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cumulated after 10° experiments were run. To
compare estimated and known distributions,
cumulative p>0.001 were rounded up to the
nearest thousandth, and cumulative p<0.001
were rounded up on the second significant digit.

The results suggest that MC experiments
accurately estimated known post hoc UniODA
distributions. Over all N and possible optimal
values, 170 of 238 (71.4%) estimated cumula-
tive probabilities were identical to the exact
value; 237 of 238 (99.6%) of the estimates were
+0.001 of the exact value; and all estimates
were +0.002 of the exact probability.

Estimated cumulative probabilities were
most accurate when the exact probability was
small. For example, for optimal values with
associated exact cumulative probabilities of
0.05<p<0.001, 45 of 50 (90%) of the estimated
probabilities were identical to the corresponding
exact probability; 49 of 50 (98%) of estimated
probabilities were +0.001 of exact probability;
and all estimated probabilities were +0.002 of
the exact probability.

MC experiments also provided accurate
estimates of exact cumulative probabilities for
statistically marginal (0.05<p<0.10) effects: 13
of 15 (86.7%) of the estimated cumulative prob-
abilities were identical to their corresponding
exact values, and all estimated probabilities
were +0.001 of the exact probability.

Cumulating 10° MC experiments for a
given N provides an accurate approximation of
the UniODA distribution, but the computational
cost is high. Accordingly, Study 2 investigated
convergence properties of MC methodology and
was designed to determine the number of MC
experiments that is sufficient to achieve stable,
accurate estimates of UniODA distributions.

Convergence

MC experiments were designed and data
generated as in Study 1. For each N between 3
and 30 inclusive, 10° experiments were run in
successive blocks of 1,000 experiments, and the
UniODA distribution was cumulated at each
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block. Thus, 100 UniODA distributions were
estimated for each N: the first based on 1,000
experiments, the second based on 2,000 experi-
ments, and the 100" based on 10° experiments.

Many (56.9 percent) of the estimated p's
converged to their final value (i.e., their value at
the end of the study) within 20,000 experiments,
and most (86.3 percent) of the estimated p's
converged to their final value within 70,000
experiments.

After 10° experiments were completed,
every estimated p in the range 0.001<p<0.10
was identical to the corresponding estimated p
based on 10° experiments (precision study).

Consistent with the first study, known
UniODA distributions were accurately modeled.
For probabilities in the range 0.001<p<0.05: 35
of 50 (70%) estimated cumulative probabilities
were identical to corresponding exact values; 49
of 50 (98%) estimated probabilities were +0.001
of exact; and all estimated probabilities were
+0.002 of the exact value.

Thus, UniODA cumulative probabilities
estimated using 100,000 MC experiments are
only modestly less accurate than probabilities
estimated using one million experiments, and
the maximum observed error (+0.002) is small.

Asymptotic Convergence

A final study investigated convergence
properties of interesting levels of classification
performance for balanced two-category post hoc
UniODA. MC experiments were designed and
data generated as in Study 1. For all N between
1,000 and 8,000 inclusive, in steps of 1,000, a
total of 10° MC experiments were run. Results
of the simulation are presented in Table 1.

Tabled for the indicated value of pand N
are the optimal value and the corresponding per-
centage accuracy in classification or PAC (top
and bottom row, respectively). The optimal
value is the maximum number of misclassifica-
tions possible to still achieve the p value. For
example, for N=1,000 observations and p<0.001
a maximum of 438 misclassifications can be
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made, corresponding to 562 correct classifica-
tions, and thus to PAC=(562/1,000)x100%, or
56.2% (see Table 1).

Table 1: Maximum Optimal Value for 2-Tail
p in Balanced 2-Category UniODA

Two-Tail p<

N 0.001 0.01 0.05 0.10
1,000 438 448 457 461
56.2 55.2 54.3 53.9

2,000 912 927 939 945
54.4 53.6 53.1 52.8

3,000 1393 1411 1425 1433
53.6 53.0 525 52.2

4,000 1876 1896 1913 1922
53.1 52.6 52.2 52.0

5,000 2361 2384 2403 2413
52.8 52.3 51.9 51.7

6,000 2849 2874 2894 2905
525 52.1 51.8 51.6

7,000 3336 3364 3386 3397
52.3 51.9 51.6 51.5

8,000 3825 3853 3878 3890
52.2 51.8 51.5 51.4
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For p<0.05 a maximum of 457 misclas-
sifications are possible, corresponding to PAC=
(543/1,000)x100%, or 53.9%. For N=5,000 and
p<0.01, a maximum of 2,384 misclassifications
are possible, corresponding to PAC=[(5,000-
2,384)/5,000]x100%, or 52.3%.

In balanced designs involving as few as
1,000 observations, a UniODA model perform-
ing only a modicum better than an unbiased flip-
ped coin (i.e., obtaining at least 55.2% “heads”)
yields classification accuracy which is sufficient
to achieve p<0.001. Therefore, as N increases
in magnitude the significance of p as an index of
performance rapidly diminishes to trivial levels.
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Aggregated vs. Referenced Categorical
Attributes iIn UniODA and CTA

Paul R. Yarnold, Ph.D. and Robert C. Soltysik, M.S.

Optimal Data Analysis, LLC

Multivariable linear methods such as logistic regression analysis,
discriminant analysis, or multiple regression analysis, for example,
directly incorporate binary categorical attributes into their solution.
However, for categorical attributes having more than two levels,
each level must first be individually dummy-coded, then one level
must be selected for use as a reference category and omitted from
analysis. Selection of one or another level as the reference category
can mask effects which otherwise would have materialized, if a
different level had been chosen. Neither UniODA nor CTA require
reference categories in analysis using multicategorical attributes.

Using a categorical attribute with three or more
levels in a linear multivariable analysis requires
separately dummy-coding each level, selecting
one level as a reference category, and omitting it
from analysis.! For example, imagine that a
study assessed three ethnic categories: Navajo,
Sumatran, and Inuit. Preparing this attribute for
linear analysis first requires creating three new
binary attributes: [a] Navajo (1) vs. others (0);
[b] Sumatran (1) vs. others (0); and [c] Inuit (1)
vs. others (0). Only two of the dummy-variables
can be used as attributes in analysis, and one’s
choice can mask an effect depending on which
class is selected as reference category. As an
increasing number of polychotomous attributes
are used, the associated design matrix becomes
massive rapidly, increasing the likelihood of
sparse or empty cells, imbalanced marginal dis-
tributions and nonnormality, toxic properties for
linear methods. In addition to possibly masking
effects, inducing numerical instability, under-
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mining assumptions underlying the validity of p,
and contributing to overdetermined models, the
use of reference categories is also antithetical to
the axiom of parsimony. Finally, in computer-
intensive methods such as CTA, a larger number
of attributes increases both memory and time
resources needed to obtain an optimal solution.

In contrast, UniODA? and CTA® use
aggregated multicategory attributes. Using the
current example one “ethnicity” attribute having
three levels (rather than three ethnicity attributes
each having two levels) requires coding: Navajo
(1), Sumatran (2), or Inuit (3).

This paper illustrates some advantages
of using aggregated attributes in both bivariate
(UniODA) and multivariable (CTA) analyses,
using an application involving predicting use of
mechanical ventilation for hospitalized patients
with Pneumocystis cariini pneumonia (PCP).*
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UniODA

The analysis selected for exposition con-
trasts intubation rate for a total sample of 1,211
patients hospitalized for PCP in Chicago, Los
Angeles, Miami, New York, and Seattle. The
first analysis used the aggregated attribute, arbi-
trarily using dummy-codes of 1-5 for cities, res-
pectively. The resulting UniODA model was: if
city=Los Angeles or Chicago then predict a
higher ventilation rate; otherwise predict a lower
ventilation rate. This model correctly classified
54.9% of 1,418 non-ventilated, and 61.9% of
147 ventilated patients, yielding a relatively
weak ESS=16.8 (p<0.0006), which was stable in
jackknife validity analysis.

Using the aggregated city attribute and
therefore one test of a statistical hypothesis,
UniODA determined three cities have a lower
ventilation rate than two other cities, and even
though the effect is statistically significant and
likely to cross-generalize for an independent
random sample, the effect is weak, reflecting
only 16.8% of the gain in accuracy theoretically
possible to achieve beyond chance.

UniODA was next used to assess the
ability of all five binary city attributes to predict
ventilation: the test for Los Angeles (p<0.0006)
alone achieved the criterion? for statistical signi-
ficance with a weak effect of ESS=12.6. This
result indicates that Los Angeles had a higher
ventilation rate than the other four cities. Five
tests of statistical hypotheses were conducted in
reaching this conclusion, and must be accounted
for in assessing the statistical significance of all
hypothesis tests conducted within the study.

CTA

In the original research from which the
example was drawn, ventilation was modeled by
logistic regression analysis.* Predictive factors
which emerged included a PCP severity score
developed previously via CTA?®, location (Los
Angeles), ethnicity (African-American), and a
cytological confirmation of PCP diagnosis. For
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clarity in exposition, the same attributes selected
by logistic regression were modeled presently.
Algorithmic CTA® was run via ODA automated
CTA software, using a minimum endpoint
denominator of N=25 to ensure adequate statis-
tical power.’

The first analysis used aggregated race
and city attributes. The “aggregated attributes”
model selected three attributes, and correctly
classified 66.4% of intubated and 68.1% of non-
intubated patients, yielding a moderate effect:
ESS=34.5 (Figure 1).

PCP
Severity
Score

p <0.0001

18.6%
N=431

New York,
Seattle,
Miami

Los Angeles,
Chicago

4.3%
N=631

PCP
Severity
Score

p <0.0001

6.2%
N =389

16.8%
N =125

Figure 1: CTA Intubation Model using
Aggregated Race and City Attributes

The second analysis used individually
dummy-coded race and city attributes, although
unlike linear models which require omission of
a reference attribute from analysis, with CTA all
of the binary attributes compete for admission to
the model. The “separately coded attributes”
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model selected five attributes and correctly
classified 78.0% of intubated and 57.0% of non-
intubated patients, yielding a moderate effect:
ESS=35.0 (Figure 2).

PCP
Severity
Score

p < 0.0001

18.6%
N =431

Los
Angeles

No Yes

p <0.003

10.4%
N =251

PCP
Severity
Score

p < 0.007

3.8%
N =651

African
American

Yes

6.2%
N =48

26.2%
N =42

Figure 2: CTA Intubation Model using
Separately Coded Race and City Attributes

The models selected the same attributes
except for one separately-coded race attribute.
The aggregated attributes model employed one
attribute to model city, and achieved an overall
model efficiency=34.5/3 or 11.5 ESS units-per-
attribute. In contrast, the separately-coded attri-
butes model used two attributes to model city,
and achieved an overall model efficiency=
35.5/5 or 7.1 ESS units-per-attribute). Thus, the
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aggregated attributes model is 62% more effic-
ient than the separately-coded attributes model.

Note that the final “Chicago” attribute in
the separately-coded attributes CTA model was
retained on the basis of model-wise Bonferroni
criterion.? However, had one additional test of a
statistical hypothesis been conducted (e.g., as in
any random typical published study), then the
Chicago attribute would have been pruned from
the model.

Yet another advantage of parsimonious
CTA models is that by having fewer endpoints
into which observations are partitioned, the
minimum endpoint denominators may be larger.
Presently, the minimum endpoint denominator
for the aggregated attributes model (N=125) is
nearly three times larger than for the separately-
coded attributes model (N=42). Estimates for
the aggregated attributes model are thus more
robust over sampling anomalies and likely to
cross-generalize, especially for smaller samples.

Using a 3 GHz Intel Pentium D micro-
computer, the separately-coded attributes model
required 78 CPU seconds to solve, 34.5% more
than the 58 CPU seconds required to solve the
aggregated attributes model. These problems
were relatively simple for automated CTA soft-
ware to solve, so computing efficiency gained
by using aggregated categorical attributes was
relatively modest compared to gains obtained in
complex analyses. Presently, for example, enu-
merated CTA models (not shown) involving
aggregated (1,394 CPU seconds) or separately-
coded (4,054 CPU seconds) attributes revealed a
190.8% gain in computing efficiency.
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Manual vs. Automated CTA: Optimal
Preadmission Staging for Inpatient
Mortality from Pneumocystis
cariini Pneumonia

Paul R. Yarnold, Ph.D. and Robert C. Soltysik, M.S.

Optimal Data Analysis, LLC

Two severity-of-illness models used for staging risk of in-hospital
mortality from AIDS-related Pneumocystis cariini pneumonia
(PCP) were developed using hierarchically optimal classification
tree analysis (CTA), with models derived manually via UniODA
software. The first of the “Manual vs. Automated CTA” series, this
study contrasts classification results between original models and
corresponding new models derived using automated analysis.
Findings provide superior staging systems which may be employed
to improve results of applied research in this area.

Software designed to conduct automated CTA
became commercially available in the summer
of 2010." Research conducted before this time
obtained CTA models by a laborious manual
process involving UniODA software.>® Beyond
obvious savings in time and labor, two primary
advantages of automated CTA involve pruning.
First, Type | error for the CTA model is
ensured at an investigator-specified level via a
sequential Bonferroni procedure.®> When the
CTA model is derived manually, the Bonferroni
procedure is conducted as best as possible as the
model is grown (this becomes increasingly diffi-
cult as the model gains in complexity), as well
as after the model can no longer be expanded.
Attributes in close proximity to the root variable
and having p near 0.05, may be forced out of the
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model as an increasing number of attributes load
on lower branches, disrupting the model and the
modeling process. When conducting automated
analysis however, this recursive trimming and
re-development process is user-transparent: the
computer simply executes the algorithm.
Second, the automated software always
conducts optimal pruning to explicitly maximize
model accuracy, another process which becomes
difficult to accomplish manually for complex
models.* This paper illustrates these advantages
using data previously assessed by manual CTA.

PCP in the Early AIDS Era

Research with a sample of 1,339 patients
hospitalized with HIV-associated PCP between
1987 and 1990—when hospital mortality rates
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ranged as high as 60%, is considered first.> With
five attributes (alveolar-arterial oxygen gradient,
AaPo,; age—used twice; body mass index; and
a binary indicator of whether a patient had prior
history of AIDS) the manually-derived CTA
model correctly classified 34.1% of 205 patients
who died, and 87.0% of 988 living patients (146
patients had missing data on some attributes in
the model), yielding a relatively weak® ESS=
21.2. This model offered an order-of-magnitude
gain in ESS versus the best prior linear model
(logistic regression), and more than doubled the
ESS achieved by the best prior classification
tree model (regression-based recursive partition-
ing).> This CTA model was pruned to maximize
ESS, correctly classifying 74.6% of dead and
59.1% of living patients, and returning moderate

<202 cells/mm?
p<0.02

40.0%
N=70

>202
cells/mn?

<49
mm Hg

> 49

p<0.0001

mm Hg

8.6%
N=175

31.3%
N=131

Total

Lymphocyte

Count

mm Hg

ESS=33.7: a 59% improvement versus the non-
optimized model.* Using three attributes, effic-
iency=11.2 ESS units-per-attribute, and thus the
optimized model was 165% more efficient than
the original model (4.2 ESS units-per-attribute).
Automatic CTA software was used to
obtain an enumerated CTA model using the
same attributes and data available for prior lo-
gistic regression and recursive partitioning anal-
yses (see Figure 1). The enumerated CTA model
had 69.5% sensitivity, 70.1% specificity, mod-
erate ESS=39.7 (17.8% greater than for the opti-
mized manual model), and efficiency=13.2 ESS
units-per-attribute (17.9% greater than the opti-
mized manual model). Analysis was completed
in 278 CPU seconds using a 3 GHz Intel Pen-
tium D microcomputer (used in all analyses).

>611
cells/mm?

<62 > 62

mm Hg

p<0.0001

8.0%
N =474

29.9%
N=174

Figure 1: Enumerated CTA Model for Predicting PCP Inpatient Mortality Prior to 1995

Research in the Highly Active
Antiretroviral Therapy (HAART) Era

Research investigating a sample of 1,660
patients hospitalized with HIV-associated PCP
between 1995 and 1997—the period marking
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early adoption of non-nucleoside reverse trans-
criptase and protease inhibitors as HIV therapy,
is considered next.° Using four attributes
(wasting, AaPo,—used twice, and Albumin, the
manually-constructed CTA model correctly
classified 59.4% of 128 patients who died, and
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73.7% of 1,066 patients who lived (466 patients
had missing data for model attributes), yielding
moderate ESS=33.1. Pruned to maximize ESS,
the two-attribute optimized model had 53.8%
sensitivity (correct prediction of dead patients),
84.3% specificity (correct prediction of living
patients), and moderate ESS=45.2 (the optimi-
zed model trimmed two nodes previously eman-
ating from the right side of the root node). The
optimized model thus offers a 36.6% increase in
ESS versus the original model, as well as 172%
greater efficiency (22.6 vs. 8.3 ESS units-per-
attribute, respectively).>*

An enumerated CTA model was conduc-
ted via ODA automatic CTA software, allowing
a jackknife-unstable attribute to enter the model
if it met the Bonferroni criterion® for statistical
significance, and if its jackknife ESS exceeded
training or jackknife ESS afforded by alternative
attributes. To facilitate a direct comparison of
models, the three-attribute enumerated model
was developed using the attributes selected by
the manually derived model: wasting, AaPo,
and Albumin. The enumerated CTA model (see
Figure 2) had 65.4% sensitivity, 88.2% specific-
ity, a relatively strong ESS=53.7 (19% greater
than for the optimized manual CTA model), and
efficiency=17.9 ESS units-per-attribute (20.8%
lower than for the optimized manual model).
Analysis was completed in 101 CPU seconds.

In such “disease-staging research” it is
customary to provide a staging table, such as in
Table 1.° Rows in the staging table are CTA
model endpoints which have been reorganized
in order of increasing percent of class 1 (dead
patients) membership. Stage is an ordinal index
of severity of illness, and pgen IS @ continuous
index: increasing values on either index indicate
increasing (worsening) disease severity. The 1%
and 4" strata reflect a 16-fold difference in like-
lihood of dying in-hospital: compared to Stage
1, peearn 1S @bout four times as high in Stage 2,
fifteen times as high in Stage 3, and sixteen
times as high in Stage 4.

<3 g/l >3 g/dl

p < 0.0001

2.2%
N =594

<59.6 mm Hg >59.6 mm Hg

p <0.0001

<2.25 g/dl > 2.25 g/dI

p <0.0001

33.3% 8.1%
N =54 N =185

Figure 2: Enumerated CTA Model for
Predicting PCP Inpatient Mortality After 1995,
Based on Three Attributes

To use the table to stage disease severity
for a given patient, simply evaluate fit between
patient data and each stage descriptor. Begin at
Stage 1, and work sequentially through stages
until identifying the descriptor which is true for
the data of the patient undergoing staging.

Table 1: Staging Table for Predicting
In-Hospital Mortality From PCP, First Model

Stage Albumin  AaPo, N Paeatn  Odds

1 >3 ---- 594 0.022 1:44
2 >225 <59.6 185 0.081 1:11
3 <225 <596 54 0333 12
4 <3 >596 99 0354 6:11
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For example, imagine a patient was 54
years of age, male, morbidly obese, with
albumin of 2.47 g/dl and AaPo, of 61.7 mm Hg.
Here, age, gender and mass are immaterial to
the staging process, because only attributes in
the staging table are used in the staging process.
Stage 1 does not fit, as the patient’s albumin
level is less than 3 g/dl. Stage 2 does not fit
because the patient’s AaPo; is greater than 59.6
mm Hg. Stage 3 does not fit as the patient’s
albumin is greater than 2.25 g/dl (when evaluat-
ing a descriptor, the first instance of inaccuracy
immediately eliminates the Stage from further
consideration). Because the staging table has
one degree of freedom, Stage 4 must fit: the
patient’s albumin is less than 3 g/dl, and AaPo;
is greater than 59.6 mm Hg—so Stage 4 indeed
fits the data of this hypothetical patient.

<3 g/l >3 g/dI

p<0.0001

2.2%
N =594

Neurologic
Symptoms

No Yes

p<0.0001

<2.25g/dl >2.25 g/l

p<0.0001

22.4%
N =98

5.9%
N =289

Figure 3: Algorithmic CTA Model Predicting
PCP Inpatient Mortality After 1995, Using
Attributes From Prior Manual Analysis
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Using automated software we next ran
automated algorithmic CTA (in which the CTA
algorithm is performed with optimal parsing but
without enumeration), using all of the attributes
employed in original analysis.® A model having
three attributes was identified (Figure 3) with
71.2% sensitivity, 83.9% specificity, a relatively
strong ESS=55.0 (2.5% greater than for the
optimized manual model), and efficiency=18.3
ESS units-per-attribute (2.4% greater than for
the optimized manual model). Analysis was
completed in 85 CPU seconds. The correspond-
ing staging table is presented in Table 2.

Table 2: Staging Table for Predicting
In-Hospital Mortality From PCP, Second Model

Neurologic
Stage Albumin Symptoms N  pgean Odds
1 >3 emeeeee- 594 0.022 1:44
2 >225 No 289 0.059 1:16
3 <225 No 98 0.224 2:7
4 <3 Yes 140 0.371 35

An enumerated analysis was conducted
next, and a CTA model emerged which yielded
a relatively strong effect (ESS=61.4). However,
the model included six attributes (two repeated
twice), and another attribute which involved a
parse. The added complexity, 100% increase in
number of attributes employed in exchange for a
11.6% gain in ESS, and 44.1% decrease in effic-
iency associated with use of the enumerated
model, argued in favor of adopting the algorith-
mic model in this application.

Discussion

Because of inherent importance (having
already been judged worthy of publication), and
to assemble a literature which may eventually
be tapped to assess the magnitude of the boosted
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ESS offered by these methods in real-world
applications, all published CTA models derived
manually should minimally be optimized using
UniODA to return maximum ESS, and the
pruned models should be published, as is true
presently. Of course, all manually derived CTA
models should be pruned to maximize ESS prior
to consideration. However, current state-of-
the-art methodology for achieving maximum
ESS involves conducting automated enumerated
CTA, which is the optimal choice.
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Manual vs. Automated CTA:
Psychosocial Adaptation in Young
Adolescents with Spina Bifida
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Fred B. Bryant, Ph.D., and Paul R. Yarnold, Ph.D.
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Compared to the manually-derived model, the enumerated CTA
model was 20% more parsimonious, 3.6% more accurate and 30%
more efficient, and was more consistent with a priori hypotheses.

A prospective study of how individual- and
family-level multimethod, multi-informant attri-
butes predict psychosocial adaptation (scholastic
success, social acceptance, positive self-worth)
in early adolescence was conducted for a sample
of 68 families of children with spina bifida and
68 comparison families of healthy children.
Manually-derived CTA indicated that intrinsic
motivation, estimated verbal 1Q, behavioral con-
duct, coping style, and physical appearance best
predicted psychosocial adaptation in early ado-
lescence: health status was not a factor in the
model. The model correctly classified 77.8% of
the total sample, yielding ESS=55.0.

An enumerated CTA model was obtain-
ed by automated software for the same data used
in manual analysis.> To be consistent between
analyses, attributes were only allowed to enter
the model if their associated ESS was stable (did
not diminish) in jackknife validity analysis. The
enumerated model is illustrated in Figure 1, and
performance comparisons are given in Table 1.
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Behavioral
Conduct:
Mother Report

>3.75
p <0.007

Attention:
Mother,
Father,

Teacher

Report

Family-Level
Conflict:
Father Report

<0.83 >525

p < 0.006 p < 0.0001

16.7%

Positive

88.0%
Positive

30.0%
Positive

Parent-Child

Adaptation Conflict: Child Adaptation Adaptation
Report
N=30 N=25 N=20
<1.92 p<0.036 >1.92
71.4% 23.1%
Positive Positive
Adaptation Adaptation
N=21 N=13

Figure 1: Enumerated CTA Model Predicting
Psychosocial Adaptation in Young Adolescence
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Table 1: Comparing Performance of Manually-Derived vs. Enumerated CTA Models

Predicted Class Status

Manual CTA Model

Non-Positive  Positive
Adaptation  Adaptation
Non-Positive 40 16
Actual  Adaptation
Class
Status Positive 10 51
Adaptation
80.0 76.1
Total N Classified 117
PAC (%) 77.8
Model ESS 55.0
Number of Attributes 5
Model Efficiency 11.0

Predicted Class Status

Enumerated CTA Model
Non-Positive  Positive
Adaptation  Adaptation
714 49 9 84.5
83.6 14 37 72.6
77.8 80.4
109
78.9
57.0
4
14.3

Note: Values given to the right of the Positive Adaptation columns are the specificity (for non-positive adaptation) and sensi-
tivity (for positive adaptation), and values given under the Positive Adaption row, beneath columns, are the negative (for
non-positive adaptation) and positive (for positive adaptation) predictive values.®> Total N classified varies as a function of
missing data. PAC=percentage accuracy in classification=100% x (sum of correctly classified observations)/(total N classi-
fied).> ESS=effect strength for sensitivity, a normed index on which 0 is the level of classification accuracy that is expected
by chance, and 100 is perfect accuracy.> The number of attributes in the CTA model is given, and model efficiency is de-
fined as model ESS divided by number of attributes; is expressed in terms of mean ESS-units-per-attribute; and is a measure
of the mean level of explanatory power per attribute which is used in the model—commonly, as “bang-for-the-buck”.

The enumerated model used four attribu-
tes rather than five as used in the manual model,
and thus it was 80% as complex, or 20% more
parsimonious, than the manually-derived model.
Compared to the manual model the enumerated
model yielded greater ESS (3.6%), PAC (1.4%),
efficiency (30%), specificity (18.3%), and posi-
tive predictive value (5.7%). In contrast, the
manual model had greater sensitivity (15.2%)
and negative predictive value (2.8%) than the
enumerated model.
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The enumerated model predicted 80.4%
accurately that 42.2% of the sample would have
a positive adaptation, and identified 72.6% of all
subjects experiencing positive adaptation. And,
the enumerated model predicted 77.8% accu-
rately that 57.8% of the sample would have a
non-positive adaptation, identifying 84.5% of all
subjects experiencing non-positive adaptation.

The size of sample strata identified by
the enumerated model is relatively homogene-
ous: the largest strata (N=30, 27.5% of classi-
fied sample) is 1.3-times larger than the smallest
strata (N=13, 11.9% of classified sample). And,
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all of the attributes loading in the model influ-
enced the classification decisions which were
made for a substantial portion of the sample.
The percentage of observations classified in part
on the basis of their score on the attribute was:
Behavioral Conduct (100% of sample); Family-
Level Conflict (58.7%), Attention (41.3%) and
Parent-Child Conflict (31.2%).

The automated CTA model has several
important similarities to the manually-derived
CTA model. First, as with the manual model,
neither health status (spina bifida vs. able-bod-
ied) nor socioeconomic status emerged as fac-
tors in the automated model. This suggests that
both CTA models were able to identify factors
that were more predictive of psychosocial ad-
aptation than the group differences often identi-
fied in pediatric research. Second, the factor
“behavioral conduct in the classroom” emerged
as being highly significant in both models.
This demonstrates consistency between the
models and reinforces the relationship between
behavioral control in the classroom and psycho-
social adaptation.

There were also important differences
between the two models. Counter to our origi-
nal hypotheses, the manually derived model did
not identify any family-level variables, nor did
it include any variables based on mother or
father report. In contrast, the automated CTA
model supported our original hypothesis by
identifying two family-level variables in the
model and including three variables based in
part on mother and father report. Another dif-
ference between the two models is that in the
manual model all of the factors were based on
characteristics of the child and two of the factors
represented more internalized child qualities
(i.e., intrinsic motivation, coping style). In
comparison, only half of the automated model
focused on child factors and these included only
externalized or observable behaviors (i.e., con-
duct, attention).

In summary, the automated model pre-
sents a more parsimonious way of classifying
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this sample and supports the researchers’ origi-
nal hypotheses by including family-level factors
and information from multiple informants (par-
ents, teachers, child). However, it identifies a
substantially different constellation of factors in
the classification of psychosocial adaptation as
compared to the manual model. Many theoreti-
cally important factors that emerged in the man-
ual model that are well supported in pediatric
research on psychosocial adaptation (e.g., moti-
vation, 1Q, coping style, and attractiveness)
were not included in the automated model. In-
stead, the automated model selected a narrower
constellation of factors that was highly focused
on behavioral presentation and family-level con-
flict. These models likely represent two theo-
retically viable and empirically supported paths
to psychosocial adaptation.
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Gen-UniODA vs. Log-Linear Model:
Modeling Organizational Discrimination

Paul R. Yarnold, Ph.D.

Optimal Data Analysis, LLC

An application involving a binary class variable (gender), an
ordinal attribute (academic rank), and two testing periods (sepa-
rated by six years) was troublesome for the log-linear model, but
was easily analyzed using Gen-UniODA.

Everett" cross-tabulated gender and faculty rank
(1=Instructor, 2=Assistant Professor; 3=Assoc-
iate Professor; 4=Professor) in 1978 and 1984 at
the University of New South Wales (Table 1).

Table 1: Number of Faculty by Academic
Rank, Gender, and Year

1978 1984
Rank Male Female Male Female
1 45 28 39 28
2 176 21 114 27
3 144 6 171 18
4 127 2 121 5

Note: Adapted from Everett (1990), tabled
are frequency counts.

Log-linear analysis was used to model
the relative odds of men versus women at each
academic rank level and across time. Analysis
also included additional putative determinants
of rank (unavailable for this example), including
academic degree, publication level, age. Age
and publication level were each split into three
categories, and degree into two categories, in
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order to limit the number of cells in the design
matrix: in light of the modest sample size, it is
conceivable there could be empty cells in a
complex design. Five predictor variables dicta-
ted too many interaction terms (i.e., the design
matrix would be too large for the sample), so the
three putative determinants were combined into
a single 18-level polychotomous variable which
possessed no inherent order. Examination of
confidence limits suggested: “despite these sug-
gested trends across rank and across time, none
of the direct discrimination values differ signifi-
cantly” (p. 383). In the final analysis which was
reported, all estimates obtained by collapsed
contingency (CC) table odds ratio analysis fell
outside of the range of odds estimated by other
methods, indicating induction of Simpson’s Par-
adox®: “The underestimation is much more
severe for the odds ratio CC derived from col-
lapsing fitted subtables, further underlining
problems associated with collapsing across a
non-independent variable” (p. 384).

Using UniODA, in contrast, the analysis
is straightforward: the objective is to determine
if the relative distribution of males and females
(class variable is gender) differs on the ordinal
academic rank measure (attribute is rank), and if
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this relationship has changed across time (gen-
eralizability variable is year).

After year (1=1978, 2=1984) and gender
(1=male, 2=female) were dummy-coded, data
were analyzed using the following ODA® code
(commands are indicated in red; non-directional
exploratory analysis is conducted as no a priori
hypothesis regarding the direction of discrim-
ination was postulated):

open data;

output everett.out;

vars rank gender year;
data;

111 (repeated 45 times)
10 1 (repeated 28 times)
2 11 (repeated 176 times)
2 01 (repeated 21 times)
311 (repeated 144 times)
301 (repeated 6 times)
411 (repeated 127 times)
4 01 (repeated 2 times)
11 2 (repeated 39 times)
10 2 (repeated 28 times)
2 1 2 (repeated 114 times)
2 0 2 (repeated 27 times)
312 (repeated 171 times)
30 2 (repeated 18 times)
41 2 (repeated 121 times)
4 0 2 (repeated 5 times)
end;

class gender;

attr rank;

gen year;

mcarlo iter 25000;

loo;

go,

The resulting Gen-UniODA model was:
if academic rank<2 then predict gender=female
(77.0% correct), otherwise predict that gender=
male (60.1%). The omnibus test was statistic-
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ally significant (p<0.0001), and the effect was
of moderate strength (ESS=37.1), indicating the
model generalized over year (UniODA models
all were stable in jackknife validity analysis).

Applying the Gen-UniODA model to the
1978 data: females were 86.0% correct; males
55.1% correct; p<0.0001; ESS=41.1. Applying
the model to the 1984 data: females were 70.5%
correct; males 65.6% correct; p<0.0001; ESS=
36.1. Omnibus performance values were inside
the domain defined by corresponding 1978 and
1984 values: again, no evidence of potential
paradoxical confounding.?

Discussion

Gen-UniODA found moderate evidence
of gender discrimination: a greater proportion of
females are Instructors or Assistant Professors,
and of males are (Associate) Professors, than is
expected by chance. Eyeball analysis suggests
the strength of the effect may be diminishing in
time, because the percent of females classified
correctly by the model, and ESS, fell in 1984. In
addition, relative to 1978, in 1984 the number of
male professors fell 4.6% while the number of
women in this rank increased by 150%. The
rank of Associate Professor saw a 18.8% gain in
males, compared to a 200% increase in females.
There were 35.2% fewer male Assistant Profes-
sors compared with a 28.5% gain for females,
and while male Instructors diminished by
13.3%, there was no change in this rank for
females.  Considered together these results
suggest that not only is the relative standing of
women increasing, but so too is the relative
number of women on the faculty.

Information beyond academic rank, sex
and year was all that was available for analysis
presently. It will be interesting to model data
such as considered presently—augmented by
additional putative predictors, via MultiODA?
(optimal analogue to log-linear model) or hier-
archically optimal classification tree analysis,”
as well as to evaluate optimization of sub-
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optimal models identified in the present context
using UniODA.°?
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UniODA vs. Chi-Square: Ordinal Data
Sometimes Feign Categorical

Paul R. Yarnold, Ph.D.

Optimal Data Analysis, LLC

Assessed using perhaps the most widely used type of measurement
scale in all science, ordinal data are often misidentified as being
categorical, and incorrectly analyzed by chi-square analysis. Three
examples drawn from the literature are reanalyzed.

Consisting of a relatively small number of
graduated levels of the measured attribute,
ordinal scales may be the most broadly
employed type of measurement scale in all of
science. Likert-type scales, typically involving
between three and ten levels, are perhaps most
common.! For example, one’s socioeconomic
status is often assessed using a three-level
ordinal scale, with categories corresponding to
low, middle, and upper class. Also widely used,
ordinal categorical scales consist of a relatively
small number of qualitative categories ordered
with respect to some theoretical factor.> For
example, at the end of a clinical trial patients
might be classified as being worse, unchanged,
or better: the three qualitative categories are
worse, unchanged, and better; the theoretical
factor is quality of clinical outcome; and the
categories are ordered from lowest (worse) to
highest (better) with respect to quality of
clinical outcome.

Since the metric underlying the attribute
is ordinal, neither chi-square (hominal data) nor
t-test (interval data) is appropriate to assess if
therapies can be discriminated on the basis of
clinical outcome. Traditional methods used for
analysis of ordinal data include Mann-Whitney
U test or the log-linear model, but excessive ties
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compromise U, and maximum likelihood-based
methods require large samples.*> Assuming
neither the absence of ties nor the presence of
large samples, univariate optimal discriminant
analysis (UniODA) is ideal for such designs.

Plaintiff Gender and Age

Seaman and Hill® analyzed data obtained by
Cox and Key’ from court records of an Ohio
county, involving the frequency of plaintiffs in
divorce actions cross-classified by gender (wife
or husband) and age (<25, 25-34, 35-44, >44).
“The hypothesis that the proportion of plaintiffs
that are husbands is the same, regardless of age”
(p. 454) was tested using the traditional model,
homogeneity of proportions. All possible post
hoc pairwise comparisons—involving 6 separate
2-by-2 chi-square tests, were conducted to
ascertain the specific reason the omnibus test
was statistically significant. Two pairwise
comparisons were statistically significant: those
comparing the >44 age category with the 25-34
and 35-44 categories (p’s<0.05). Analysis via
chi-square thus indicated a greater proportion of
husband plaintiffs in the >44 age category, and a
greater proportion of wife plaintiffs in the 25-34
and 35-44 age categories. No statistically signi-
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ficant pairwise comparisons involved the <25
age category, so this strata could not be assessed
in relation to other strata in the study.

Table 1: Plaintiff Age in a Divorce Action

Age <25 25-34 35-44  >44
Husband 8 8 6 16
Wife 18 48 22 10

Note: Adapted from Seaman and Hill (1996).
Tabled are frequency counts.

After gender (1=Husband, 2=Wife) and
age (1="<25’, 2="25-34", 3="35-44>, 4=">44")
were dummy-coded, data were reanalyzed using
the following ODA’ code (commands indicated
in red; non-directional exploratory analysis is
conducted as no a priori hypothesis was made):

open data;

output seaman.out;
vars gender age;

data;

2 4 (repeated 10 times)
2 3 (repeated 22 times)
2 2 (repeated 48 times)
2 1 (repeated 18 times)
1 4 (repeated 16 times)
1 3 (repeated 6 times)
1 2 (repeated 8 times)
1 1 (repeated 8 times)
end;

class gender;

attr age;

mcarlo iter 25000;

loo;

go;

The resulting UniODA model was: if
age<35-44 then predict class=wife, otherwise
predict class=husband. The model achieved a
moderate ESS of 31.9 (p<0.0001), and results
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were stable in jackknife validity analysis. The
model classified 88 (90%) of 98 women
correctly, versus only 16 (42%) of 38 men. All
subjects were classified by the ODA model,
including those younger than 25 years of age.

Outcomes of Marital Therapy

Snyder, Wills and Grady-Fletcher® reported the
following four-year termination outcomes of
two different types of therapy for unhappily
married couples. The expected value for both
entries in the right-most column of the data table
is less than five, invalidating the use of chi-
square with this sparse table.” An omnibus chi-
square statistic was given for the 2-by-3 table,
then eyeball interpretation of the omnibus effect
was rendered: “a significantly higher percentage
of (behavior therapy couples) had experienced
divorce, p<0.01.” Although no explanation was
provided—perhaps to defeat the aforementioned
minimum expectation assumption violation, the
No Change (“distressed”) and Improved classes
were collapsed and chi-square reported higher
divorce rates for behavior therapy, p<0.05.

Table 2: Outcomes of Marital Therapies

Type of

Therapy Divorced No Change Improved
Insight 3 22 4
Behavior 12 13 1

Note: Tabled are frequency counts.

These data were analyzed by ODA code
paralleling that used in the first example. The
model was: if outcome=divorced then predict
therapy=behavior, otherwise predict therapy=
insight. The model correctly classified 90% in
insight therapy, 46% in behavior therapy, and
yielded a moderate ESS of 35.9 (p<0.006).
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Strength of Gender Differences

Hyde and Plant™ reported frequencies of five
categories of Cohen’s d measure of effect
strength for representative studies of gender
differences, versus studies of other effects in the
field of psychology. An omnibus chi-square
statistic was provided for the 2-by-5 table
(p<0.0001): “The difference between the
distributions of gender effect sizes and other
effect sizes is highly significant.” Pairwise
comparisons to disentangle the omnibus effect
were not reported. Eyeball analysis suggested:
“more gender differences fall in the close-to-
zero category than other effects in psychology.”

Table 3: Cohen’s d by Type of Study

Type of

Study <0.1 <035 <065 <10 >1.0

Gender 43 60 46 17 5

Other 17 89 116 60 20

Note: Tabled are frequency counts.

For these data the exploratory hypothesis
that type of study could be discriminated on the
basis of effect strength was tested using priors-
weighted UniODA, via ODA code paralleling
that used in the prior examples. The model was:
if d<0.35 then predict gender study; otherwise,
predict non-gender study. Thus, relative to other
areas, gender studies have disproportionately
more effect sizes in the close-to-zero (<0.1) and
next-to-close-to-zero (0.11-0.35) categories. By
correctly classifying 60.2% of the gender
difference studies, and 64.9% of other studies,
the model yielded a moderate, jackknife-stable
ESS=25.1 (p<0.0001).

Discussion

Initial study of the congruence between chi-
square and UniODA in analysis of real-world
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data suggests consistent findings may often be
achieved, and instances of inconsistent findings
may often accompany grossly imbalanced mar-
ginals."*  Distinct advantages versus chi-square
include that, for UniODA: directional tests of
statistical hypotheses may be conducted; the
validity of exact p is uncompromised by sparse,
empty or missing cells, small samples or
imbalanced marginal distributions; and use of
the normed ESS index allows direct comparison
of model performance across analyses differing
in number of observations, marginal imbalance,
and/or number of levels for categorical class
variables and/or attributes.

Optimal ordinal analysis may be
generalized to designs involving class variables
having more than two categories (Yarnold and
Soltysik® discuss degenerate designs involving
fewer categories for attribute than class). For
example, imagine a design involving a three-
category class variable—such as therapies A, B,
and C, and an ordinal categorical attribute with
at least three ordinal improvement categories—
such as none, some, and much. A UniODA
model for such a design would be of the form: if
improvement=none, predict therapy=A; other-
wise, if improvement=some, predict therapy=B,;
otherwise predict therapy=C. As is true for all
ODA applications, for three-category designs:
exact p is obtained for performance achieved by
the model; mean sensitivity across therapies is
translated into the normed ESS scale of effect
strength; and leave-one-out (LOO) “jackknife”
validity analysis is used to assess the potential
generalizability of the findings were the model
used to classify independent random samples.

Generalizing exact ordinal analysis to
designs involving more than one assessment
dimension is also straightforward, whether by
linear or nonlinear methods. Imagine an appli-
cation having two therapeutic strategies (class
variable) and two ordinal categorical outcome
scales (attributes)—one assessing degree of
recovery (worse, unchanged, better), and the
other assessing satisfaction (unhappy, neutral,
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happy). Using an optimal multivariable linear
approach with these data, one could obtain a
main effects model including an intercept and
separate  coefficients for recovery and
satisfaction; a saturated model additionally
including a coefficient for the recovery-by-
satisfaction interaction; and a quadratic model
additionally including coefficients for the
squares (or higher exponents) of each main
effect.’*  Model coefficients may be real
numbers, or may be constrained to any range,
even binary."”® Structurally, these ODA models
are similar to models developed via traditional
multivariable techniques such as discriminant or
logistic regression analysis. Functionally, how-
ever—as is constitutionally true of all ODA
analyses, these models would explicitly
maximize (weighted) classification accuracy
achieved for the sample.> Using an optimal
multivariable nonlinear approach with these
data currently entails conducting hierarchically
optimal classification tree analysis, or CTA.'®

Regardless of choice of (non)linear
method, to ensure the validity of analytic
findings it is recommended that variables which
truly are measured using an ordinal scale are
treated as though they were in fact measured
using an ordinal scale.
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The Use of Unconfounded Climatic Data
Improves Atmospheric Prediction

Robert C. Soltysik, M.S., and Paul R. Yarnold, Ph.D.

Optimal Data Analysis, LLC

This report improves measurement properties of data and analytic
methods widely used in meteorological modeling and forecasting.
Paradoxical confounding is defined and demonstrated using global
temperature land-ocean index data. It is shown that failure to add-
ress paradoxical confounding results in suboptimal atmospheric
circulation pattern models, and correcting prior measurement and
analytic deficiencies results in more accurate prediction of temp-
erature and precipitation anomalies, and export of Arctic sea ice.

Simpson’s Paradox may be the single greatest
threat to the validity of quantitative analysis in
all empirical science.! The Paradox can occur
when data from two or more samples, groups or
time periods are combined into a single sample:
under such conditions, results obtained when
analyzing the combined data may be different
than when analyzing individual data sets separa-
tely. The following hypothetical example illus-
trates confounding for a simple correlation.
Imagine we wish to correlate sea level
pressure (SLP) with thunderstorm severity rated
using a scale with greater values indicating
greater severity, and data collected at two loca-
tions. Location A usually has relatively low SLP
and short-lived, fast-moving storms: the lower
the SLP the more severe the storm. The hypo-
thetical correlation model (r=-0.8) relating SLP
and severity is indicated using arrow “A” in
Figure 1 (individual hypothetical data points
from location A are indicated as “a”): data
swarm A indicates strong negative association.
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Compared to A, Location B usually has
relatively high SLP and long-lived slow-moving
storms: the lower the SLP the more severe the
storm. The correlation (r=-0.8) relating SLP
and severity is indicated in Figure 1 by arrow
“B” (individual hypothetical data points from
location B are indicated as “b”): data swarm B
indicates strong negative association.

When data from Locations A and B are
combined, the resulting correlation model (r=
0.7) relating SLP and severity is indicated by
arrow “C” (individual hypothetical data points
for combined sample are all “a” and “b”): data
swarm C indicates strong positive association.

In this hypothetical example, for two
individual samples (Locations A and B) con-
sidered separately the analysis reveals that more
severe storms are associated with decreasing
SLP. For the combined data, the same analysis
reveals that more severe storms are associated
with increasing SLP.
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Increasing Sea Level | B -

Pressure | . b

More Severe Storm

Figure 1: Hypothetical Illustration of Paradoxical Confounding

Simpson’s Paradox threatens the validity of can induce Simpson’s Paradox. For example,
quantitative  atmospheric  science  because global surface temperature data clearly are
nonstationarity is prevalent in longitudinal data nonstationary: in Figure 2, anomalies are
series used in atmospheric science, such as computed relative to the period 1951-1980
temperature or pressure—and nonstationarity (http://data.giss.nasa.gov/gistemp/).

Global Temperature Land-Ocean Index

---me- A nnual Mean
5-year Mean

Temperature Anomaly (°C)

1900 1920 1940 1960 1980 2000

Figure 2: Mean Global Temperature Land-Ocean Index Anomaly by Year
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Analysis was restricted to the time period
that is the focus of most current quantitative
atmospheric science, beginning in the year 1948.
Eyeball inspection of Figure 2 suggests a relatively
flat trajectory (‘“stationary series”) through 1976,
versus a steadily increasing trajectory (“‘non-
stationary series”) across subsequent years.
Regression analyses modeling temperature anomaly
(dependent measure) as a function of year
(independent measure), separately by month, are
summarized In Table 1: findings confirm eyeball
observations, and establish the generalizability of
the phenomenon to a time period more granular
than is afforded by annual measurements.

Tabled for each model is the intercept as
well as the value of the t-test for the two-tailed
hypothesis that the value of the intercept is zero,
and the associated Type | error rate. For every
model, in every month, the intercept is not

significantly different than zero for the stationary
series, but is significantly different than zero for the
nonstationary and combined series. Also tabled for
each model is the slope (regression beta weight) and
the value of the t-test for the two-tailed hypothesis
that the value of the slope is zero, and the associated
Type | error rate. Consistent with findings for inter-
cept, for every model, in every month, the slope is
not significantly different than zero for the
stationary series, but is significantly different than
zero for the nonstationary and combined series.
Finally, Table 1 provides the percent of variance in
temperature that is explained by the regression
model as a function of year (R%), and p for the
regression model. If model performance for the
combined sample lies outside performance results
for samples considered individually, then
paradoxical confounding exists: this is indicated
using red.

Table 1: Regression Modeling of Temperature Anomaly using Year, Separately by Month:
Evidence of Paradoxical Confounding

Month Time Period Intercept, t, p Slope, t, p R?, p
January Stationary 559.3 0.8 0.45 -0.29 -0.8 0.46 2.1 0.45
Non-Stationary -3239.1 -5.3 0.0001 1.64 5.3 0.0001 49.4 0.0001
Combined -2114.5 -7.9 0.0001 1.08 8.0 0.0001 52.2 0.0001
February Stationary -140.0 -0.2 0.87 0.07 0.2 0.87 1.0 0.87
Non-Stationary -3842.6 -5.5 0.0001 1.95 5.6 0.0001 51.6 0.0001
Combined -2451.3 -8.4 0.0001 1.25 8.5 0.0001 55.3 0.0001
March Stationary -550.5 -0.8 0.46 0.28 0.8 0.46 2.1 0.46
Non-Stationary -3374.5 -5.9 0.0001 1.71 5.9 0.0001 54.9 0.0001
Combined -2451.8 -10.0 0.0001 1.25 10.1 0.0001 63.8 0.0001
April Stationary -229.4 -0.4 0.71 0.12 0.4 0.72 0.5 0.72
Non-Stationary -3216.2 -7.1 0.0001 1.63 7.1 0.0001 63.7 0.0001
Combined -2159.7 -10.3 0.0001 1.10 10.4 0.0001 65.0 0.0001
May Stationary -197.5 -0.3 0.75 0.10 0.3 0.75 0.4 0.75
Non-Stationary -2590.9 -4.9 0.0001 1.31 4.9 0.0001 45.4 0.0001
Combined -1845.2 -8.6 0.0001 0.94 8.7 0.0001 56.7 0.0001
June Stationary -145.7 -0.3 0.75 0.07 0.3 0.75 0.4 0.75
Non-Stationary -3291.0 -6.3 0.0001 1.67 6.4 0.0001 58.3 0.0001
Combined -1918.6 -9.7 0.0001 0.98 9.7 0.0001 62.0 0.0001
July Stationary -111.3 -0.3 0.78 0.06 0.3 0.79 0.3 0.79
Non-Stationary -2841.5 -4.7 0.0001 1.44 4.8 0.0001 43.8 0.0001
Combined -1937.1 -9.5 0.0001 0.99 9.6 0.0001 61.3 0.0001
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August Stationary 203.2 0.4 0.73 -0.10 -0.4 0.73 0.5 0.73
Non-Stationary -3492.9 -6.5 0.0001 1.77 6.6 0.0001 60.0 0.0001
Combined -1933.3 -8.5 0.0001 0.98 8.6 0.0001 55.8 0.0001
September Stationary 3.9 0.0 0.99 -0.01 -0.0 0.99 0.1 0.99
Non-Stationary -3359.2 -6.3 0.0001 1.70 6.4 0.0001 58.4 0.0001
Combined -1888.2 -8.8 0.0001 0.96 8.8 0.0001 57.3 0.0001
October Stationary 298.4 0.6 0.58 -0.15 -0.6 0.58 1.2 0.58
Non-Stationary -4082.0 -8.5 0.0001 2.06 8.5 0.0001 71.4 0.0001
Combined -1920.6 -8.5 0.0001 0.98 8.5 0.0001 55.7 0.0001
November Stationary -253.9 -0.5 .062 0.13 0.5 0.62 0.9 0.62
Non-Stationary -3719.7 -6.1 0.0001 1.88 6.1 0.0001 56.3 0.0001
Combined -2056.9 -9.1 0.0001 1.05 9.1 0.0001 58.9 0.0001
December Stationary 41 .4 0.1 0.95 -0.02 -0.7 0.95 0.1 0.95
Non-Stationary -3076.1 -5.0 0.0001 1.56 5.1 0.0001 45.1 0.0001
Combined -1998.4 -8.2 0.0001 1.02 8.3 0.0001 54.2 0.0001

This  exercise ~ demonstrates  that
temperature does not increase between 1948 and
1976, but does increase thereafter; funda-
mentally different “statistical infrastructure”
(i.e., regression models) underlies the stationary
and nonstationary series; and combining data
from these two series typically results in
paradoxical confounding. What is the nature of
the effect of this confounding? In the initial
hypothetical example, the effect of the
confounding was one of “direction”: the result
for the combined sample was opposite in
direction to results obtained for individual
samples. For actual temperature data the effect
of confounding is one of “magnitude”: the
finding for the combined sample is in the same
direction (indicating increase over time) as the
finding for the nonstationary series, but the
model for the combined sample misestimates
the magnitude of the effect. For any month,
compared to the nonstationary series, the model
for the combined sample has intercept and slope
coefficients with lower absolute values: models
for the combined data thus underestimate the
rate of change in temperature for the nonstation-
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Note: Stationary=1948-1976; Non-Stationary=1977-2007; Combined=1948-2007.

ary series. If Simpson’s Paradox confounds
fundamental data, then models using those
confounded data also are confounded.

Measuring Atmospheric Circulation Patterns

Seminal research conducted by Barnston
and Livezey used orthogonally rotated principal
components analysis (PCA) of monthly mean
700 mb geopotential heights to identify the
major modes of northern hemisphere upper-air
variability.? They used combined data from the
years 1950 through 1984: measurements were
taken on a 358-point grid covering latitudes
from 20°N to 85°N, and ten “robust” modes
(components) were identified which persisted
throughout the year. The Climate Prediction
Center (CPC) performed a similar analysis of
northern hemisphere 500 mb heights using data
from 1950 to 2000: ten modes were identified
and used to compute the values of the telecon-
nection indices (http://www.cpc.noaa.gov/data/
teledoc/telepatcalc.shtml). Table 2 describes the
ten modes of upper-air variability determined by
the CPC analysis.
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Table 2: Ten Modes of Upper-Air Variability Determined by the CPC Analysis

CPC Mode Abbreviation Description
1 NAO North Atlantic Oscillation
2 EA East Atlantic Pattern
3 WP West Pacific Pattern
4 EP/NP East Pacific / North Pacific Pattern
5 PNA Pacific / North American Pattern
6 EA/WR East Atlantic/West Russia Pattern
7 SCAa Scandinavia Pattern
8 TNH Tropical / Northern Hemisphere Pattern
9 POL Polar/ Eurasia Pattern
10 PT Pacific Transition Pattern

Figure 3 gives the total variance in 500
mb height data that is explained by these ten
modes each year. In the Figure, blue shading
indicates levels of explained variation that fall
below the mean. In 2003 the combined sample
includes an equal number of data points from
stationary (1950-1976) and nonstationary (1977-

series dominate the combined sample by 2004.
Extrapolation of earlier results suggests that
increasing domination will accelerate paradox-
ical confounding and resulting underestimation
of magnitude of effect. Note that after 2003,
performance of the quantitative model used to
identify major modes of northern hemisphere

2003) series, but data from the nonstationary upper-air variability has never been lower.
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Figure 3: Variance in 500mb Height Data Explained by 10 CPC Modes, by Year
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It is simple to show that this accelerating
failure of the current state-of-the-art is in part
attributable to paradoxical confounding. We
obtained January 500 mb geopotential height data
from 1948-2007 from the NCEP/NCAR Reanalysis
dataset, for the full 379-point grid used in research
cited earlier, separating the data into stationary
(1948-1976) versus nonstationary (1977-2007)
series (http://www.cdc.noaa.gov/cgi-bin/Timeseries/
timeseriesl.pl). We replicated prior varimax-rotated,
ten-extracted-factor PCA of 500 mb height data (see
Table 3). The principal component column
indicates successive eigenvector (mode).  For
Sample, S is the stationary series, NS the non-

stationary series, and C the combined S and NS
data. Eigenvalue is given for each sample and
mode, as is corresponding percent of total variance
explained by the mode. For example, the first mode
for the stationary series had an eigenvalue of 68.1,
thus explaining 18.0% of the total variance of 379
measurements of 500 mb heights. Indicated using
red, paradoxical con-founding exists when the
eigenvalue for the C sample falls outside of the
domain defined by the S and NS samples. Note that
80% of the modes clearly reveal paradoxical
confounding: in every case except mode number 2
the effect was underestimation of explained
variation.

Table 3: Replication of Prior Analysis of January 500 mb Geopotential
Height Data, Separately by Series

Principal
Component Sample Eigenvalue
1 ] 68.1
NS 75.3
Cc 63.3
2 ] 58.0
NS 50.2
Cc 60.0
3 ] 42.0
NS 39.1
Cc 32.4
4 ] 37.4
NS 34.2
c 29.5
5 ] 24.8
NS 27.3
c 27.0
6 (] 23.9
NS 22.7
Cc 21.0
7 ] 18.6
NS 19.6
Cc 18.1

Percent of

Cumulative

Variance Percent Variance
18.0 18.0
19.9 19.9
16.7 16.7
15.3 33.3
13.3 33.1
15.8 32.5
11.1 44 .4
10.3 43.4

8.6 41.1
9.9 54.2
9.0 52.5
7.8 48.9
6.5 60.8
7.2 59.7
7.1 56.0
6.3 67.1
6.0 65.7
5.5 61.5
4.9 72.0
5.2 70.8
4.8 66.3
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8 S l16.1
NS 15.4
Cc 13.4
9 S 13.7
NS 15.3
c 12.5
10 S 13.2
NS 11.0
Cc 11.4

2 76.2
1 74.9
5 69.8
6 79.8
0 78.9
3 73.1
5 83.3
9 81.8
0 76.2

Table 3 also provides the cumulative
percent of total variance (of 379 variables)
explained by the modes for each sample, across
successive modes. Indicated using blue, para-
doxical confounding exists when the cumulative
value of this performance index for the C
sample falls outside of the domain defined by
the S and NS samples. All factors clearly reveal
paradoxical confounding, and the effect was
always underestimation of explained variation.

In addition to examining omnibus
performance results of the current ten-mode
solution, it is instructive to examine internal
measurement properties of the individual
modes. If the structure underlying the modes
(reflected by the relationship of the 379
measurements of 500 mb heights to the mode
score) is parallel, then the mode scores for the S,

NS and C samples will be internally consistent
(i.e., measure the same underlying construct),
and a one-factor PCA of the three mode scores
should explain most of the variation (theoretical
maximum=100%), coefficient Alpha (positively
related to the mean item-total correlation and
the number of measures in the index) for the
resulting factor score should be high (theoretical
maximum=1.0), and the root-mean-squared-
residual, or RMSR (an index of the average
error in estimating the actual inter-measure
correlation based on the mode structure) of the
resulting factor score should be low (theoretical
minimum=0). Seen below, the ten confounded
current modes have poor internal measurement
properties even by social science standards—for
example, for personality surveys with modes
measured using a fraction as many measures.’

Table 4: Internal Measurement Properties of Ten CPC Modes

Principal Percent of
Component Eigenvalue Variance
1 1.89 63.3
2 1.82 60.5
3 2.22 74.1
4 1.71 57.1
5 1.54 51.4
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Alpha RMSR
0.710 0.2772
0.674 0.2913
0.825 0.1749
0.625 0.2744
0.527 0.2771
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6 1.42 47.2
7 1.45 48.5
8 1.96 65.2
9 1.63 54.2
10 1.56 52.0

0.440 0.1812
0.469 0.3011
0.734 0.1805
0.577 0.2293
0.539 0.2404

Empirical results clearly demonstrate that
current state-of-the-art models of modes of northern
hemisphere upper-air variability are confounded by
Simpson’s ~ paradox,  underestimate = model
performance and phenomenon effect strength, and
produce modes having poor measurement
properties. Because data for only one month were
used in this demonstration, these analyses represent
a “best case scenario.”  Prior research first
smoothed data over successive three month periods
prior to conducting PCA: because the reliability of a
composite exceeds the reliability of the constituents,
smoothed scores will result in lower volatility (i.e.,
less extreme outliers) and weaker inter-measure
correlations,  eigenvalues, and measurement
properties.

Theoretical consideration of current state-of-
the-art models of modes also is not compelling.
First, current modes are non-granular: postulating
that a total of only ten modes underlie northern
hemisphere upper-air variability is relatively
simplistic compared with complexity underlying
many large natural systems. Second, current modes
are nonparsimonious, because computing an
omnibus mode score requires (in the scoring
formula) the use of all geopotential height
measures. Third, low parsimony makes current
mode scores robust: because many constituents
(grid locations) are included in the scoring formula,
positive changes in some constituents are offset by
negative changes in others, so mode scores are
insensitive.  Finally, by formulation PCA is
designed to produce linear models (modes), yet the
present results failed to reveal strong linear modes
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as indicated by modest eigenvalues: there is
therefore discordance between methodology (PCA),
data (paradoxically confounded), method (how PCA
was conducted), and objective (identifying
psychometrically sound measures of major modes
of northern hemisphere upper-air variability).

Unconfounded Measurement
of Major Modes

Theoretical and empirical limitations of the
original solution motivated development of a new
methodology for identifying superior modes, which
eliminates problems discussed earlier. Our
proprietary method constitutes a theoretical shift in
the way teleconnections are conceptualized, and a
search algorithm. The theoretical shift necessitates
an ipsative standardization of geopotential height
data prior to conducting PCA.* The application of
our algorithm involved searching for homogeneous
spatial areas within which geopotential height
measurements are highly related. Constraints
included that independent application of PCA to the
S, NS and C samples yields comparable, excellent
macro performance (strong eigen-values) and
internal measurement properties across samples,
and that mode constituents are physically
contiguous. Manually applied to January data the
algorithm yielded 46 new modes summarized below
(labels are nominal placeholders), ordered by
percent of variance explained (i.e., decreasing
linearity) for the stationary sample. For Sample,
S=stationary, NS=nonstationary, and C=combined
S and NS data. M is the number of geopotential
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height measures (grid locations) constituting the
mode. Eigen indicates the eigenvalue of the mode
for a one-factor PCA solution, and Var is the
associated variance explained (100%xEigen/M).
The theoretical upper-bound for internal consis-

tency is Alpha=1, and the theoretical lower-bound
for root-mean-square-error is RMSR=0. Finally,
cumulative total eigenvalue, number of height
measures, and total variance explained are also
provided across successive modes.

Table 5: Principal Components Analysis of Unconfounded January 500 mb
Geopotential Height Data, Separately by Series

Mode Sample M Eigen Var Alpha

J ] 3 2.866 95.5 .977
NS 2.831 94.4 .970
(o] 2.844 94.8 .973
H ] 3 2.840 94.7 .972
NS 2.819 94.0 .968
Cc 2.827 94.2 .969
PP ] 3 2.826 94.2 .969
NS 2.641 88.0 .932
Cc 2.761 92.0 .957
MM S 3 2.803 93.4 .965
NS 2.743 91.4 .953
Cc 2.773 92.4 .959
P ] 4 3.731 93.3 .976
NS 3.575 89.4 .960
Cc 3.651 91.3 .968
L ] 3 2.795 93.2 .963
NS 2.729 91.0 .950
Cc 2.790 93.0 .962
NN ] 3 2.793 93.1 .963
NS 2.676 89.2 .939
Cc 2.748 91.6 .954
M ] 4 3.724 93.1 .975
NS 3.551 88.8 .958
Cc 3.604 90.1 .963
Q S 3 2.789 93.0 .962
NS 2.613 87.1 .926
(o] 2.707 90.2 .946
YY ] 3 2.788 92.9 .962
NS 2.663 88.8 .937
(o] 2.729 91.0 .950

RMSR

.0331
.0386
.0364

.0412
.0471
.0445

.0360
.0685
.0476

.0337
.0433
.0380

.0404
.0608
.0499

.0558
.0735
.0568

.0406
.0562
.0464

.0416
.0603
.0575

.0541
.0992
.0750

.0411
.0566
.0474
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Cumulative Totals

Eigen M Var
2.866 3 95.5
2.831 94 .4
2.844 94.8
5.706 6 95.1
5.650 94.2
5.671 94.5
8.532 9 94.8
8.291 92.1
8.432 93.7
11.335 12 94.5
11.034 92.0
11.205 93.4
15.066 16 94.2
14.609 91.3
14.856 92.8
17.861 19 94.0
17.338 91.3
17.646 92.9
20.654 22 93.9
20.014 91.0
20.394 92.7
24.378 26 93.8
23.565 90.6
23.998 92.3
27.167 29 93.7
26.178 90.3
26.705 92.1
29.955 32 93.6
28.841 90.1
29.434 92.0
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cC
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XX

EE
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NN

(6,18}

.785
.725
.755

.775
.653
.717

.773
.802
.788

.773
.672
.703

.544
.236
.360

.770
.675
.722

.769
.869
.843

.764
.864
.828

.763
.730
.744

.756
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.715

.585
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.352
.399

92.
90.
91.

92.
88.
90.

92.
93.
92.

92.
89.
90.

92.
87.
89.

92.
89.
90.

92.
95.
94.

92.
95.
94.

92.
91.
91.

91.
89.
90.

91.
87.
89.

91.
84.
88.

91.
86.
87.

91.
89.
90.

o 0

[ )]

[ NS

[c) )} o W o © o © o N O 0 o W N W w [l -

N

.961
.950
.955

.960
.935
.948

.959
.965
. 962

.959
.939
. 945

.984
.971
.976

.959
.939
. 949

.958
.977
.972

.957
.976
.970

.957
.951
.953

.956
.943
. 948

.977
.965
.970

.954
.907
.936

.953
.923
.929

.981
.976
.978

.0511
.0720
.0612

.0492
.0677
.0577

.0586
.0540
.0563

.0561
.0875
.0764

.0348
.0685
.0568

.0547
.0581
.0483

.0617
.0358
.0422

.0646
.0373
.0468

.0453
.0498
.0474

.0613
.0801
.0731

.0437
.0742
.0612

.0426
.0898
.0608

.0609
.0844
.0824

.0535
.0773
.0654

76

32

35.
.219

34

34.

38.
.021
37.

37

41.
39.
40.

46.
44.
45.

49.
47.
48.

52.
50.
51.

54.
53.
54.

57.
56.
56.

60.
58.
59.

65.
63.
.080

64

67

65.
66.

70.
68.
69.

75.
73.
.764

74

.740
31.
32.

566
189

515

906

288

694

061
693
397

605
929
757

375
604
479

144
473
322

908
337
150

671
067
894

427
761
609

012
154

.761

683
738

504
282
365

976
634

35

38

41

44

50

53

56

59

62

65

70

73

76

82

93.
90.
92.

93.
90.
91.

93.
90.
91.

93.
90.
91.

93.
90.
91.

93.
89.
91.

93.
90.
91.

93.
90.
91.

93.
90.
91.

93.
90.
91.

92.
90.
91.

92.
90.
91.

92.
89.
91.

92.
90.
91.

N O

[l )]

O Wb

R R

N

oo o N © [ [ =]

o]

N OJ



Optimal Data Analysis

2010, Vol. 1, Release 1 (September 17, 2010)

Copyright 2010 by Optimal Data Analysis, LLC

2155-0182/10/$3.00p

ZZ

LL

TT

HH

uu

GG

II

NN

NN

N DN
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119.104 130 91.6
116.860 89.9
117.933 90.7
121.760 133 91.5
119.588 89.9
120.650 90.7
124.412 136 91.5
122.379 90.0
123.330 90.7
127.942 140 91.4
126.002 90.0
126.889 90.6
130.588 143 91.3
128.703 90.0
129.538 90.6
134.945 148 91.2
133.241 90.0
133.952 90.5
137.548 151 91.1
135.996 90.1
136.604 90.5
141.021 155 91.0
139.608 90.1
140.118 90.4

DD s 4 3.562 89.1 .959
NS 3.540 88.5 .957
c 3.547 88.7 .957
\A% s 3 2.656 88.5 .935
NS 2.728 90.9 .950
o] 2.717 90.6 .948
Y S 3 2.652 88.4 .934
NS 2.791 93.0 .962
c 2.680 89.3 .940
3 S 4 3.530 88.3 .956
NS 3.623 90.6 .965
c 3.559 89.0 .959
FF s 3 2.646 88.2 .933
NS 2.701 90.0 .945
c 2.649 88.3 .934
A s 5 4.357 87.1 .963
NS 4.538 90.8 .975
c 4.414 88.3 .967
ss S 3 2.603 86.8 .924
NS 2.755 91.8 .955
c 2.652 88.4 .934
BB s 4 3.473 86.8 .949
NS 3.612 90.3 .964
c 3.514 87.8 .954

There is no evidence of paradoxical

confounding (performance results for C always fall
between results for S and NS), and the percentage
of variance explained, Alpha, and RMSR meet
psychometric criteria for “good to excellent” fit for
exploratory PCA models.”® We also examined
internal measurement proper-ties of the individual
modes via one-factor PCA of the three sample
scores (S, NS, C), and analysis revealed virtually
perfect measurement: for every mode, percent of
total variance (of M measures) explained > 99.9%;
Alpha > 0.99, and RMSR < 0.0002. We attempted
to model the original ten modes using the new 46
modes, and vice versa, using multiple regression
analysis, but no satisfactory models were identified:
the original ten modes and the new 46 modes are
not related to each other.
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Considered together these findings clearly
show that the 46 new and unique modes eliminate
every empirical problem identified for the original
ten modes: there is no evidence of Simpson’s
paradox (S and NS data may be combined without
inducing confounding); model performance and
phenomenon effect strength are not erroneously
misestimated (estimates from all samples are
convergent); and mode scores exhibit ideal
measurement properties. The new modes also
address all theoretical concerns identified for the
original ten modes: granularity increased 4.6-fold;
the new modes are parsimonious (factor weighting
coefficients are all approximately one in absolute
magnitude, each grid location appears on only one
mode); mode scores are sensitive (composed of six
or fewer strongly related grid locations, small
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changes in geopotential heights are easily
detectable); and the modes are extremely well
modeled by PCA, representing a set of nearly
perfectly linear measures.

Qualitative Interpretation of Ipsative Modes

Figure 4 locates the ipsative modes on a
polar projection map of the northern hemisphere.

Figure 4: Polar projection Map of the Ipsative Modes
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The  principal-component-derived CPC
modes of upper-air variability listed in Table 2 are
highly consistent with the modes identified in the
original principal components analysis® of 700 mb
height data, and have counterparts in the ipsative
modes developed presently.

The first mode, North Atlantic Oscillation
(NAO), had strong positive coefficients for grid
points over Greenland, corresponding to ipsative
mode U. NAO also had strong negative coefficients
for grid points in the North Atlantic, west of the
Azores (ipsative mode VV); Manchuria (ipsative
mode H); and the central plains of the US (between
ipsative factors EE and 1).

The second mode, East Atlantic Pattern
(EA), had strong positive coefficients for grid points
over North Africa (ipsative mode DD), and in the
Atlantic east of Cuba (ipsative mode F). EA also
had strong negative coefficients for grid points in
the North Atlantic, east of Labrador and south of
Greenland (ipsative mode FF).

The West Pacific Pattern (WP) had strong
positive coefficients for grid points in the Philippine
Sea (ipsative mode D), and strong negative
coefficients for grid points just east of Kamchatka
(ipsative mode ZZ).

The East Pacific/North Pacific Pattern
(EP/NP) had strong positive coefficients for grid
points over southeast Alaska (between ipsative
modes GG and 2). EP/NP also had strong negative
coefficients for grid points in the North Pacific
south of the Aleutian Islands (ipsative mode TT),
and near James Bay in Canada (ipsative mode M).

The Pacific/North American Pattern (PNA)
had strong positive coefficients for grid points west
of Hawaii (ipsative mode A), and in the Pacific
Northwest of the US (ipsative mode LL). PNA also
had strong negative coefficients for grid points in
the North Pacific southwest of the Aleutian Islands
(ipsative mode O), and over the southeast US
(ipsative mode EE).

The East Atlantic/lWest Russia Pattern
(EA/WR) had strong positive coefficients for grid
points near England (between ipsative factors Il and
UU), and in Siberia north of Manchuria (ipsative
mode G). EA/WR also had strong negative
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coefficients for grid points northeast of the Caspian
Sea (ipsative mode JJ).

The Scandinavian Pattern (SCA) had strong
positive coefficients for grid points in Central
Russia (between ipsative modes G and P), and in
the North Atlantic, northwest of Spain (ipsative
mode WW). SCA also had strong negative
coefficients for grid points near Fin-land (between
ipsative modes XX and JJ).

The Tropical/Northern Hemisphere Pat-tern
(TNH) had strong positive coefficients for grid
points in the North Pacific west of the Pacific
Northwest of the US (ipsative mode SS), and near
the Bahamas (ipsative mode MM). TNH also had
strong negative coefficients for grid points near
James Bay in Canada (ipsative mode M).

The Polar/Eurasia Pattern (POL) had strong
positive coefficients for grid points in eastern
Mongolia (near ipsative modes G and H), and
strong negative coefficients for grid points in the
Arctic Ocean north of eastern Siberia (ipsative
mode HH).

Finally, the Pacific Transition Pattern
(PT)—which did not materialize in either of the
original principal component analyses for the month
of January, had for the month of September strong
positive coefficients for grid points over the
northern plains of the US (ipsative mode 1), and
west of Hawaii (ipsative mode A). PT also had
strong negative coefficients for grid points in the
North Pacific south of Alaska (ipsative mode C),
and over the eastern US (ipsative mode V).

Predicting Temperature Anomalies

To determine whether predictive validity is
augmented by nonconfounded measurement, we
assessed whether statistical models that use the 46
newly discovered (vs. original ten) modes of
northern hemisphere upper-air variability produce
more accurate temperature forecasting. We used
classification tree analysis, or CTA>, to predict
whether mean temperature in January, February,
and March fell above or below the median
temperature for the years 1950-2007, for 48
contiguous US states. Falling within the optimal
data analysis paradigm, CTA explicitly maximizes
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model accuracy when applied to a given sample or
series.’ Proprietary software was used to
automatically identify CTA models that weighted
more heavily observations having greater deviations
from the median temperature: of course, depending
on the application, “natural weights” such as inches
of rain, may be used instead of, or in conjunction
with, “tailored weights” such as we used.® The
weighted CTA algorithm was performed using three
sets of attributes: ipsative modes (46 modes
discovered presently); published normative modes
obtained from the CPC, with PT omitted due to
inactivity in January; and computed normative
modes obtained from our replication of the CPC
analysis using only January data.

The findings of these analyses are
summarized in Table 6. Tabled are modes (see
Table 5 for coding) emerging with p<0.05 in the
weighted CTA model. The weights were deter-
mined by sorting the observations by monthly mean
temperature, and adding 1.5 for every position
above or below the median. WESS is a
standardized measure of weighted effect strength,
on which 0 is the level of weighted predictive
accuracy that is expected by chance, and 100
represents errorless (perfect) weighted predictive
accuracy.® A dash (-) indicates no solution was
identified having p<0.05 for any mode; a missing
row indicates no solution was identified for any data
type (ipsative, published, or computed); and an
asterisk (*) indicates that results for the indicated
modes were identical to findings for the ipsative
modes.

Models derived using ipsative modes to
predict temperature anomalies in the United States
convincingly and broadly outperformed
corresponding models derived with normative
modes, when considered from the perspective of
predictive accuracy, and quantified using the
standardized WESS metric:

e For a given state and month (corresponding
to individual rows in Table 6), the ipsative
mode model yielded the greatest WESS 117
times (91.4%), versus 5 and 6 (3.9% and

81

4.7%) times for published and computed
normative mode models, respectively.

In January the ipsative mode models always
achieved greater WESS than the
corresponding normative mode models. In
February the ipsative mode models almost
always (93.2% of the time) achieved
greatest WESS (44 states had models based
on February data), and even as the data aged
substantially—for March, ipsative models
usually (78.1% of the time) achieved
greatest WESS (32 states had models using
March data).

For January data, using ipsative modes, all
48 states had CTA models with
WESS>90%, versus two states with CTA
models involving published normative
modes, and one state CTA model involving
computed normative modes. For February
data, using ipsative modes, a dozen states
had CTA models with WESS>90% (and
three for March data), versus none using
normative modes.
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Table 6: Temperature Prediction via Weighted CTA by US State, for January, February, and March of 2008,
Using Ipsative mode Scores, and Published and Computed Raw Mode Scores

Arkansas

Arizona

California

Colorado

Connecticut

Delaware

Mar

Jan

Feb

Mar

Jan

Feb

Jan

Feb

Jan

Feb

Mar

Jan

Feb

Jan

Feb

Mar

Ipsative Modes

B,EE,JJ,MM,2
A,C,I,EE,PP
DD, GG
C,R,EE,MM,XX,2

cc,DD,RR,VV

II
C,H,U,YY,1
F,II,PP

C,BB,GG,VV,WW,YY
RR,TT
I,V,T,SS,WW
M,0,P,Q,BB,3
J,ss,1

E,K,LL,2

PP,2

V,EE,MM, 2
HH,JJ,PP,SS

J

51.

98.

88.

38.

93.

72.

98.

74

95.

91.

72

96.

50.

95.

73.

37.

55

54

920

63

22

65

89

.87

62

70

.76

43

44

15

41

97

Published
Normative Modes

EAWR,NAO, PNA

NAO, SCA

EPNP, PNA, WP

EPNP,NAO

NAO, POL, WP

PNA, WP

EAWR, EPNP, PNA

NAO

EA,EAWR,EPNP,NAO, WP

EAWR, EPNP,NAO,WP

NAO

82

74.

63.

75.

52

76.

39.

86.

84.

42

63

35

80

.83

04

74

62

63

.84

Computed
Normative Modes

80.

79.

84

77

79.

57.

74

71.

44

36

31

.40

.79

60

69

.52

71

.89
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Florida

Georgia

Iowa

Idaho

Illinois

Indiana

Kansas

Jan

Feb

Mar

Jan

Feb

Jan

Feb

Mar

Jan

Feb

Mar

Jan

Feb

Mar

Jan

Feb

Mar

Jan

Feb

Mar

A,G,0,MM,PP,YY

D,Q,CC,LL,RR
K,DD,EE, GG
P,EE,MM,PP,2
A,C,H,EE,PP
H,L,V,2
D,DD,JJ
J,HH,LL,PP,1
c,I,MM,SS,Z%
D,Q,R,BB

D,R,Y,RR

B,D,E,V,EE,WW,2

D,DD, GG, PP

F,Q,GG,WW,1
Vv,CC,FF,UU

D,H,FF

98.

93.

75.

98.

92

93.

80.

87

94

86.

93.

99.

83.

96.

71.

57

96.

80.

73.

95

22

80

13

.34

51

95

.26

.56

91

86

36

40

61

01

.04

73

19

00

EAWR, EPNP, PNA

NAO

EAWR ,EPNP, PNA
NAO, SCA

EPNP, SCA, WP
EAWR

PNA

PNA
NAO, PNA, SCA

EPNP, PNA, WP

EAWR,NAO, SCA
PNA

EPNP, PNA, WP

EAWR,NAO, POL
PNA

EPNP, WP

EAWR ,NAO

83

89.

40.

84

57

76.

49.

41.

60.

83.

83.

66.

39.

82

73.

39.

59.

60.

19

50

.04

.16

74

09

15

78

99

52

04

86

.70

58

39

44

55

82

63.

70.

73.

84

44.

81.

63.

86.

82

40.

57

69.

82.

.23

06

66

47

.57

18

59

82

62

.35

44

.22

43

82
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Kentucky

Louisiana

Massachusetts

Maryland

Maine

Michigan

Minnesota

Missouri

Jan

Feb

Jan

Feb

Mar

Jan

Mar

Jan

Feb

Jan

Feb

Mar

Jan

Feb

Mar

Jan

Feb

Mar

Jan

Feb

E,J,V,PP,2
F,I,Q,U,RR
U,V,EE,LL,3
A,C,EE,PP
D,DD

E,I,K,LL,2

E,G,L,V,RR,UU

Y,RR, XX
E,O,LL,2
Q,RR,1

Q
D,E,GG,II
I,DD,GG,HH
J,L
c,E,CC,1,2
F,Q,NN,RR
J,0,1

D,E,F,EE,GG

EE,RR,SS,TT,VV

96.

96.

96.

79.

52.

97

98.

69.

95.

76.

39.

97

82

57

95.

78.

82

94.

93.

20

55

20

37

95

.72

54

96

21

04

10

.37

.76

.51

73

08

.70

92

44

EAWR, EPNP, NAO
NAO
NAO, PNA

NAO

EA,EAWR,EPNP,NAO, WP

EAWR ,EPNP, WP
NAO, POL

EPNP, WP

EAWR,EPNP, WP
EAWR,NAO

PNA, SCA
EAWR,EPNP, PNA , WP
EAWR

PNA, WP

EPNP, PNA, WP

EAWR, EPNP,NAO, POL

84

79.

53.

69.

53.

90.

84

55.

61.

81.

53.

59.

88.

44

56.

85.

77.

37

36

37

71

06

.28

00

60

71

65

73

49

.71

81

74

93

73.

60.

84

79.

73.

38.

71

46.

65.

39.

86.

51.

44.

79.

61.

40.

93.

76.

82

14

.22

19

70

92

.30

41

81

63

56

43

18

78

19

68

98

52
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Mississippi

Montana

North Carolina

North Dakota

Nebraska

New Hampshire

New Jersey

Jan

Feb

Mar

Jan

Feb

Mar

Jan

Feb

Jan

Feb

Mar

Jan

Feb

Mar

Jan

Feb

Mar

Jan

Feb

1,V,EE,2
A,C,EE,PP
DD, GG
E,F,L,62Z,2
A,G,Q,R
cc,GG,TT, 3
E,Y,MM, XX
D,T,Y,RR,VV
C,E,L,WW
D,Q,II,RR
J,GG,1
A,v,DD,1,2
Q,DD,RR,TT
D,LL

E,K,JJ,LL,2

E,K,H,LL

Y,RR,1

96.

79.

51.

96.

85.

80.

95.

89.

96.

94

77.

95.

86.

74

97

98.

70.

20

54

32

67

62

60

38

83

920

.21

91

56

44

.81

.49

48

72

EPNP,NAO, PNA

NAO

EPNP,PNA, SCA, WP
PNA

PNA
EAWR,EPNP, PNA
NAO, SCA
EPNP, PNA, SCA, WP
EAWR, PNA

PNA

EPNP, WP

EAWR

EA,EPNP, WP

EA,EAWR,EPNP,NAO, WP

85

86.

52

84

47

45.

86.

54.

91

61.

43.

57

43.

71.

87

91

.78

.04

.05

35

15

94

.41

84

83

.10

83

89

.38

78.

71.

75.

49.

39.

71.

56.

80.

45.

70.

70.

39.

40.

76.

40.

73

95

45

80

22

60

52

89

35

19

72

28

56

74

68
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New Mexico

Nevada

New York

Ohio

Oklahoma

Oregon

Pennsylvania

Jan

Feb

Mar

Jan

Feb

Mar

Jan

Mar

Jan

Feb

Mar

Jan

Feb

Mar

Jan

Feb

Mar

Jan

Feb

Mar

G,T,RR,UU, 2%
F,G,RR,VV,1
G,Y,3
c,I,V,SS,zZ
RR,TT, WW

1
II,MM,XX,2
L

E,L,V,RR
D,GG,HH,PP
L,II

F,K,Q,DD,E,2

H,EE,RR,TT,VV

D,J
Cc,I,EE,MM,PP
Q,R,NN, 3
F,R,V,SS,2
E,J,HH,YY
Q,RR

L

97

88.

73.

96.

76.

38.

97

38.

96.

81.

56.

96.

85.

49.

96.

58.

39.

.84

43

52

43

62

81

.02

98

67

71

22

90

86

09

.88

.15

.58

96

45

80

EA,NAO

NAO

EA,PNA

NAO
EA,EAWR,EPNP,NAO
EAWR,EPNP, WP
NAO, POL

EA,EPNP

EPNP,NAO

NAO, PNA, WP

PNA

NAO, PNA, POL

EAWR , EPNP,NAO, WP

NAO

86

64.

43.

60.
41.

, WP 89.

80.

59.

59.

67.

83.
61.
69.
85.

43.

64

25

43

44

42

65

03

15

15

99

72

08

80

42

84

42.

86.

77

79.

39.

55.

63.

74.

81.

63.

72

56.

.16

84

62

.79

43

98

93

35

17

18

35

.36

81
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Rhode Island

South Carolina

South Dakota

Tennessee

Texas

Utah

Virginia

Vermont

Jan

Feb

Mar

Jan

Feb

Jan

Feb

Mar

Jan

Feb

Jan

Feb

Mar

Jan

Feb

Mar

Jan

Feb

Jan

Mar

J,Q,CC,EE, XX
Q,R,MM,RR
D,Q,JJ,RR
C,E,L,2
D,Q,II,RR
D,J,DD,1
1,Q,V,EE,3
D,T,U,RR,TT
C,EE,GG,NN,RR
A,M,JJ,RR,WW,3
Y,FF,LL,PP
c,I,V,BB,SS,Z2%
Q,CC,DD,NN

1

E,H,L,V,RR
A,H,Y,RR,VV
E,CC,JJ,LL,2

Q

96.

73.

71.

96.

90.

97

92.

87.

94

87

92

94.

72

96.

80.

41.

97

92

99.

42

84

52

54

73

01

.25

69

67

.86

.38

.17

62

.36

32

25

61

.37

.87

12

.72

EA,EAWR,EPNP,NAO, WP 86.

EAWR , EPNP, PNA 85.
NAO, SCA 55.
EPNP, SCA, WP 88.
EAWR a7.
EAWR, EPNP,NAO, PNA 77
NAO 53.
NAO, PNA, POL 68.
NAO 51.
PNA 44
NAO 43.
EAWR , EPNP, PNA 85.
NAO 49.
EA,EPNP,NAO, WP 73.

87

50

91

29

02

69

.85

13

73

96

.59

13

68

50

41

75.

70.

62

62

42

69.

56.

82.

74

84

58.

72

56.

71.

34

89

.01

.30

.20

02

75

929

.34

.34

62

.06

98

30
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Washington

Wisconsin

West Virginia

Wyoming

Jan

Feb

Mar

Jan

Feb

Mar

Jan

Feb

Jan

Feb

Mar

L,0,CC,EE,VV
M,R,EE,WW
D,H,PP,TT,XX,2
E,M,GG,UU, 22
Q,RR,ZZ,1
L,T,CC,GG,NN
E,H,V,EE,LL
D,T,U,LL,RR,TT
K,DD,MM, YY, ZZ
C,G,Q,DD

D,F,LL,SS

97

88.

92.

97

74

93.

98.

95.

92

84

89.

.78

37

93

.84

.87

10

19

91

.11

.57

89

EA,NAO, PNA, WP 91.
PNA 67
PNA 57
EAWR , EPNP, PNA 79.
EAWR 44
PNA, SCA 65.
EAWR,EPNP, PNA, SCA 83.
NAO 52
NAO 43.

06

.45

.39

31

.54

81

46

.54

76.

58.

75.

48.

43.

76.

42.

77

68

56

04

39

60

74

31

.50

88
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We statistically contrasted the WESS of
each pair of these three sets of factors. If no
model was found, WESS was assumed to be
zero. ODA was used to determine which set
of modes was better at predicting whether or
not the mean temperature of the states
exceeded the median. The PTMP pro-
cedure’ was used to estimate the exact Type
| error of each contrast. Analyses indicated
that ipsative mode models had significantly
greater WESS than the published or
computed normative mode models for all
three months (p’s <0.0001), and that
normative models could never reliably be
discriminated from each other by WESS
(p’s>0.17).

As a test of cross-sample generalizability we
also evaluated a larger field of northern
hemisphere data. In the crutem3v dataset
are 217 locations which have no missing
data for January, February or March, for the
years 1948-2007. As a test of cross-method
generalizability, temperature predict-ions for
each location and month were obtained
using stepwise multiple regression analysis:
the independent variables were the January
data, and ipsative, published raw, or
computed raw modes were used as
dependent variables. The R? value for each
model was determined: if no model was
found, R? was assumed to be zero. Statistical
comparison via the PTMP procedure
showed that ipsative modes clearly
outperformed the other modes (p’s<0.0001).
Computed raw modes outperformed
published raw modes in all cases: contrasts
were statistically significant for January and
February (p’s<0.0001), but not March
(p<0.27).

89

Predicting Precipitation Anomalies

As a second investigation of predictive validity we
assessed whether statistical models that use the
ipsative modes produce more accurate precipitation
forecasting. We used CTA to predict whether mean
precipitation in January, February, and March fell
above or below the median precipitation for the
years 1950-2007, for 48 contiguous US states. As
for temperature modeling, the weighted CTA
algorithm was performed using three sets of
attributes: the 46 newly discovered ipsative modes;
published normative modes (obtained from the
CPC, with PT omitted due to inactivity in January);
and computed normative modes (obtained from our
replication of CPC analysis using only January
data). The findings of these analyses are
summarized in Table 7. Tabled are modes (see
Table 5 for coding) emerging with p<0.05 in the
weighted CTA model. The weights were
determined by the same method as was used in
predicting temperature anomalies, but total monthly
precipitation was used for the sort and median.

As when modeling temperature anomalies,
models derived using ipsative modes to predict
precipitation anomalies in the United States
convincingly and broadly outperformed
corresponding models derived by normative modes,
when considered from the perspective of predictive
accuracy:

e For a given state and month (corresponding
to individual rows in Table 7), the ipsative
mode model yielded the greatest WESS 126
times (92.6%), versus 5 (3.7%) times each
for the published and computed normative
mode models.
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Table 7: Precipitation Prediction via Weighted CTA by US State, for January, February, and March of 2008,
Using Ipsative mode Scores, and Published and Computed Raw Mode Scores

Arkansas

Arizona

California

Colorado

Connecticut

Mar

Jan

Feb

Mar

Jan

Feb

Mar

Jan

Feb

Mar

Jan

Feb

Mar

Jan

Feb

Mar

Ipsative Modes

c,0,P,MM,NN

A,R,T,V,II

I,YY

C,R,FF,MM,YY

Q

HH
G,LL,SS

1,J,L,1

G,Q,T,JJ,ss

BB,LL,NN,SS, 2

V,SS,XX

C,R,U,SS

59.

90.

39.

39.

73.

87.

84

94.

68.

84

59.

65.

76.

87.

77

51.

56

01

98

28

47

14

.51

62

79

.57

44

75

21

67

.26

32

Published
Normative Modes

NAO, PNA

EPNP
EPNP, SCA
PNA

EA

NAO
PNA
Ssca

PNA

EAWR

POL

90

39.

62

38.

48.

44

52

45.

45.

43.

44

.27

63

.83

11

92

.07

.48

59

47

54

.07

Normative Modes

10

Computed

52

71.

57.

76.

59.

42

38.

.54

.02

36

10

33

73

.02

92
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Delaware

Florida

Georgia

Iowa

Idaho

Illinois

Indiana

Jan

Feb

Mar

Jan

Feb

Mar

Jan

Feb

Jan

Feb

Mar

Jan

Feb

Mar

Jan

Feb

Mar

Jan

Feb

Mar

B,RR
C,BB,EE
cc,DD,EE, PP
F,0,BB,CC,DD
T,EE,VV,2
c,D,0,SS,TT
0,MM, NN
C,J,T,SS,WW
GG,NN
G,I,R,PP

T,EE

E,L,T,GG,WW,1

J,M,U,NN, XX
I,U,HH,LL,3
H,Q,R,MM,NN
Q,U,BB,HH
E,J,JJ,UU
F,I,EE, HH,PP
R,EE,LL, XX

0,JdJ,8SS

57

70.

90.

92

94.

89.

73.

91.

59.

77.

56.

98.

85.

89.

92.

81.

87.

91.

83.

74

.74

31

77

.11

62

60

76

88

38

97

52

48

86

54

99

06

920

23

46

.05

EAWR ,NAO

NAO, WP

EA

EA

EAWR, PNA

EPNP, PNA, SCA

EA, POL

EA,NAO,WP

PNA

NAO, PNA

91

51.

55.

43.

68.

60.

75.

64

80.

50.

49

35

66

32

61

75

.52

77

32

.59

41.

46.

40.

53.

57.

42.

49.

86.

62

84

46.

39.

40.

66.

44

29

62

54

63

02

68

50

77

.80

05

51

56

45
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Kansas

Kentucky

Louisiana

Massachusetts

Maryland

Maine

Michigan

Jan

Feb

Mar

Jan

Feb

Mar

Jan

Feb

Mar

Jan

Feb

Mar

Jan

Feb

Mar

Jan

Feb

Mar

Jan

Feb

E,Y,GG,LL
F,K,M, FF
D,H,R,2
A,V,HH,PP
Q,V,II,LL,TT
G,NN, XX
H,DD,FF,WW
c,P,T

A,E,K,FF,WW

I,SS,WW,1
C,G,HH
G,H,WW
E,P,Q,YY
I,HH,RR,VV
HH,WW,YY,2
J,NN, WW
1,J,HH,SS,1
H,Q,T,GG,MM

D,DD

84

78.

81.

89.

86.

75.

80.

71.

85.

78.

66.

69.

88.

94

86.

70.

86.

86.

68.

.72

08

12

42

09

39

77

24

80

43

74

73

54

.80

44

25

85

97

26

PNA

PNA,SCA

EA,EPNP

POL

PNA

92

41.55

69.67

43.78

50.38

55.

79.

50.

53.

40.

64

39.

42.

39.

65.

53.

91

95

96

83

09

.87

45

96

22

40

95
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Minnesota

Missouri

Mississippi

Montana

North Carolina

North Dakota

Nebraska

Jan

Mar

Jan

Feb

Mar

Jan

Feb

Mar

Jan

Feb

Mar

Jan

Feb

Mar

Jan

Feb

Mar

Jan

Feb

Mar

P,FF,GG
Q,YY,3
0,9,R,EE,SS
Q,U

L,JJ
U,V,MM, XX
J,NN
CC,FF,2
L,V,FF,GG,VV
M,0,P,BB
B,H,M,Q,TT
MM
F,L,R,PP,YY
G,EE,PP
c,D,L,HH
L,NN, WW

I

Q,EE,PP
M,V,WW,XX

FF,MM, NN

77.

78.

89.

58.

62

91.

48.

73.

96.

89.

85.

41.

84

73.

83.

61.

45.

75.

84

73.

62

43

77

85

.77

12

51

12

920

13

62

15

.40

41

34

72

35

86

.34

70

PNA

EAWR, PNA, POL

WP

SCA

PNA

93

60.

76.

38.

39.

44

.55

.50

08

97

98

.70

28

.17

2,3,8

72.88

83.23

71.83

39.98

52.02
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New Hampshire

New Jersey

New Mexico

Nevada

New York

Ohio

Oklahoma

Oregon

Jan

Feb

Mar

Feb

Mar

Jan

Feb

Mar

Jan

Feb

Mar

Mar

Jan

Feb

Mar

Jan

Feb

Mar

Jan

Feb

Mar

Q,HH,WW,2

NN, WW, 2
H,R,P,HH
E,P,U,JJ
J,p,JJ,2
0,EE,GG,LL
A,0,EE,RR,WW
Q,GG,SS
U,LL,SS,YY
V,DD,RR, SS, XX
c,G,U,ss
D,H,R,HH,NN
U,BB,HH,MM
F,P,R,TT

I,ss
D,L,EE,FF,UU
YY

D,H,Q,II
D,GG,LL,XX,YY
P,LL,3

I,V,FF

86.

70.

85.

77

76.

89.

78.

80.

89.

92.

72

87.

77

95.

62

90.

41.

86.

99.

72

76.

44

89

74

.32

50

17

08

19

01

69

.82

90

.85

79

.83

88

03

85

59

.36

91

POL
EAWR

POL, SCA

NAO, PNA

EA,NAO
EPNP
NAO, PNA, WP

EAWR

WP

EPNP, PNA, SCA
EA, POL

EA,NAO

%94

48.

40.

56.

58.

40.

75.

39.

40.

78.

74

52

57

68

52

.88

09

39

39

45

68

61

.28

.54

46.

46.

51.

55.

47.

60.

54

55.

68.

61.

62

89.

45.

44

23

72

96

52

34

08

.24

29

73

48

77

66

18

.54
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Pennsylvania

Rhode Island

South Carolina

South Dakota

Tennessee

Texas

Utah

Virginia

Jan

Feb

Mar

Jan

Feb

Mar

Jan

Feb

Jan

Feb

Mar

Jan

Mar

Jan

Feb

Mar

Jan

Feb

Mar

Jan

Feb

Mar

J,P,U,MM
E,Q,II,TT,WW
J,0,SS,XX
JJ,LL,NN,UU
E,P,U

cc

T,JJ
L,R,CC,PP
Q,FF,TT
A,U,LL,2Z
A,H,GG,WW
E,P,V,HH,ZZ
I,M

L,JJ
F,V,SS,TT,2Z
D,J,R,XX,2
J,SS,XX
B,F,M,DD,XX
NN, SS,WW

G,I

C,Q,NN

F,K,CC,MM,PP,RR

69.

90.

79.

83.

86.

39.

67

75.

76.

87.

76.

90.

58.

65.

89.

87.

77

91.

73.

71.

79.

96.

14

24

84

11

15

63

.45

69

10

920

10

65

27

81

95

61

.32

93

47

71

31

08

EAWR

EAWR
EA, POL

EA,WP

PNA

EAWR, POL, SCA

PNA

NAO

EA

95

40.

42.

71.

74

68.

50.

40.

40.

40.

56

14

60

.40

44

15

04

33

09

52

39.

53.

54

63.

80.

42

88.

59.

77

43.

49.

39.

71.

.07

86

42

.59

30

42

.02

90

15

.56

13

56

45

42
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In January, ipsative mode models achieved
greater WESS than corresponding normative
mode models 91.3% of the time (46 states
had models based on January data).
Similarly, in February the ipsative mode
models almost always (93.3% of the time)
achieved greatest WESS (45 states had
models based on February data), and even as
data aged substantially—in March, ipsative
models almost always (93.5% of the time)
achieved greatest WESS (46 states had
models based on March data).

Using ipsative modes, for January data 12
states had CTA models with WESS> 90%,
as did 6 states for February data and 4 states
for March data. Zero normative mode
models achieved this level of WESS in any
month modeled.

We statistically contrasted the WESS of
each pair of these three sets of modes. If no
model was found, then WESS was assumed
to be zero. We used ODA to determine
which set of modes was better at predicting
whether the mean precipitation of the states
exceeded the median, or not. The PTMP
procedure’ was used to estimate the exact
Type | error for each contrast. Analyses of
January data (March and February had
comparatively sparse data) indicated that the
ipsative mode model had significantly
greater WESS than the normative mode
models (p’s<0.0002), but computed and
published raw modes were indiscriminable
(p<0.15).
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Predicting Export of Arctic Sea Ice

The export of Arctic sea ice through the
Fram Strait off northeast Greenland is an important
factor in the freshwater balance of the North
Atlantic Ocean, and affects the North Atlantic
thermohaline circulation. The January monthly ice
export at fluxgate a of the Fram Strait® was studied
using the ipsative modes found here. The data
consisted of sea ice area flux for the years 1979-
2002. Kendall's tau b statistic was used to
determine the correlation of modes with ice export,
and the significant associations are shown in Figure
5. Negative associations were found with ipsative
modes U (over Green-land), CC (near Svalbard), 3
(near Franz Josef Land), XX (off the coast of
northern Norway), and SS (eastern Pacific
Ocean). Positive associations were found with
ipsative modes UU (Mediterranean Sea south of
France), WW (North Atlantic Ocean northwest of
Spain), H (over Manchuria), and BB (east of Japan).

An example of a pattern with high sea ice
export is illustrated in Figure 6. The 500 mb pattern
in January 1983 yielded the maximal ice export for
any January in the years of 1979-2002. Low 500
mb heights extend from Green-land to Scandinavia
and western Russia, and another area of low heights
is found off of the Pacific coast of the USA. Areas
of high 500 mb heights are seen over southwest
Europe and the western Mediterranean Sea, and
over Mongolia and northeast China.
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Figure 5: Ipsative modes and Kendall's Tau b Coefficients with Statistically Significant

(p<.05) Associations with Ice Export

Recent research® reported no correlation
between SLP-based NAO and Arctic wintertime
sea ice export over 1958-1977, and a positive
correlation of 0.7 over 1978-1997. An eastern
shift in NAO centers of variability was sug-
gested to explain this phenomenon. However,
for the 500 mb level, ipsative mode U was a sta-
ble center over Greenland, for both sets of years,
1948-1976 and 1977-2007. Mode U represents
the northern center of the NAO dipole at the 500

at Fram Strait Fluxgate a, Indicated as *

mb level. Mode Il (near Iceland) was also a sta-
ble center, coincident with the northern center of
surface-level winter NAO variability: this does
not support the idea of a shift at 500 mb.
Furthermore, factors XX, CC and 3, located in
this region, were stable in both eras and reliably
associated with sea ice movement. Mode 3 is
coincident with the surface center of variability
in the Kara Sea, previously found to be associ-
ated with sea ice export variability. ™
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Figure 6: 500 mb GHA for January 1983, which Entailed the Maximal January
Ice Export for the Period 1979-2002: Ipsative modes are Prefixed by
the Sign of their Associated Kendall's Tau b Coefficient

Epilogue

Preliminary results using uncounfounded
climatic data in atmospheric prediction are very
positive. An important extension of the present
research is obtaining GHA modes for all months
of the year. Further evaluation of optimal statis-
tical methods used with unconfounded climatic
data is warranted. Future research should use
these data in applications such as, for example:
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predicting the ontogenesis, intensity, and path of
hurricanes™, and the ontogenesis, intensity, and
location of sudden stratospheric warmings***3;
modeling of seasonal energy consumption and
management of climate risk for energy firms®*;
forecasting and understanding the ENSO cycle
(El Nifio)", and development and evaluation of
numerical weather prediction models.*®
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Here Today, Gone Tomorrow:

Understanding Freshman Attrition
Using Person-Environment Fit Theory

People most at risk of dropping out of
organizational settings are those who have been
there the shortest periods of time.> Thus, in
college settings, students most at risk of drop-

Jennifer Howard Smith, Ph.D., Fred B. Bryant, Ph.D.,

Applied Research Solutions, Inc. Loyola University Chicago
David Njus, Ph.D., and Emil J. Posavac, Ph.D.
Luther College Loyola University Chicago (Emeritus)

Person-Environment (PE) fit theory was used to explore the rela-
tionship between student involvement and freshman retention. In-
coming freshmen (N=382) were followed longitudinally in a two-
wave panel study, the summer before beginning college, and again
during the spring of their freshman year. Involvement levels, a
variety of summer and spring preferences (Ps), and spring percep-
tions (Es) regarding specific aspects of their college environment
were assessed. Twelve PE fit indicators were derived and com-
pared with respect to their relationship with student involvement
and retention. Results indicated that involvement was linked to
some PE fit indicators. Traditional parametric statistical analyses
were compared with a new, nonparametric technique, Classifica-
tion Tree Analysis (CTA), to identify the most accurate classifica-
tion model for use in designing potential attrition interventions.
Discriminant analysis was 14% more accurate than CTA in classi-
fying returners (97% vs. 85%), but CTA was 962% more accurate
classifying dropouts (8% vs. 84%). CTA identified nine clusters—
five of returners and four of dropouts, revealing that different sub-
groups of freshmen chose to return (and stay) for different reasons.
Students’ end-of-the-year preferences appear to be more important
than anticipated preferences, college perceptions, or PE fit levels.

have long known about college attrition prob-
lems and have proposed a variety of theoretical
models as potential remedies, little progress has
been made in actually reducing student dropout

ping out are freshmen.>® Although researchers rates.”* The act of leaving college prior to
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graduation is often seen as a form of failure on
the part of the attritor, and not on the part of the
institution. However, it may be that features of
college environments may be at least partly
responsible for the early withdrawal of some
students.® This possibility makes a theory which
addresses both person- and environment-
focused variables (i.e., PE fit theory) potentially
important in better understanding college attri-
tion.

A large body of research has investi-
gated the issue of college attrition, linking stu-
dent departure to low levels of student integra-
tion and involvement. It is important to distin-
guish between two different conceptualizations
of “involvement” discussed in the education lit-
erature. One way to define involvement is be-
haviorally—as the degree to which students
participate in academic and social activities.
Here, involvement is defined solely in terms of
student behaviors (e.g., number of activities
attended, frequency of participation). A second
way to define involvement is psychologically—
as students’ level of perceived commitment to,
or affiliation with, their university.>® The pre-
sent study uses only the behaviorally-based con-
ceptualization of involvement.

Encouraging students to be involved in
campus activities seems to be an effective way
of positively influencing their perceptions and
ultimately their persistence.>*™*°  Student in-
volvement has been shown to affect commit-
ment to graduate; this commitment, in turn, has
been linked to both intentions to remain enrolled
and actual re-enrollment decisions.”***

Calling students’ freshman year a “stra-
tegic leverage point,” Tinto claims that most
attrition decisions arise either explicitly during
the freshman year or have their roots in the first-
year experience.®> To maximize the chances for
students to make a commitment to graduate,
Tinto calls for an increase in freshman opportu-
nities to engage in (formal and informal) social
and academic activities. Astin’s research also
links college involvement to student develop-
ment and college retention.”*%*%** According to
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Astin, attritors’ modal explanation for dropping
out is boredom with college. Indeed, boredom
may simply be another name for being unin-
volved. Of course, being uninvolved may be
caused by person-focused factors (e.g., student’s
lack of initiative), environment-focused factors
(e.g., lack of college opportunities), or both.

One way to understand the interaction of
person-focused and environment-focused fac-
tors on behavior is through Person-Environment
(PE) fit theory. Several studies have demon-
strated the relationship between the “fit” of stu-
dent characteristics (P) and college attributes
(E), and a plethora of educational variables in-
cluding physical symptoms,****> academic and
social competency,’® satisfaction,’” academic
achievement,'® student stress and strain,' level
of cognitive development,® withdrawal, alcohol
consumption, anxiety, the use of mental health
services, grade point average,** coping stra-
tegies,?* volunteer motivation??, school crime
and misbehavior,”® willingness to recommend
their college to prospective students,® and re-
tention.”® However, few studies have investi-
gated the direct link between PE Fit and student
retention. Tinto alludes to PE fit in his retention
model, but offers no specific recommendations
concerning how to measure congruence between
student preferences and college characteristics,
nor conceptual or operational definitions of PE
misfit. Empirical tests of Tinto’s model also
lack these components.?® Astin also alludes to
PE fit in his retention research. However, like
Tinto, he does not explicitly measure PE misfit
in ways recommended by congruence research-
ers, such as assessing PE variables on commen-
surate conceptually corresponding scales.

The task of validly assessing the match
between personal properties and environmental
features is difficult®>*"?*® Researchers must
determine which P and E variables are the most
relevant to the population of interest. They also
must find the best way to combine these salient
dimensions into a congruence, or fit, score.
Those studying PE fit must balance the two di-
mensions, giving equal consideration to both.
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Unfortunately, this often is not the case. Even
when one is certain that this balance has been
achieved, researchers must be certain that each
personal variable has a commensurate environ-
mental variable in order to justify calculating a
valid PE fit score.>?"*>%2 Whether to calculate
single or multiple PE fit indicators is another
important measurement issue to consider. The
notion of breaking down complex environments
into more manageably-sized Es can be traced to
Barker® and Wicker,**, and is still apparent to-
day in studies of noisy production lines,® hos-
pital  wings,® college dormitories,®” career
counseling departments,®®3° and classrooms.*
A college campus may be an ideal candidate for
this type of research since most university set-
tings contain distinct sets of populations, op-
portunities, and values.">* Tinto proposed that
college environments actually are comprised of
clusters of social and academic communities or
subcultures.®  If micro-environments within a
school can be identified, it may be reasonable to
derive PE fit indicators for each dimension,
rather than to rely simply on one overall con-
gruence score.

Researchers are far from reaching a con-
sensus regarding how best to operationally de-
fine the PE fit construct. The most frequently
used measure of congruence is the difference
score, which really is an indicator of PE misfit.*
P and E items are subtracted from one another,
producing a “discrepancy” score. Traditionally,
“Real E” items are subtracted from correspond-
ing “Ideal P” items, with the underlying as-
sumption that one’s actual environment typi-
cally will not exceed one’s ideal version of it.
Some PE fit researchers compute the absolute
value of this difference score, asserting that “P
less than E” effects are similar to “E greater
than P” effects.'*?%42 Others, however, have
preserved the direction of PE incongruence by
eliminating the absolute value sign.?*=1#345

It is crucial that the personal (P) and en-
vironmental (E) components comprising the
congruence construct are carefully defined. Re-
searchers, however, disagree on how best to do
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this. Examples of P conceptualizations are di-
verse and include dimensions such as: ideals,*
expectations,®” values,*®*" needs,**** inter-
ests, 8205 personalities,® choices,” and demo-
graphic information.’

Researchers have conceptualized the en-
vironmental (E) component of PE congruence a
variety of ways as well. Some define environ-
ments phenomenologically, by assessing occu-
pants’ images of a setting, rather than assessing
a setting’s objective features. Advocates of this
approach believe that perceptions have real con-
sequences.>** From this perspective, university
settings are defined in terms of their perceived
“climates”.*®**® A second E conceptualization
defines college environments in terms of the
aggregate of students’ characteristics.>®%">
Environments from this perspective are defined
by who their occupants are (e.g., choice of ma-
jor, ability levels, and ethnic backgrounds), ra-
ther than by what their occupants perceive.

A third way to conceptualize college en-
vironments is by the activities that occur on
campus. Behaviorally-based E conceptualiza-
tions are concerned with what students and fac-
ulty actually do, rather than what perceptions
they share or what characteristics they pos-
sess.*47810 Erom this perspective both the op-
portunity for activities and the activities them-
selves combine to represent the E component.

Measures of student-college congruence
will differ depending on which of these P and E
conceptualizations are used to derive the con-
gruence construct. Using the image-based E,
PE fit assesses whether an institution lives up to
the reputation or mystique surrounding it. Us-
ing the “characteristics-based” E, PE fit repre-
sents how closely each student matches the at-
tributes of the student body majority. However,
using the third, “behaviorally-based” conceptu-
alization of “E,” PE Fit assesses the match be-
tween students’ preferences for involvement,
and the actual opportunities to become involved
in college.

If environments can be defined both
subjectively (e.g., climates) and objectively
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(e.g., aggregate characteristics), so can congru-
ence measures. According to French, “subjec-
tive” PE fit reflects the match between people’s
preferences regarding their self-concept and
their setting, and their beliefs about these attrib-
utes.* “Objective” PE fit, on the other hand,
uses information that is independent of the bi-
ases underlying human perceptions. Actual at-
tributes of both the person (e.g., knowledge,
abilities) and the environment (e.g., policies,
activities) interact to produce these PE fit indi-
cators.

Some researchers have expressed a con-
cern about the potential for excess error within
subjective PE fit variables, claiming that an
over-reliance on perceptual data may lead to the
attenuation of true effects.’® They argue that
any one person’s assessment of the actual envi-
ronment (the E component) will contain associ-
ated error variance resulting from personal bi-
ases and the lack of relevant environmental in-
formation.>?” For example, students are often
unaware of, or even denied access to, infor-
mation concerning specific activities and inter-
actions occurring on their campus. This lack of
knowledge may add error to E scores and atten-
uate the true effects of PE congruence.

In response to these concerns, some re-
searchers have suggested that the measurement
gap between objective and subjective reality be
narrowed.”> Tracey and Sherry proposed that a
more accurate measure of the actual environ-
ment is the mean of all respondents’ “Real E”
ratings. They claim that these environmental
“consensus” scores are highly reliable because
they are unlikely to be affected by individual
variation. They also claim that these more ob-
jective congruence measures possess more con-
struct validity, for they better represent the dis-
crepancy between ideal and actual settings.

Tracey and Sherry used this technique to
examine the relationship between PE fit and
student strain in a college residence hall. They
asked residents to describe the preferred char-
acteristics (P) of a residence hall and then to de-
scribe the actual characteristics (E) of their own

104

residence hall. In addition to creating subjective
discrepancy scores by subtracting each partici-
pant’s P score from her E score, Tracey and
Sherry also created an objective PE fit indicator
by computing the mean of all floormates’ E
scores and subtracting this measure of central
tendency from each P score. It was found that
discrepancy scores based on a consensus of E
were more highly correlated with student stress
and strain than respondents’ own “subjective”
PE fit scores. The superior strength of using the
mean of “Real E” scores has been demonstrated
in other studies investigating student-college
congruence.® However, advocates of these
“objective” measures of PE fit are not without
their critics. Edwards is leery of congruence
meas-ures that hold one element constant, such
as when the mean of “actual” ratings is used to
represent E.>*> He argues that when PE fit is
computed this way, discrepancy scores merely
represent the variance attributable to one ele-
ment (e.g., P), and thus do not represent PE con-
gruence at all.

Besides determining how to measure PE
fit, another unresolved issue involves when to
measure congruence. The traditional approach
to measuring PE fit is to ask respondents to pro-
vide both their personal preferences (P) and
their environmental descriptions (E) concur-
rently.*®*>¢  While this strategy is convenient
(i.e., requiring only one data collection session),
this design may suffer from a number of con-
ceptual and methodological problems, such as
restriction in range due to natural attrition. In-
dividuals who experience PE misfit over time
either exit or adapt to their environments, thus
spuriously shrinking the range of the personal
characteristics remaining and reducing the
measure’s predictive power.***>®°  Selective at-
trition results, leaving only those most congru-
ent, and presumably those most productive and
satisfied, to occupy the setting, and to complete
researchers’ measures. This may pose a prob-
lem, since most participants of PE fit studies are
individuals who have occupied their settings the
longest.?® Individuals with considerable experi-
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ence and familiarity with a setting (e.g., tenured
employees, seniors in college) are likely to pos-
sess synchronized preferences and perceptions.
These members are typically few in number and
may comprise an unrepresentative sample.’
Range restriction problems also raise the issue
of external validity threats. If tenured occupants
possess a unique set of similar characteristics,
results from any one PE fit study may be lack-
ing with respect to generalizability.>’ One way
to remedy this problem is to examine longitudi-
nally populations that recently have entered an
environment. College freshmen may serve as an
ideal group for this approach.

Instead of measuring congruence at one
point in time, several researchers have begun to
utilize longitudinal research strategies to better
understand degrees of, or changes in, PE fit.
This nonconcurrent approach to measuring PE
fit, although more time consuming, offers many
benefits. For instance, these designs enable re-
searchers to assess occupants’ desires and per-
ceptions both before and after they are influ-
enced by the impact of their environments. If
planned carefully, nonconcurrent designs are
also able to include both congruent and incon-
gruent individuals in their pool of respondents.
Additionally, these designs also allow for dif-
ferent PE fit scores both before (e.g., “Antici-
patory PE fit”) and after (“Present PE fit”) indi-
viduals enter and familiarize themselves with a
setting to be calculated.***

Statistical Analysis Options

One goal of this project was to describe
and classify as accurately as possible two
groups of freshmen—those who returned as
sophomores and those who did not—using PE
fit variables and involvement indices. Two sta-
tistical techniques were compared with respect
to their ability to accuracy classify returners and
attritors. In addition to a traditional discrimi-
nant analysis (DA), an alternative statistical
technique also was performed on the data. Op-
timal Data Analysis (ODA) is a unique nonpar-
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ametric approach to statistical classification that
explicitly maximizes the average percentage ac-
curacy in classification (PAC) across groups in
a sample.®® ODA works by finding an optimal
classification solution which consists of a cut-
point (the point that lies midway between suc-
cessive observations that are from different
groups) and a direction, which is analogous to
the “sign” of a conventional statistic like a cor-
relation. ODA finds the cutpoint and direction
combination such that no other combination can
result in fewer misclassifications: by definition,
the resulting model is always optimal.>®

A special application of ODA, hierarchi-
cally optimal classification tree analysis (here-
after referred to as CTA) was used in the present
study, to distinguish returners from attritors.
CTA is an iterative ODA procedure that con-
structs a classification tree which hierarchically
maximizes the mean percent accuracy in classi-
fication (mean PAC) for a sample.®® CTA is
accomplished after several steps. First, a stop-
ping rule is determined a priori (e.g., experi-
mentwise Type | error of p<0.05). Second,
ODA is performed for every attribute (predictor)
separately, using the total sample. The attribute
yielding the greatest standard effect size is then
chosen and the cases are split according to this
model’s cutscore and direction on the attribute
having greatest effect strength (the model will
likely be imperfect, making both correct and
incorrect classifications). Third, ODA is per-
formed again using all of the attributes, but only
on a subset of the sample—the respondents who
were predicted to be in one class only (e.g.,
dropouts) in an attempt to improve classification
for this partition only. If a new attribute is
found to improve the predictive value it is added
to that particular “branch” of the classification
tree. If not, the branch ends there. The classifi-
cation tree “grows” until a sufficient number of
attributes is found that best describes each sub-
set of the sample. Branches are then “pruned”
(i.e., nodes are removed) if their Type | error
exceeds a set criterion, or if the branches do not
enhance the model’s overall mean PAC.>%%°
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Traditional DA assumes that a set of at-
tributes is equally relevant and meaningful to all
members of a particular sample.®® CTA, in
contrast, creates separate discriminant functions
for different subsets of the sample while de-
scribing clusters of individuals that share the
same common pathway. For example, it may be
that students choose to leave or to remain for
different reasons. One segment of the freshman
class may return for social reasons, while an-
other segment may return for academic reasons.
These specialized student clusters, which would
be overlooked with traditional DA, may help to
identify unique sets of “at-risk” freshmen.

Another advantage of CTA is freedom
from the restrictive assumptions underlying par-
ametric tests. DA requires that several assump-
tions be satisfied, such as independence, linear-
ity, and distributions that are normal, in order
for the estimated Type | error rate to be valid.®
In contrast, for CTA “p” (i.e., the probability of
making a Type | error) is exact and always
valid, because it is based solely on the structural
features of a particular data set.

Because bias may enter a classification
solution if the coefficients used to assign a par-
ticipant to a particular group are derived using
that person’s data, it is important to perform
leave-one-out (LOO) validity analysis (also
called the jackknife procedure).® This proce-
dure is then repeated, holding a different case
out each time, for every case. An advantage of
CTA is that LOO analysis is performed at every
step in the analysis.

Purpose and Hypotheses

This study was conducted with three
purposes in mind. The main purpose of this
study was to assess the degree to which in-
volvement in college activities was associated
with first year students’ PE fit levels, and the
degree to which these PE fit levels impacted
their decisions to return as sophomores. A se-
cond purpose was to determine the relative con-
tributions that different PE fit derivations make
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in explaining student involvement and attrition.
Finally, this study sought to compare traditional
multivariate statistical strategies with nonpara-
metric optimal analyses. Based on previous
empirical tests of PE fit theory and college re-
tention models, these three goals resulted in the
following six predictions.

1. The first hypothesis addressed the di-
mensionality of the PE fit construct, and pre-
dicted that student “Ideals” (Ps) with respect to
college environment preferences would be mul-
tidimensional, and thus multiple PE fit indica-
tors would be derived—one per dimension. It
also was expected that these dimensions would
be stable over time, from summer until spring.

2. The second hypothesis addressed the
relationship between students’ participation in
college activities and their subsequent PE con-
gruence levels. It was hypothesized the more
that students participated in college activities,
the greater would be their degree of PE fit.

3. The third hypothesis addressed the
relationship between PE fit and retention deci-
sions. It was proposed that students with greater
PE fit would be more likely to return for their
sophomore year than students with more incon-
gruent levels.

4. In-coming freshmen may not be as
certain of their college environment preferences
prior to beginning college, so the fourth hypoth-
esis predicted “Present” PE fit (Posttest Ideals
minus Posttest Reals) scores would be a better
predictor of return status, and a better criterion
of college involvement, than “Anticipatory” PE
fit (Pretest Ideal minus Posttest Real).

5. Because it is likely that no one student
can accurately describe all dimensions of a col-
lege environment, “Objective” PE fit (Posttest
Ideals minus the mean of Posttest Reals) was
hypothesized to be a better predictor of return
status, and a better criterion for college in-
volvement, than “Subjective” PE fit (individual
Posttest Ideals minus individual Posttest Reals).

6. Lastly, it was proposed that PE con-
gruence measures would be more strongly re-
lated to college involvement and retention deci-
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sions than either college preferences (P) or col-
lege perceptions (E) alone.

Method

Participants. In-coming freshmen from
a large Midwestern Catholic university were
surveyed during summer registration sessions,
and again during the spring of their freshman
year either in residence halls (for on-campus
students) or by postal mail (for commuters). A
total of 1,108 freshmen of the 1,186 students
comprising the freshman class (93.4%) com-
pleted summer questionnaires, and 420 of these
freshmen (38%) completed spring question-
naires (12 additional students completed the
posttest, but not the pretest.) Of the 420 spring
participants, 382 placed a confidential identifi-
cation number on both questionnaires, allowing
their summer and spring responses to be linked
and compared. Data from these 382 “pretest-
posttest” students were subsequently used to test
the hypotheses; they represented 34.5% of the
original sample.

Procedure and Instruments. Pretest data
were obtained during summer registration ses-
sions before the students’ first semester. Post-
test data were obtained at the end of partici-
pants’ freshman year. Social security numbers
were used to match students’ pretest and post-
test responses. The confidential treatment of re-
sponses was clearly emphasized to participants
and was strictly enforced.

Pretest. In an attempt to increase the re-
sponse rate, pretest data were collected during
summer orientation sessions. All but 78 stu-
dents who comprised the freshman class (1,108
of 1,186) gathered in groups of approximately
200 in a university auditorium the first morning
of their respective registration sessions (numer-
ous sessions were held throughout the summer).
After completing math placement exams, fresh-
men completed the PE fit pretest questionnaire.

Pretest items assessed respondents’ col-
lege preferences. These items represented ‘“‘an-
ticipated” ideals (Ps), since they were completed

107

before students actually experienced college
life. Participants evaluated various features of a
college environment using 7-point scales, rang-
ing from “very undesirable” to “very desirable.”

The pretest questionnaire contained 46
items which were either created specifically for
this college environment or were borrowed from
past PE congruence instruments. Eleven items
were chosen to correspond to the various com-
ponents of a new university program designed
to encourage freshman participation and to en-
hance freshman retention implemented that
year. For example, freshmen were asked to in-
dicate how desirable it would be to go on a re-
treat, to use electronic-mail to communicate
with faculty, and to go to the symphony or the-
ater. Fourteen items corresponded to activities
common to any university setting, such as vot-
ing in a campus election, or attending a social
event. Twenty-one items were borrowed and
modified from the Organizational Culture Pro-
file Item Set.** This set of items tapped stu-
dents’ preferences for certain environmental
“presses” or images. For example, freshmen
were asked to indicate how desirable it would be
for their college environment to be rule-ori-
ented, to be supportive, to foster independence,
and to allow them time to themselves.

Posttest. The posttest questionnaire was
distributed in the spring of respondents’ first
year, approximately 9 months after the pretest.
Students residing on-campus were given post-
test questionnaires in their residence halls.
Commuter students were surveyed via the mail.

Respondents rated the same set of col-
lege dimensions that were included in the pre-
test questionnaire with the exception of three
items (“reward minimal effort with high
grades;” “reward good performance with high
grades;” “have the same classmates in several of
my courses”) which were eliminated due to the
findings of an exploratory principal components
analysis which are discussed below. However,
unlike the pretest instrument which contained
only items assessing college ideals (“Anticipa-
tory” Ps), the posttest instrument contained both
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college preference (“Present” P) and college
perception (i.e., “Real” E) items presented on
commensurate scales.

For preference (P) ratings, students were
asked to indicate the degree to which they de-
sired various college attributes, and the degree
to which they would desire participating in a
variety of college activities (1=not at all; 7=
very much). For perception (E) ratings, students
were asked to indicate the extent to which each
attribute accurately described their college im-
pressions and experiences (1=not at all; 7=very
much). Anchors differed depending on whether
E items were presented as continuous (1=never;
7=very often) or discrete (yes/no) variables.

Attributes

Three major groups of attributes were
measured to test the specified hypotheses.
Student Involvement. Sixteen “Real” (E)
items were combined to create an involvement
index which assessed the extent to which stu-
dents participated in both academic activities
(e.g., speaking up in class; seeking out one’s
advisor) and social activities (e.g., attending a
cultural event; being active in campus politics)
during their first year. Psychologically-based
aspects of involvement, such as students’ com-
mitment to the university, were not assessed.
Five of the 16 involvement items tapped
activities that could be done repeatedly through-
out one’s freshman year (e.g., chat with an in-
structor, go to church with friends), and were
rated on 7-point scales ranging from “never” to
“very often.” The remaining 11 items included
events that, for the most part, students would
engage in only once or twice during the school
year (e.g., go on a retreat, dine with a professor).
To indicate whether or not they engaged in these
activities, students circled either “Yes” or “No.”
To create an overall index of involve-
ment for each student, the sum for each of the
two sets of items was converted to standard (z)
scores, and multiplied by the number of items
comprising those sets (5 and 11, respectively).
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These scores were then added together and di-
vided by 16 to create an overall standardized
involvement index.

PE Fit. Derivation of PE fit indicators
was complex, and involved four steps. First, two
principal components analyses were performed
on the summer and spring sets of Ideal data to
determine the dimensionality of student college
preferences (Ps). Three factors were revealed
and named “College Image,” “Student Experi-
ence,” and “Traditional-Catholic.” E items were
then categorized on the basis of these factors so
that PE fit scores could be derived (see Results).

The second step involved computing PE
Fit indicators as difference scores. PE fit indi-
cators were computed at the factor level only.*
However, in contrast to French’s congruency
formula, the absolute values of these differences
were used so that specific multivariate statistical
analyses could be performed.®* Thus, for the
present study, PE fit was calculated as the ab-
solute value of the difference between the sum
of student preference (P) items and the sum of
the commensurate set of student perception (E)
items for each of the three dimensions: PE
Fit=| TP - SE|. These differences were then
divided by the number of commensurate pairs in
each of the three factors (16, 13, and 8 items,
respectively). The magnitude of absolute dif-
ference scores increases as P and E ratings be-
come increasingly discrepant, so small congru-
ence scores represent greater PE fit.

Because several authors suggest differ-
ent ways to derive PE fit scores, the third step
involved deriving four distinct kinds of discrep-
ancy scores (Table 1).2%%4 First, to determine
the degree of congruence for students who had
not yet experienced college life, “Anticipatory”
PE fit scores were computed by taking the dif-
ference between pretest Ideal ratings and post-
test Real ratings. Second, to determine stu-
dents’ level of congruence at the end of their
first year, “Present” PE fit scores were derived
by computing the difference between posttest
Ideal ratings and posttest Real ratings.
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Table 1: PE Fit Components and Derivations

Component

Anticipatory Personal Preferences (P)*
Present Personal Preferences (P)
Actual Environmental Properties (E)

Type of PE Fit"

Anticipatory Subjective PE Fit
Anticipatory Objective PE Fit
Present Subjective PE Fit
Present Objective PE Fit

Operational Definition

Pretest Ideal items
Posttest Ideal items
Posttest Real items

Derivation of Difference Score®

Pretest Ideals minus Posttest Reals

Pretest Ideals minus (mean) Posttest Reals
Posttest Ideals minus Posttest Reals
Posttest Ideals minus (mean) Posttest Reals

Note: ®This construct was assessed during summer orientation sessions. All other attributes were derived
using data collected at the end of respondents' first year. "These variables were computed for each of the
three dimensions (College Image, Student Experience, and Traditional-Catholic). “All PE fit derivations

used the absolute value of the differences.

The third and fourth types of PE fit indi-
cators differed with respect to how the E attrib-
utes were computed. “Subjective” congruence
scores were derived by taking the difference
between each freshman’s set of (posttest) Ideal
and Real scores. “Objective” fit scores were
computed by replacing respondents’ individual
Real scores with the mean of all students’ Real
rating. Crossing Anticipatory and Present con-
gruence measures with Subjective and Objective
measures, a total of four PE fit indicators re-
sulted: (a) Anticipatory Subjective PE Fit; (b)
Present Subjective PE Fit; (c) Anticipatory Ob-
jective PE fit; and (d) Present Objective PE fit.

The final fourth step in the derivation of
PE fit indicators involved computing congru-
ence scores across the three dimensions revealed
in the first step. The four PE fit indicators
derived for each of these factors resulted in a
total of 12 types of PE fit indicators (see Table
2).

Return Status. Retention information
was obtained via the university’s Department of
Institutional Research. Respondents failing to
return for the sophomore year were classified as
attritors, regardless of the reason for departure.
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Results

Pretest-Posttest Respondents vs. Pretest-
Only Respondents. Analyses comparing re-
spondents who completed only the pretest with
respondents who completed both measures were
performed. Summer Ideal responses, as well as
additional demographic and academic infor-
mation, were compared. Because comparisons
are meaningful only for students who had the
opportunity to complete both measures, 44 stu-
dents who completed the fall semester but who
did not re-enroll for the spring semester were
omitted from these analyses.

Results revealed that pretest-posttest and
pretest only students were comparable on sev-
eral important dimensions. For instance, these
groups did not differ greatly with respect to at-
trition rates (10.5% vs. 13.7%, respectively), nor
did they differ statistically with respect to an-
ticipatory preferences on the three PE fit dimen-
sions (ps>0.05, mean effect size=0.10). These
groups also did not have different expectations
regarding first-semester GPAs (3.51 vs. 3.57,
respectively, effect size=0.04), or first-year cu-
mulative GPAs (3.61 for both groups).
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Table 2: Descriptive Statistics for PE Fit Indicators

Objective PE Fit®

Student Image

College Behavior

Traditional-Catholic

Anticipatory PE Fit*
M=0.88 sd=0.47 (378)

Present PE Fit"
M=0.88 sd=0.47 (360)
Subjective PE Fit

Student Image

Anticipatory PE Fit
M=1.69 sd=0.87 (376)

Present PE Fit
M=1.64 sd=0.91 (358)

College Behavior

Anticipatory PE Fit
M=0.82 sd=0.59 (378)

Present PE Fit
M=0.88 sd=0.66 (345)

Traditional-Catholic

Anticipatory PE Fit
M=0.97 sd = 0.74 (342)

Present PE Fit

Anticipatory PE Fit
M=1.72 sd=0.94 (347)

Present PE Fit

Anticipatory PE Fit
M=0.88 sd=0.64 (338)

Present PE Fit

M=0.82 sd = 0.68 (344)

M=1.61 sd=0.94 (345)

M=0.73 sd=0.62 (337)

Note: M=mean; sd=standard deviation. Smaller means indicate smaller discrepancy scores and
greater PE fit. Numbers in parentheses indicate the sample sizes. *Objective PE fit scores were
derived from Individual “Ideals” and the mean of “Reals”. "Subjective PE fit scores were deri-
ved from Individual “Ideals” and Individual “Reals.” C“Anticipatory PE fit scores were derived
from Summer “Ideals” and Spring “Reals.” “Present PE fit scores were derived from Spring

“Ideals” and Spring “Reals.”

However, some important differences
were revealed. Although pretest-posttest and
pretest-only students possessed similar GPA
expectations, they did statistically differ in the
GPAs they later earned. Students who com-
pleted both measures earned higher fall GPAs
(3.06 vs. 2.97, t(989)=2.15, p<0.032), higher
spring GPAs (3.06 vs. 2.89, 1(1017)=3.62,
p<0.0001), and higher first-year cumulative
GPAs (3.07 vs. 2.94, t(1009)=3.23, p<0.001).
However, the effect sizes corresponding to these
differences were small (0.19, 0.28, 0.30, respec-
tively, mean effect size= 0.26). Additionally,
both gender and place of residence impacted
whether or not students participated in both
waves of the study. A greater percentage of
women comprised the pretest-posttest group
(72.5%) than the pretest-only group (57.3%).
Freshmen residing off-campus were also less
likely to complete both measures.

110

Tests of Hypotheses

Dimensionality of PE Fit. To determine
whether college preferences, and the PE fit con-
struct, were uni- or multi-dimensional, a princi-
pal components factor analysis with varimax
rotation was performed on the Present Ideal
data. Only participants providing both pretest
and posttest information were used (n=382).
Six Present Ideal items (“Is easy-going;” “Is un-
predictable;” “Fosters risk-taking;” “Work un-
der pressure;” “Rewrite a paper/Redo a project;”
and “Use e-mail to communicate with faculty
and classmates”) did not have factor loading
exceeding 0.30, and therefore were not included
in the factor solution.

A total of three dimensions meaningfully
described the Present Ideal data (Table 3). The
first factor, labeled “College Image,” reflected a
set of variables which described environmental
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features emanating from students’ impressions from other colleges,” and closely resembled
of what a college should be like. The factor in- Pace and Stern’s impression-based definition of
cluded items such as “fosters independence,” “is a college environment’s “perceived climate”.*®

highly organized,” and “is distinctive/different

Table 3: Item Loadings for Present Ideal Factors

Item Factor 1: College Image Loading
Is supportive 0.68
Is people-oriented 0.65
Is highly organized 0.63
Fosters independence 0.62
Is effort-oriented 0.61
Allows you time to yourself 0.60
Fosters social responsibility 0.60
Is academically demanding 0.56
Fosters social interactions 0.56
Demands good performance from you 0.53
Fosters friendships in the classroom 0.53
Fosters friendships in residence halls 0.49
Lead an active social life 0.48
Identify yourself as a [college name] student 0.40
Is distinctive/different from other college environments 0.38
Is competitive 0.35
Item Factor 2: Student Experience Loading
Speak before a group of your peers about a topic important to you 0.72
Attend a professor’s presentation as a part of a faculty lecture series 0.60
Imagine yourself president of a club or organization 0.60
Chat with an instructor outside of class 0.60
Share ideas/Speak up in class 0.59
Become active in political groups on campus 0.59
Eat dinner with a professor 0.58
Volunteer in the local community 0.56
Go to a subsidized cultural event (such as the symphony or theater) 0.51
Vote in a campus election 0.50
Go on a retreat 0.42
Encourages volunteering to meet local community needs 0.36
Seek out your advisor for advice 0.35
Item Factor 3: Traditional-Catholic Loading
Go to mass/church with your friends 0.66
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Emphasizes a Catholic/Jesuit mission

Emphasizes a single set of values throughout the university

Attend a Pep-Rally before a game
Is rule-oriented

Go to a planned social event in your residence hall

Is team-oriented
Is grade-oriented

0.62
0.52
0.50
0.48
0.46
0.44
0.40

Note: Displayed items include only Present Ideal items with factor loadings>0.30. For factors 1, 2 and 3,
respectively: Chronbach’s alpha=0.85, 0.83, and 0.78; eigenvalue=8.19, 3.10, and 2.27.

The second factor represented respond-
ents’ preferences regarding academic and social
experiences. Included in this dimension were
“action” items, rather than “image” items like
those comprising the first factor. This factor
was labeled “Student Experience” and included
items such as ‘“share ideas/speak up in class,”
“volunteer in the local community,” and “seek
out your advisor for advice.” This factor closely
resembled Astin’s behaviorally-based definition
of “college environment” %%

The third and final dimension combined
both “image” and ‘“behavior” items to reflect
what seem to be respondents’ preferences for a
conservative college experience. Traditional
college attributes as well as features related to
religiously affiliated schools comprised this
factor labeled “Traditional-Catholic” and in-
cluded items such as “emphasizes a single set of
values throughout the university,” “is rule-ori-
ented,” and “attend a pep-rally before a big
game.” Correlations among these three college
dimensions were positive (College Image and
Student Experience, r=0.45; College Image and
Traditional-Catholic, r=0.40; and Student Expe-
rience and Traditional-Catholic, r=0.41, all
ps<0.01).

To test the stability of this three-factor
solution, a principal components factor analysis
with varimax rotation also was performed on the
Anticipatory Ideal items. This factor solution
was then compared to the factor structure re-
sulting from the Present Ideal data using Coeffi-
cients of Congruence (COC). Results compar-
ing the two three-factor solutions revealed that
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the underlying factor structures of the two data
sets were highly congruent. The highest COC
was between summer and spring Student Expe-
rience dimensions (0.96), with the College Im-
age dimension also showing comparable factor
structures (0.93). The Traditional-Catholic di-
mensions were least congruent, but the degree
of factor correspondence was still high (0.70).

Because PE fit scores involve the differ-
ence between commensurate “Ideal” and “Real”
scores, only one of these two factor solutions
were used to compute the discrepancy scores.
The dimensions resulting from the posttest data
were chosen for two reasons. First, although the
two sets of three-factor solutions displayed
comparable internal consistencies (Cronbach
alphas=0.84, 0.83, 0.81 for summer factors vs.
Cronbach alphas=0.85, 0.83, 0.71 for respective
spring factors), the Present Ideal factors account
for a larger percentage of the variance (36.5%
vs. 34.8%) in their respective data set.

The second reason for choosing the Pre-
sent Ideal factors involved students’ degree of
familiarity with their college setting.  After
having experienced a college environment for
nine months, students should be better able to
describe their college preferences than before
starting school. Spring factors thus served as
the basis from which PE fit scores were derived.

Student Involvement and PE Fit. To test
the prediction that highly involved freshmen
would possess more congruent PE fit levels,
correlations were calculated between the in-
volvement index and eight PE fit indicators (the
involvement index was derived using 16 Student



Optimal Data Analysis
2010, Vol. 1, Release 1 (September 17, 2010)

Copyright 2010 by Optimal Data Analysis, LLC
2155-0182/10/$3

Experience Real items: thus, the four congru-
ence measures related to the Student Experience
dimension were not included in these analyses
due to the violation of the independence as-
sumption). Supporting predictions, involvement
level was significantly correlated with five of
eight PE fit indicators (Table 4). However, alt-
hough statistically significant, involvement ac-
counted for little of the variance in any of the
congruence measures: R? ranged from 2.4% for
Anticipatory Subjective College Image, to 4.3%
for Anticipatory Objective College Image. De-
gree of college involvement was related to three
of four Subjective PE fit indicators and two of
four Objective PE fit indicators. High involve-
ment was associated with more congruent Sub-
jective PE fit. However, contrary to predictions,
highly involved freshmen were more likely to
possess less congruent Objective PE fit levels.

Table 4: Correlations Between PE Fit
Scores and Student Involvement

Effect
Objective PE Fit® r > Size (d)
College Image Fit (A)° 0.2077 0.043 0.424
College Image Fit (P)° 0.188" 0.035 0.381
Traditional-Catholic Fit (A) 0.064  0.004 0.127
Traditional-Catholic Fit (°) ~ 0.002  0.000  0.004
Subjective PE Fit”
College Image Fit (A) -0.153"  0.024 0.314
College Image Fit (P) -0.176° 0.031 0.358
Traditional-Catholic Fit (A) -0.021 0.000 0.042
Traditional-Catholic Fit (P) -0.170°  0.029  0.346

Note: Student Experience PE fit scores were excluded
from analyses due to the independence assumption viola-
tion with the involvement variable. All analyses were
performed with and without involvement items in the PE
fit indicators: significance levels did not change. A single
asterisk (*) indicates p<0.05 at the generalized (per-
comparison) criterion, and double asterisks (**) indicate
p<0.05 at the experimentwise criterion.”® Derived from:
®Individual “Ideals” and mean of respondents’ “Reals”;
*Individual “Ideals” and Individual “Reals”; “summer
“Ideals” and spring “Reals”; and ‘spring “Ideals” and
spring “Reals.”
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PE Fit and Retention. To test the predic-
tion that PE fit scores would help to distinguish
returners from dropouts, linear DA and CTA
were performed. PE fit scores served as attrib-
utes, and return status as the class variable.
None of the 12 PE fit variables (four fit indices
across each of three dimensions: Student Image,
College Behavior, Traditional-Catholic) quali-
fied for DA or CTA analysis.

Additional Analyses

Because the attribute set outlined above
did not adequately classify returners from drop-
outs, further analyses were performed in which
several predictor variables were used. CTA and
stepwise DA were performed. For CTA all sin-
gle-item Ideal and Real variables were used, as
was the involvement index and the Ideal, Real,
and PE fit factors. For DA only the set of single
item variables was used because the inclusion of
construct-level variables would violate the inde-
pendence assumption underlying this procedure.

Stepwise DA Model. The DA resulted in a
linear model that distinguished returners from
dropouts (canonical R=0.39, »*(7)=46.53, p<
0.0001). Seven predictors combined to yield a
significant discriminant function after 7 steps
(Table 5). The loading matrix of correlations
between predictors and the discriminant func-
tion suggest that together, three variables dis-
criminated respondents on the basis of return
status (predictors having loadings less than 0.50
were not interpreted®?).

The best predictors for distinguishing re-
turners from attritors assessed how organized
and how competitive respondents perceived
their college environment to be at the end of
their freshman year. Dropouts described their
college environment as more organized than
returners (means=5.18 vs. 4.87, respectively),
but less competitive than returners (means=4.65
vs. 5.52, respectively). One posttest preference
rating also contributed to the classification
model. Returners and dropouts differed in the
degree to which they wanted to identify them-
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selves as members of their college community,
with returners possessing stronger desires

(means=5.88 vs. 5.17, respectively).

Table 5: Standardized Canonical Discriminant Function Coefficients for Stepwise DA

Step Item® Coefficient’ Wilks Lambda

1 competitive environment (Real) 0.59 0.96

fosters risk-taking (Ideal) 0.31 0.94
3 highly organized college (Real) -0.57 0.91
4 identify self as college member (Ideal) 0.53 0.89
5 team-oriented college (Ideal) -0.32 0.87
6 fosters risk-taking (Real) 0.39 0.86
7 attend pep-rally (Ideal) -0.33 0.85

Note: °All items included in the solution were assessed during the spring of students’ freshman year.
No summer (i.e., “anticipatory”) items significantly contributed to the discriminant function. "Stand-
ardized canonical discriminant function coefficients.

Although the model classified almost all
of the returners correctly, it performed poorly in
its classification of dropouts. Group PACs for
returners and attritors were 97.2% and 17.9%,
respectively. The mean PAC across both groups
of returners and dropouts was 57.6% (Table 6).

Table 6: DA Classification Results

Actual Predicted Group

Group N Dropouts  Returners

Dropouts 39 7 32 7.9%

Returners 324 9 315 97.2%
43.8% 90.8%

Note: ESS=5.1 (weak effect).

CTA Model. CTA vyielded a different
solution, outperforming DA especially with
respect to classifying attritors. The CTA model
correctly classified 84% of dropouts and 85% of
returners, with an overall mean PAC of 84.5%
(see Table 7).
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Table 7: CTA Classification Results

Actual Predicted Group

Group N Dropouts Returners

Dropouts 31 26 5 83.9%

Returners 317 48 269 84.9%
35.1% 98.2%

Note: ESS=68.8 (relatively strong effect).

Presented in Figure 1, CTA also revealed
that different groups of dropouts left, and differ-
ent groups of returners stayed, for different rea-
sons. The CTA model revealed four clusters of
dropouts and five clusters of returners.

Four common pathways through the meas-
ured attributes described the participants who
did not return to the university for their sopho-
more year. As seen, dropouts on Path 1 (“Drop
1”” in Figure 1), “Small Dose Participators” pos-
sessed little desire to identify themselves as a
university member (<0.5), chatted frequently
with instructors outside of class (>3.5), desired a
team-oriented environment (>5.5), but did not
desire to dine with instructors (<4.5).
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Figure 1: CTA Model for Classifying Dropouts and Returners

Desire to
Identify Selfas
a Member of

the University

Low High
p<0.003
Frequency .
. i Traditional
Chatting with Catholic PE
an Instructor Fit (Present
Outside Class Subjective)
(Real-Post) !
High Low Fit Misfit
p<0.005 p<0.015
Create a Attend Urban Desirea Desirean
Team-Oriented Cultural Events Competitive Unpredictable
Environment in Chaperoned Environment Enviroment
(Ideal-Post) Group (ldeal- (Ideal-Post) (Ideal-Pre)
Pre)
High Low Low High Low High High Low
p<0.008 p<0.004 p<0.011 p<0.0006
Desire to Dine Stay 2 Drop 2 Stay 3 Drop 3 Stay 4 Drop 4 Stay 5
with a
Professor
(Ideal-Post) 30/37 (82%) 5/6 (83%) 50/61 (82%) 7/8 (88%) 24/36 (67%) 5/7 (71%) 160/176 (91%)

Low High

p<0.027

Drop 1 Stay 1

9/10 (90%) 5/7 (71.4%)
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Dropouts on Path 2 (Drop 2), “Involve-
ment Avoiders,” also possessed little desire to
identify themselves as a university member
(<5.5), but rarely chatted with their instructors
outside of class (<3.5). “Involvement Avoid-
ers” also indicated during summer registration
that they were not interested in attending urban
cultural events in a chaperoned group (<4.5).

Dropouts on Path 3 (Drop 3), “Congruent
Non-Competitors,” differed from the first two
clusters.  These students did want to identify
themselves as a university member (>5.5). Alt-
hough this cluster of dropouts possessed strong
Traditional-Catholic PE fit (<0.19), they did not
desire a competitive college environment (<5.5).

The final set of Path 4 dropouts (Drop 4),
“Incongruent Thrill-Seekers,” were similar to
those on Path 3 in that they desired to identify
themselves as university members. However,
these attritors revealed incongruent Traditional-
Catholic PE fit levels (>0.19), and possessed
pre-enrollment desires to attend a college with
an unpredictable environment (>5.5).

The PACs for Paths 1, 2, 3, and 4 classi-
fying dropouts were 90% (9/10), 83.3% (5/6),
and 88% (7/8), and 71% (5/7), respectively.

Five common pathways were used to clas-
sify students who chose to return to the univer-
sity as sophomores.

Path 1 returners (Stay 1), “Large-Dose
Participants,” possessed little desire to identify
themselves as a university member (<5.5),
chatted frequently with their instructors outside
of class (>3.5), desired a team-oriented envi-
ronment (>5.5), and also desired to dine with
their instructors (>4.5).

Returners on Path 2 (stay 2), “Academi-
cally Involved Independents,” were similar to
those on Path 1 in that they possessed little de-
sire to identify themselves as a university mem-
ber (<5.5) and chatted frequently with their in-
structors outside of class (>3.5). However, they
differed from “Large Dose Participants” in that
they did not desire a team-oriented college envi-
ronment (<5.5).
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Returners on Path 3 (Stay 3), “Culture
Seekers,” also possessed little desire to identify
themselves as a university member (<5.5), and
indicated that they did not often chat with their
instructors outside of class (<3.5). However,
“Culture Seekers” indicated during summer
reistration sessions a desire to attend urban cul-
tural events with classmates and faculty mem-
bers (>4.5).

Returners on Path 4 (stay 4), “Congruent
Competitors,” did want to identify themselves
as a university member (>5.5), possessed good
Traditional-Catholic PE fit (<5.5), and desired a
competitive college environment (>5.5).

Finally, returners on Path 5 (Stay 5), “In-
congruent Routine-Seekers,” wanted to identify
themselves as university members (>5.5), pos-
sessed little Traditional-Catholic PE fit (>0.19),
and did not desire a unpredictable environment
(<5.5).

The PACs for these five pathways were
71.4% (5/7); 81.8% (30/37); 82.0% (50/61);
66.7% (24/36); and 90.9% (160/176), respec-
tively.

Objective vs. Subjective PE Fit. It was
predicted that Objective PE fit scores would be
more closely related to involvement, and would
better predict students’ return status, than Sub-
jective PE fit scores. Results did not support
these predictions. No Objective PE fit score
contributed to the understanding of student re-
tention and attrition. Only one subjectively de-
rived congruence measure (Present Traditional-
Catholic PE Fit) assisted in classifying returners
and attritors, but only for the expanded ODA-
CTA model.

A surprising pattern emerged when the in-
volvement index was correlated with both Sub-
jective and Objective PE fit indicators. The re-
lationship between Subjective PE fit and in-
volvement was in the opposite direction of the
relationship between Objective PE fit and in-
volvement. As predicted, highly involved stu-
dents tended to have more congruent subjec-
tively derived PE fit scores. However, contrary
to predictions highly involved students tended to
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have more incongruent PE fit scores when this
variable was computed using the mean of all
respondents’ Real scores. Thus, it appears that
the direction of the relationship between student
involvement and PE congruence may be contin-
gent upon how the PE fit scores were derived.
This unexpected relationship might best be ex-
plained by measurement artifacts, rather than
true effects (discussed below).

Anticipatory vs. Present PE Fit. It was
hypothesized that Present PE fit scores would
better predict return status and be more closely
associated with students’ involvement levels
than Anticipatory PE fit scores. The logic be-
hind this prediction was that first-year students
would have a better understanding of what they
desired in a university after having experienced
college life for two semesters.

Results revealed that Present congruence
measures were only slightly better than Antici-
patory congruence measures with respect to in-
volvement and return status. Three Present PE
fit scores, but only two Anticipatory PE fit
scores, were associated with students’ level of
participation in college activities (see Table 4).
With respect to return status, the only congru-
ence measure that was included in any of the
classification models was Present Subjective
Traditional-Catholic, derived from posttest
items (see Figure 1).

PE Fit vs. P and E Variables. It was hy-
pothesized that PE fit difference scores would
outperform P (ldeal) and E (Real) scores alone.
Results did not support this prediction. Student
involvement was more highly correlated with
the P factors and E factors than with the PE fit
factors (see Table 8). To test the relationship
between P and E dimensions and retention,
MANOVAs and discriminant analyses were
performed, using the six Ideal (P) and three Real
(E) factors in place of the PE Fit indicators to
test for group differences between returners and
non-returners. P and E factors did not improve
the accuracy in classifying freshman returners
from dropouts.
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Table 8: Correlations Between Student
Involvement and Ideal (P) and
Real (E) Factors

Effect
Ideal (P) Dimension r r’ _ Size (d)
College Image (A)* 0.250™ 0.063 0.519
College Image (P)" 0.210” 0.044  0.429
Student Experience (A) 0.348™ 0.121 0.742
Student Experience (P) 0.439” 0.190 0.969
Traditional-Catholic (A) 0.3577 0.127 0.763
Traditional-Catholic (P) 0.401” 0.161 0.876
Real (E) Dimension
College Image 0.293” 0.086 0.613
Traditional-Catholic 0.539” 0.291 1.280

Note: The Student Experience Real factor was excluded
from these analyses due to the independence assumption
violation between this variable and the involvement
attribute. All analyses were performed with and without
involvement items in the Real and Ideal factors: signifi-
cance levels did not change. Double asterisks (**) indi-
cate p<0.05 at the experimentwise criterion.”® “Antici-
patory (derived from summer items). “Present (derived
from spring items).

Additionally, three CTA and three DA
procedures were run—each containing the two P
(Anticipatory and Present) and one E factor cor-
responding to the three college dimensions
(College Image, Student Experience, Tradi-
tional-Catholic). Neither CTA nor DA proce-
dures generated a classification solution with
respect to return status when Real and Ideal
factors replaced PE fit factors. However, as dis-
cussed above, when ancillary analyses expanded
discriminant procedures to include single-item P
and E variables, preferences and perceptions
outperformed PE fit scores in distinguishing
freshman returners from non-returners.

Discussion

The PE Fit literature has linked student-
college congruence to a host of desirable educa-
tional variables (e.g., academic achievement,
perceived competency), yet has virtually ig-
nored attrition and retention variables. The pre-
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sent study attempted to merge the separate re-
tention and PE Fit paradigms, by investigating
the relationships among involvement, student-
college congruence, and withdrawal decisions
for one population of college freshmen over a
period of one year.

Although most PE fit indicators were
linked to student involvement levels, the corre-
lations between separate P and E factors and
involvement were stronger. The variable most
highly correlated with student involvement
measured students’ perceptions (E) regarding
the Traditional-Catholic nature of their college.
Students who believed that the “press” of their
college environment emphasized religious val-
ues, grades, and school rules, were most likely
to participate in campus activities. Highly in-
volved students also seemed to have desired
these characteristics, since the variable corre-
lated next highly with involvement was the Tra-
ditional-Catholic P factor.

It appears that the relationship between in-
volvement and student-college congruence was
contingent upon the way that the PE Fit indica-
tor was derived. When subjective congruence
scores were used, the relationship between these
PE fit indicators and involvement was as pre-
dicted; the greater students’ level of involve-
ment, the greater the match between students’
preferences and perceptions. However, when
objective congruence scores were used, greater
student participation resulted in more discrepant
congruence Scores.

One explanation for this change in direc-
tion may lie in the relationship between in-
volvement and the Ideal (P) component of the
PE fit score. By using the average “Real” rating
across all respondents to derive Objective PE fit
scores, any variability related to the E compo-
nent of congruence was lost. Thus, variability
in objectively derived PE fit scores was due to
differences in student preferences (P items)
only. This was not the case with subjectively
derived congruence scores in which both P and
E responses were free to vary.
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In this study, involvement was, in fact,
positively correlated with all six Ideal ratings (rs
ranged from 0.21 to 0.44, all ps<0.01, mean ef-
fect size=0.72). Thus, the relationship between
Objective PE fit and involvement may simply
have represented a measurement artifact. Be-
cause students with the highest college stand-
ards (P ratings) were likely to have been the
same students who frequently participated in
college activities, it was made to appear that
greater participation was linked to greater (ob-
jective) incongruence.

This is consistent with Edwards’ assertion
that PE fit measures must allow both the P and
E components to contribute to the total variabil-
ity.>*>> When only one component is permitted
to vary, Edwards claims that PE fit is no longer
being assessed. Since this may have been the
case in the present study, all analyses using
Obijective PE fit scores should be rendered sus-
pect.

So, how is it that several congruence re-
searchers have demonstrated that Objective PE
fit was superior to Subjective PE fit in their
studies? The answer may simply be they have
not. A closer examination of these studies re-
vealed that measurement problems suggested by
Edwards may also explain these findings as
well. For instance, Tracey and Sherry studied
the relationship between Objective PE fit, Sub-
jective PE fit, and student distress.’® They
found that objective measures of congruence
were more highly correlated with distress than
Subjective PE fit measures. However, this was
only the case when students’ Ideal (P) ratings
also were negatively correlated with distress.
When distress and college preferences were
positively related, Subjective PE fit scores were
more highly correlated with college distress than
Objective PE fit. Thus, Tracey and Sherry’s
findings may suffer from the same problems as
those found in the present study.

Although many studies suggest that the
congruence between preferences (Ps) and per-
ceptions (Es) is superior to either component
alone in predicting behavior, studies do exist
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that refute this claim.®*®*  The present study

might be included in this group since no classi-
fication model differentiated returners from
attritors when psychometrically constructed PE
fit indicators were used as predictors.

When exploratory analyses were ex-
panded to include student preferences and per-
ceptions measured at the individual item level,
the present study supports the notion that P and
E components may be more important in classi-
fying returners from attritors than congruence
measures that combined these components.
Only one of the 12 PE fit indicators significantly
classified returners from non-returners, and this
was only for the expanded CTA model. Present
Subjective Traditional-Catholic PE fit scores
assisted in the classification of two clusters of
dropouts and two clusters of returners. No con-
gruence score was included in the traditional
discriminant function. All other variables in
both models were either P or E items.

Ideal and Real factors differed in their
contribution to the classification models. Alt-
hough the DA solution was comprised of both P
and E variables, the CTA model was comprised
almost completely of P variables. The only E
item in the classification tree assessed the fre-
quency of student-teacher interactions outside of
the classroom.

The time of the year in which P variables
were assessed also made a difference. The ma-
jority of the DA and the CTA items comprising
these classification solutions contained re-
sponses that were assessed in the spring of re-
spondents’ freshman year. Spring preferences
were better predictors of college retention than
previous summer preferences perhaps because
in their second semester, students did not have
to speculate about aspects of college life they
had yet to experience.

The CTA model may be consistent with
Tinto’s theory that links freshman involvement
with retention.® According to Tinto, different
types of involvement are critical at different
points in time. Upon arriving to campus, the
social sphere is critical to students, as they seek
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to find a support network. However, the focus
soon switches to the academic sphere once
freshmen begin their second month of college.
After the first few weeks on campus, classrooms
become first year students’ “gateways to [fu-
ture] involvement” in other social and academic
arenas (p. 134). Here, fledgling students learn
to engage in both formal and informal activities
with both faculty and peers. Thus, according to
Tinto, the quality of the learning experience
(e.g., contact with, and helpfulness of, faculty
and classmates) is not freshmen’s first priority
when they arrive on campus, but soon becomes
the crucial predictor of their overall satisfaction
with the college experience.

The left side of the CTA model (see Fig-
ure 1) seemed to reflect this emphasis on infor-
mal academically-oriented interactions. All be-
haviorally-based items in the CTA model in-
volved informal interactions with faculty mem-
bers. Both brief (chat with instructor) and ex-
tended (dine with professor; attend a cultural
event) faculty interactions helped to distinguish
returners from non-returners. Thus, it appears
that student-teacher interactions may have been
more important for enhancing freshman reten-
tion than purely social peer-only interactions.

Although the left side of the CTA model
contained mostly behaviorally-based variables,
the right side of the tree contained image-based
preferences in addition to a Traditional-Catholic
congruence variable. This side, then, reflected
retention decisions based on the value-system of
one’s institution (Traditional-Catholic congru-
ence) as well as the degree of thrill-seeking
“press” that was thought to exist on campus.
Interestingly, this “thrill-seeking” component
was similar to the most important items in the
traditional DA classification model. In that
model, perceptions regarding how “competi-
tive” and “organized” their college was contrib-
uted greatly to the differentiation of dropouts
from attritors. However, unlike the CTA model,
no behaviorally-based items were included in
the DA model. These findings emphasize one
of CTA’s major strengths. Clusters of respond-
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ents that would not have been found with one
linear discriminant function, were revealed with
CTA.

Although results from these models are
interesting, three important limitations must be
noted. First, both the CTA and the DA classifi-
cation solutions yielding a solution on the basis
of retention were exploratory. Only after the
psychometrically derived constructs were una-
ble to distinguish attritors from returners, were
individual “ideal” and “real” items included in
the analyses.

Second, although the CTA model held up
under LOO (jackknife) tests for overfitting,
neither model was able to be cross-validated
using a training sample, for which group mem-
bership was known, and a holdout sample, for
which group membership was predicted, and
later compared to reality. Although the pretest
sample size was large enough to divide, the
posttest sample size was not. Future studies that
intend to follow freshmen students longitudi-
nally should focus on increasing the response
rate in spring phases of data collection. Special
efforts also should be made to encourage com-
muting freshmen and freshmen who are strug-
gling academically to participate, since these
groups were somewhat under-represented in this
study.

Finally, neither classification model was
able to classify students on the basis of return
status better than simply relying on the base
rates. Because the vast majority of freshmen
did return to campus for their sophomore year,
simply using the classification rule, “Predict all
students to return” would have resulted in a
classification accuracy of close to 90%. Neither
the DA model nor the CTA model could beat
this rule.

However, it is important to note that the
beating the base rates may not be a relevant cri-
terion with which to base the adequacy of the
classification models in this study. Because ex-
ploring the perceptions and behaviors of stu-
dents most at-risk of dropping out is of utmost
importance to college administrators, finding the
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model that most accurately classifies this “vul-
nerable” group may be more important than
finding the model that most accurately classifies
all students (dropouts and returners). The ex-
panded CTA model was able to do just that.

The relationship between PE fit and reten-
tion might have been stronger if the reasons
driving students’ decisions to exit or remain in
their academic setting were assessed. Factors
impacting one’s decision to leave college are
both numerous and complex. Researchers have
discussed several kinds of dropouts, including
temporary or permanent; voluntary or involun-
tary; and attrition for academic or social rea-
sons.>"®* Additionally, leaving college may not
necessarily result in negative outcomes if, for
instance, one’s experience with a university
results in highly aversive outcomes, and better
options exist elsewhere.®® It may be that PE fit
levels impact only certain kinds of attrition.

Future researchers might want to fine-tune
the return-status variable to better assist college
personnel in stream-lining their retention efforts.
Reasons for dropping could be assessed using
an exit interview or written questionnaire at the
time of departure. An interesting and poten-
tially important future study could combine the
use of exit interviews with CTA techniques to
better understand freshman attrition. If reasons
for leaving differed among the different “clus-
ters” of attritors, CTA models could be used as
diagnostic tools for college admissions directors
and administrators.

There are four important findings that may
be of interest for those in the business of en-
hancing freshman involvement and retention.
First, it may be important to encourage both
students and faculty to seek each other out when
they are not in the classroom. Behaviorally-
based items that helped to distinguish returners
from non-returners included, not peer-interac-
tions, but different types of faculty-student in-
teractions.

Second, in addition to desires for interac-
tions with faculty members, students’ images of
their college are also important to students. The
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value system that a college promotes, as well as
the competitiveness and predictability of its cli-
mate, all appear to be important components in
the understanding of student retention. These
factors may help to impact how much of a col-
lege “member” students feel they are.

Third, college preferences may be more
important than college perceptions in classifying
freshmen on the basis of return status. It also
may matter when researchers document these
college desires. If students really do not know
what they want in a college until they have oc-
cupied it for some time, administrators may
want to wait until the spring of students’ fresh-
man year to assess college preferences and per-
ceptions.

Finally, there appears to be specific statis-
tical analysis which is ideally suited for the task
of understanding college student attrition. CTA
was far superior in classifying dropouts than
traditional discriminant analysis techniques
(84% vs. 18%). This finding is important since
attritors comprise the group about which college
administrators are most concerned. Addition-
ally, CTA was able to identify unique clusters of
dropouts (and returners) implying that, indeed,
students choose to leave their colleges for a
plethora of reasons. This ability to refine our
understanding of college attrition may be an im-
portant first step in actually reducing the num-
ber of students who choose this route.
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Tracing Prospective Profiles of Juvenile
Delinquency and Non-Delinquency:
An Optimal Classification Tree Analysis
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Loyola University Chicago

This study explored multiple variables that influence the develop-
ment of juvenile delinquency. Two datasets of the National Youth
Survey, a longitudinal study of delinquency and drug use among
youths from 1976 and 1978, were used: 166 predictors were se-
lected from the 1976 dataset, and later self-reported delinquency
was selected from the 1978 dataset. Optimal data analysis was then
used to construct a hierarchical classification tree model tracing the
causal roots of juvenile delinquency and non-delinquency. Five
attributes entered the final model and provided 70.37% overall
classification accuracy: prior self-reported delinquency, exposure
to peer delinquency, exposure to peer alcohol use, attitudes toward
marijuana use, and grade level in school. Prior self-reported delin-
quency was the strongest predictor of later juvenile delinquency.
These results highlight seven distinct profiles of juvenile delin-
quency and non-delinquency: lay delinquency, unexposed chronic
delinquency, exposed chronic delinquency, unexposed non-delin-
quency, exposed non-delinquency, unexposed reformation, and ex-
posed reformation.

The Federal Bureau of Investigation
(FBI) reported that more than 1.5 million juve-
niles under the age of 18 were arrested in 2003,
suggesting that about 16.3% of all individuals
arrested were juveniles.' As a result, youth vio-
lent crime is often considered to be a major
problem in the United States.” In addition, re-
search indicates that a delinquent criminal ca-
reer increases the potential to commit crime in
adulthood.”"! For these reasons, juvenile delin-
quency and its causes have been major topics in
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the study of crime.'?

Some scholars have focused on situa-
tional factors as underlying determinants of
criminal behavior.”'® For example, because
crime rates are generally high in areas of pov-
erty, it has been argued that poor socialization
(i.e., failure to teach skills to achieve middle-
class success) provided by lower-class parents is
a predictor of delinquency.'” With poor sociali-
zation, lower-class adolescents feel frustrated
and develop a unique subculture for their values.
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From the general view of conventional groups,
this is referred to as a delinquent subculture, and
youths belonging to this subculture are socially
labeled as delinquent gangs. Moreover, a delin-
quent subculture often develops in socially dis-
organized areas.'® Social disorganization is said
to exist'> when: “institutions of social control...
have broken down and can no longer carry out
their expected or stated functions” (p. 168). Ad-
olescents living in socially disorganized areas
have limited conventional opportunities, such as
well-paying jobs or educational opportunities,
which adolescents eventually perceive as an un-
equal distribution of power, a disjunction exist-
ing between aspirations and expectations, or a
discrepancy between expectations and achieve-
ment.'"® To achieve their goals under such lim-
ited conventional opportunities, some adoles-
cents seek alternative but illegal ways and
thereby become involved in a deviant sub-
culture.

Although prior research'”'® addressed
the general relationship between social class and
delinquency, not all lower-class youths automa-
tically engage in illegal behaviors. As an alter-
native conceptual viewpoint, social learning the-
ory argues that crime results from the learning
process of rewarded and punished behaviors
shaped through past experience and observa-
tions."”?' For instance, youth might learn actual
criminal techniques (e.g., how to steal things
from others), psychological coping strategies
(e.g., how to deal with guilt or shame as a result
of criminal activities), and attitudes about crime
(e.g., the norms and values related to criminal
activities) from direct exposure to antisocial be-
havior’>* or from relationships with a delin-
quent group.24'27

Furthermore, it has been suggested that
criminals are at lower stages of moral develop-
ment than law-abiding citizens.”>" This reason-
ing suggests that people’s perceptions of their
environment influence moral development. In
fact, Thornberry”® found that peer influence was
a crucial element during mid-adolescence, and
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having delinquent peers helped form delinquent
values. Menard and Elliott’ also found that
antisocial behavior attenuated a sense of social
morality.

Considering influences that move youth
away from antisocial behavior, in contrast,
Hirschi*® focused on four important prosocial
bonds that detach adolescents from delinquency:
attachment (i.e., sensitivity to and interest in
others); involvement (e.g., participation in social
activities); commitment (i.e., investing time,
energy, and effort in conventional behaviors);
and belief (i.e., respecting social values). Ac-
cording to his social bond theory, if youths have
weak bonds of attachment, involvement, com-
mitment, and belief, then they are more likely to
engage in delinquent behavior. Extending this
theoretical model, social bond theory was trans-
formed into the general theory of crime (GTC),
in which impulsive adolescents who receive
poor socialization are more likely to be low in
self-control and to weaken their social bonds to
conventional groups, which, in turn, encourages
them to seek criminal opportunity (e.g., joining
gangs, using illegal drugs).”

Contrary to theoretical predictions, how-
ever, it has been reported that some youths who
did not actually reject social bonds nevertheless
developed associations with delinquents.** Thus,
it is suggested that a relationship between social
bonds and delinquent behavior is moderated by
other factors, such as socioeconomic status.”*
Alternatively, path analyses of the National
Youth Survey from 1976 to 1978 concluded that
prior delinquency and involvement in delin-
quent peer groups were direct causal influences
on delinquency and drug use, and conventional
bonds and strain in-directly influenced later de-
linquency.”* This research implies that delin-
quency is recidivistic probably because such
youth have been labeled negatively and stigma-
tized, making it difficult for them to be rehabili-
tated into conventional society.%35

Thus, previous research has provided
rich information explaining sociological and
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psychological mechanisms underlying delin-
quency. Our goal in this study is to combine
previous theoretical perspectives and research
findings to examine delinquency more compre-
hensively than has been done previously. Most
prior research has examined only bivariate or
linear relationships with delinquency and has
analyzed a limited number of predictors. In this
study, we investigated many different potential
predictors in a single integrated model and ex-
plored how these various predictors interact
non-linearly with each other. We hypothesized
that both social and personal factors would mu-
tually influence delinquent behaviors. We also
considered several personal, social, and family-
related variables that are potentially associated
with delinquency, such as attitudes toward
deviance, social isolation, family isolation, and
demographic characteristics. ~Our dependent
variable was youth’s delinquency status—
delinquency versus non-delinquency—and we
used a newly available non-linear multivariable
method of classification tree analysis, based on
optimal data analysis (ODA), to classify obser-
vations into delinquents or nondelinquents.*

Advantages of
Classification Tree Analysis (CTA)

Traditionally, linear classification meth-
ods such as discriminant analysis and logistic
regression analysis have been used to solve sta-
tistical classification problems. Nevertheless,
linear classification methods have several weak
points that might produce statistical solutions
that are less than optimal. For example, discri-
minant analysis can produce probabilities be-
yond the range of 0 to 1 and requires restrictive
normality on the independent variables, which is
usually not met in practice.’” Furthermore, both
discriminant analysis and logistic regression
analysis simplify complex real-world phenom-
ena by using a linear model although real phe-
nomena are typically not linear.”® In addition,
these linear methods assume three conditions
that are often unrealistic—namely, that the mag-
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nitude of importance, the direction of influence,
and the coefficient value for each predictor vari-
able is the same across all observations.” It is
not our intention to argue that statistical results
found by linear methods are invalid, but rather
to note that the level of accuracy of these meth-
ods is constrained by the above limitations.

In contrast to traditional linear classifica-
tion techniques, the ODA paradigm offers a
non-linear multivariable classification method
known as hierarchically optimal classification
tree analysis (CTA).*® Independent and depend-
ent variables are referred to respectively as “at-
tributes” and “classes” in CTA. An attribute is
defined as: “any variable that can attain two or
more levels, and reflects the phenomenon that
one hopes will successfully predict the class
variable,” and a class variable is defined as “any
variable that can attain two or more levels, and
reflects the phenomenon that one desires to suc-
cessfully predict.”®

Note that a class variable must be cate-
gorical, although an attribute can be either cate-
gorical or continuous. CTA has distinct ad-
vantages over linear classification methods.
First, CTA can handle non-linear, complicated
real-world phenomena. With CTA, the shape or
form of a given phenomenon does not matter,
whereas linear methods assume that a straight
line or a sigmoidal curve characterizes the un-
derlying phenomenon.38 In addition, a CTA
model produces a high level of classification
accuracy by adopting optimal decision rules,
rather than trying to maximize explained vari-
ance or minimize a fit function (see Method for
more detail). Moreover, CTA is free from the
restrictive assumptions about independent varia-
bles. In particular, unlike linear methods, CTA
does not assume constant importance, direction
of influence, and coefficient value (unstandard-
ized or standardized regression coefficient) for
each attribute across all observations.*®

Another strength of CTA is it provides a
hierarchically optimal classification model,
which can be very informative. In CTA, the at-
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tribute with the strongest effect size for the total
sample, called the first node, enters the top of a
hierarchically optimal classification tree model.
One level or branch of the first node leads to a
second node through a predictive pathway,
while another level of the first node leads to an-
other second node through a different predictive
pathway. At these second nodes, the attributes
with the strongest effect size under each condi-
tion are entered to produce, in turn, different
pathways to the third nodes. These patterns are
repeated until prediction endpoints are reached.

The final CTA model reveals two im-
portant pieces of information. First, tracing
combinations of nodes in CTA visually identi-
fies crucial interaction effects. For example,
imagine the final CTA model indicates a certain
subgroup (endpoint) is predicted to engage in
delinquency when the first node of the model
(e.g., attachment) is at a low value and the se-
cond node (e.g., moral belief) is also low. This
result indicates that moral belief predicts delin-
quency, depending on the strength of attach-
ment. Note that in contrast to traditional linear
approaches, CTA automatically detects im-
portant interactions by examining all attributes
in the statistical model. Second, the CTA model
allows us to trace multiple stages branching into
each level of a class variable and to discover the
critical profiles linked to each outcome. In the
above example, the CTA model would show at-
tachment (the first stage) and moral belief (the
second stage) at which youths move toward de-
linquency or non-delinquency. This result im-
plies that one profile of delinquency is the com-
bination of weak attachment and moral beliefs.

In contrast, linear methods cannot iden-
tify ordinal predictors leading to each outcome.
Furthermore, unlike CTA, linear methods have
difficulty finding combinations of multiple vari-
ables predicting each level of an outcome simul-
taneously, making it more difficult to use linear
methods to identify predictive profiles.

These advantages make CTA a powerful
procedure for solving statistical classification
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problems in comparison with the linear classifi-
cation methods. CTA models are manually con-
structed using statistical software which con-
ducts ODA and classifies observations optimally
by following “a prediction rule that explicitly
achieves the theoretical maximum possible level
of classification accuracy”.’® We used ODA in
this study for three reasons in addition to the
fact that ODA enables us to capitalize on all the
strengths of CTA. First, ODA can analyze all
types of attributes measured by ratio, interval,
ordinal, and nominal scales.’** Second, as
noted in the Method section below, ODA empir-
ically tests the expected cross-sample generali-
zability of optimal classification models. ***°
Finally, ODA simultaneously analyzes as many
attributes as one wants without the limitations of
the ratio of attributes to sample size or problems
of multicollinearity.”® This is because ODA tests
the overall effect of each attribute on a class
variable individually and selects only the single
most influential attribute at each node. This
strategy differs from multiple regression analy-
sis, which calculates the partial effect of each
variable independent of the effects of other vari-
ables when considered simultaneously.

Method

Participants and Materials. Archival
data from the National Youth Survey, a 1976-
1978 longitudinal design with multiple birth co-
horts, were used.?****" In early 1977, the first
wave of the survey gathered a multistage, clus-
ter (area) probability sample of 1,725 American
adolescents aged from 11 to 17 in 1976. Thus,
by design, the sample included not only delin-
quents but also non-delinquents. The survey as-
sessed events and behaviors theoretically linked
with delinquency during calendar year 1976,
and the subsequent wave tracked most of the in-
dividuals in 1978. Because the National Youth
Survey followed the same individuals over time,
we selected theoretically relevant attributes
from the 1976 dataset to predict later self-re-
ported delinquency in the 1978 dataset. Partici-
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pants interviewed for the first survey were rep-
resentative of the youth population aged 11-17
in the U.S. measured by the U.S. Census Bu-
reau, and the attrition rate for the subsequent
wave was only 6% (N=99).>* ODA software®
was used to manually construct a hierarchically
optimal CTA model of juvenile delinquency.

Measures. Our class variable of general
delinquency was a composite index consisting
of the frequency of the following behaviors re-
ported by youths in 1978: aggravated assault,
larceny, burglary, robbery, marijuana use, hallu-
cinogens use, amphetamines use, barbiturates
use, cocaine use, vandalism, buying stolen
goods, hitting, joyriding, runaway, carrying a
hidden weapon, prostitution, and selling drugs.
Note that there were no questions about homi-
cide and arson in the survey. Alcohol use, lying
about age, hitchhiking, and buying liquor for a
minor from were excluded from our measure of
delinquency because they were rather common
illegal acts.***  Sexual intercourse, panhan-
dling, and disorderly conduct were also ex-
cluded from delinquent behaviors. Sexual inter-
course is relatively commonplace among
youths, and it is also hard to judge whether sex-
ual intercourse is delinquent.** For example, a
victim of rape has sexual intercourse against his
or her will, but voluntary intercourse is not ille-
gal. Thus, it was reasonable to bar sexual inter-
course as a component of delinquency. As for
panhandling, begging for money does not hurt
anyone and is not delinquent. Finally, people
often behave in a disorderly manner (e.g., being
loud in public) simply because of their exuber-
antly positive mood, so disorderly conduct is not
always a form of delinquency.

Although our decision to consider some
illegal acts as non-delinquent due to the trivial
nature of these acts may not be universally ac-
cepted, the proportion of youths who performed
at least one of these “trivial” illegal acts once or
more monthly was 69.1%, whereas the propor-
tion of youths who committed delinquent acts
once a month or more as we have operationally
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defined this construct was 32.8%, which seems
much more reasonable as an estimate of the un-
derlying rate of delinquency.

The National Youth Survey offered two
sets of questions to measure (a) the actual num-
ber of times each delinquent act was committed
and (b) the frequency of each delinquent behav-
ior using a scale ranging from one (never) to
nine (two-three times a day). Cronbach’s a for
the frequency rates of the general delinquency
was 0.713, which was greater than that for the
actual number of delinquent behaviors. Hence,
only the frequency rate items were used to con-
struct the class variable for CTA. Committing
each delinquent behavior once a month or more
(score>4) was recoded as one point, while com-
mitting each delinquent behavior less than once
a month (score<4) was recoded as zero points.
This rule was the most effective in making our
sample as representative as possible of Ameri-
can delinquents and non-delinquents (see the
above discussion of the proportion of delin-
quents). Respondents who scored at least one
point were defined as delinquents, whereas re-
spondents who scored zero points were defined
as non-delinquents: this was the class variable
employed in CTA.

Attributes. A total of 166 attributes were
examined, including 17 theoretical “broad band”
composite variables, the individual ‘“narrow
band” items composing these theoretical attrib-
utes, and additional background and demo-
graphic characteristics used in prior research.**
The theoretical variables were: (a) conventional
involvement measured by a sum of scores on the
school athletic and activities involvement scales
and community involvement scale (a=0.70); (b)
attachment to family measured by a sum of
scores on the family involvement and aspiration
scales (0=0.72); (c) conventional commitment
measured by a sum of scores on the school
aspirations scale and future occupational and
educational goal scales (a=0.71); (d) moral be-
lief measured by a sum of scores on the family,
school, and peer normlessness scales (a=0.72);
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(e) exposure to peer delinquency measured by a
sum of scores on the number of close friends
performing each of some bad behaviors
(0=0.82); (f) involvement with delinquent peers
measured by a sum of scores on the peer in-
volvement scale multiplied by the difference
between an observed score for exposure to peer
delinquency and its mean (because this is a sin-
gle index, o was not computed*®); (g) sociali-
zation measured by a sum of scores on the per-
ceived sanctions in family scale (0=0.84); (h)
attitudes toward deviance measured by a sum of
scores on the attitudes toward deviance scale
(0=0.79); (1) social disorganization measured by
a sum of scores on the neighborhood problems
scale and the reversed and standardized family
income scale (0=0.75); (j) prior self-reported
delinquency measured by a sum of scores on the
continuous frequency rate scale (0=0.95) and
measured by a sum of scores on the dichoto-
mous frequency rate scale (a=0.91); (k) social
isolation measured by a sum of scores on the
family and school social isolation scales
(0=0.73); (1) family isolation measured by a sum
of scores on the family social isolation scale
(0=0.72); (m) social labeling measured by a
sum of scores on the family and school labeling
scales (0=0.86); (n) perceived labeling by par-
ents measured by a sum of scores on the family
labeling scale (0=0.71); (0) perceived labeling
by teachers measured by a sum of scores on the
school labeling scale (0=0.80); and (p) strain
measured by a sum of scores recoded 0 (no
strain) to 3 (high level of strain), after subtract-
ing scores on the achievement of each goal from
scores on the importance of the corresponding
goal (0=0.62).* Note that in measuring prior
delinquency based on both continuous and di-
chotomous scales, we adopted the same opera-
tional definition as that of our class variable.
Procedure and Analysis Strategy. The
National Youth Survey data sets were obtained
through the Inter-University Consortium for Po-
litical and Social Research (ICPSR) of the Uni-
versity of Michigan. After all data were ac-
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cessed and gathered, the class variable and attri-
butes were selected and computed as described
above. Finally, the class variable and the attri-
butes were input into the ODA program to con-
struct the CTA model.

To facilitate clarity of exposition we re-
view how optimal data analysis operates in con-
structing a CTA model. ODA is first used to
determine a cutpoint, or decision rule, for each
attribute that maximizes the overall percentage
of observations that are correctly classified (i.e.,
the percentage accuracy in classification, or
PAC). For each equal interval or ordinal (i.e.,
continuous) predictor, ODA identifies an opti-
mal classification cut-point (e.g., if age>14, then
predict delinquency; if age<l4, then predict
non-delinquency) that maximizes overall PAC.
For each nominal or binary (i.e., categorical)
predictor, ODA identifies an optimal classifica-
tion rule (e.g., if ethnicity=Anglo, then predict
delinquency; if ethnicity#Anglo, then predict
non-delinquency) that maximizes overall PAC.
Thus, ODA can accommodate multi-category
nominal predictors, such as race, without
dummy coding these variables. Unlike other
statistical methods for constructing tree models
(e.g., regression-based CART or chi-square-
based CHAID), ODA uses an exact permutation
probability with no distributional assumptions,
assesses the expected cross-sample generaliza-
bility of classification rules through an auto-
mated jackknife validity analysis procedure, and
finds main effects and nonlinear interactions
that optimally classify admission decisions.
PAC is computed as 100% x (number of cor-
rectly classified observations)/(total number of
observations).*®

After determining the optimal cutpoint
providing the greatest PAC for each attribute,
the next step is to decide which attributes to en-
ter into the hierarchically optimal CTA model.
The chosen attribute must have the greatest ef-
fect strength for sensitivity (ESS), which re-
flects how much better PAC is compared to
chance, using a standardized scale where chance
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classification accuracy is 0% and perfect classi-
fication accuracy is 100%. ESS is calculated
using the following equation:

100 — (mean PAC across classes 1

100 - 1%
C

00

ES @9 =1{1—

where C is the number of response categories
for the class variable.*® By rule-of-thumb, ESS
values < 0.25 are regarded as weak, values be-
tween 0.25 and 0.50 are considered moderate,
and values > 0.50 are defined as strong.*

After selecting the attribute with the
greatest ESS to serve as a node of a tree model,
the attribute’s expected cross-sample stability in
classification performance is assessed using a
leave-one-out (LOO), or jackknife, validity
analysis. In LOO analysis, classification
performance is evaluated after removing an
observation, and then the removed observation
is classified again according to the classification
performance obtained using the remaining
subsample. This process is repeated until every
observation has been removed and classified.
An attribute is included in the CTA model only
if its classification accuracy is stable in LOO
analysis. LOO analysis helps to construct a tree
model whose constituent attributes are most
likely to generalize to a new sample.

If a LOO stable attribute with the great-
est ESS is statistically significant, then the attri-
bute enters as the first node of a CTA model.
The level of statistical significance is deter-
mined by Monte Carlo simulation as a permuta-
tion probability, and is isomorphic with Fisher’s
exact p test for binary attributes. After the first
node is determined, ODA subsequently searches
the second node and lower nodes under each
level of the highest node of a hierarchical tree
model using the above procedures. These
procedures are repeated until no more attributes
are below the critical p<0.05-level.
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Note that a given attribute can re-enter a
node at a lower level even if it has already en-
tered as a node at a higher level in the CTA
model. This is the case when a re-entered attrib-
ute still contributes to the best classification per-
formance with a new cutpoint when combining
specific levels of higher nodes. Finally, to con-
trol the experimentwise Type I error rate at
p<0.05 per comparison, a sequentially-rejective
Sidak Bonferroni-type multiple comparisons
procedure is used to prune attributes selected by
inflation of Type I error.’® These adjustments
also help maximize statistical power by reject-
ing lower nodes tested from very small subsam-
ple sizes when the total sample becomes divided
and reduced.’®

Results

Univariate Analyses. To describe simple
relationships between delinquency and each at-
tribute, we first conducted univariate analyses
using ODA (Table 1). Consistent with previous
findings, most theoretical attributes were signifi-
cantly related to delinquency in the predicted
direction: delinquency was significantly associ-
ated with weak attachment to family, weak con-
ventional commitment, weak moral belief,
greater exposure to peer’s delinquency, positive
attitudes toward deviance, high level of social
disorganization, more experiences of prior de-
linquency, high level of social isolation, high
level of family isolation, negative social label-
ing, negative social labeling by teachers, and
high level of strain.

In addition to these theoretical attributes,
race and age were also significantly related to
delinquency: Anglo adolescents were more
likely to commit delinquency than other racial
groups; and adolescents aged 14 or older were
more likely to commit delinquency than those
aged 13 or younger.
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Table 1: Univariate Associations of Theoretical and Demographic Attributes

with Delinquent (1) Versus Non-Delinquent Behavior (0) for the Total Sample (N=1,606)

Attribute ODA Model n % Delinquent ESS p-value

Conventional > 20.5, predict 0 70 30.00

involvement 17.93 0.413
< 20.5, predict 1 186 36.56

Attachment >29.5, predict 0 1024 25.78 0.118

with family 19.94 x 10
<29.5, predict 1 536 45.15

Conventional > 30.0, predict 0 875 24.00 0.90

commitment 21.38 x 107"
< 30.0, predict 1 705 42.98
>42.5, predict 0 907 25.58 0.935

Moral belief 18.95 x 102
<42.5, predict 1 653 42.73

Exposure to peer’s <16.5, predict 0 809 21.88 0.102

delinquency 30.96 x 107°
>16.5, predict 1 538 50.56

Involvement with < 1.26, predict 0 812 21.80 0.107

delinquent peers 31.19 x 107
> 1.26, predict 1 532 50.75

Socialization > 30.5, predict 0 57 26.32

1.08 0.175

< 30.5, predict 1 1520 33.16

Attitudes toward >25.5, predict 0 878 21.75 0.524

deviance 27.32 x 10%
<25.5, predict 1 719 46.04

Social <12.15, predict 0 1377 31.30

disorganization 3.79 0.0112
> 12.15, predict 1 135 41.48

Prior self-reported < 33.5, predict 0 1053 20.42 0.215

delinquency 36.86 x 107
>335, predict 1 553 56.42
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Social isolation <20.5, predict 0 662 29.15
6.49 0.0082

> 20.5, predict 1 917 35.01

Family isolation <10.5, predict 0 1018 29.76

8.59 0.000519

> 10.5, predict 1 577 37.95
Social labeling > 81.5, predict 0 1050 26.67 0.462
19.20 x 107"

<81.5, predict 1 479 46.35

Perceived labeling > 37.5, predict 0 1146 28.88
by parents 13.34 0.682

<37.5, predict 1 403 44.17
Perceived labeling >43.5, predict 0 1010 25.94 0.132
by teachers 19.97 x 107

<43.5, predict 1 541 45.29

Strain <11.5, predict 0 171 23.98
3.66 0.0479

> 11.5, predict 1 1095 30.50
Exposure to peer’s < 2.5, predict 0 880 22.05 0.332
alcohol use 32.13 x 107

> 2.5, predict 1 501 52.89
Attitudes toward > 3.5, predict 0 1042 23.61 0.553
marijuana use 27.01 x 107

<3.5, predict 1 556 49.82

Sex Male, predict 0 849 40.64
-18.75 0.999

Female, predict 1 757 24.04

Black/Chicano/American
Race Indian/Asian/other, predict 0 322 25.47
6.69 0.000902

Anglo, predict 1 1281 34.66
Age < 13, predict 0 732 24.45 0.346
17.28 x 10

> 13, predict 1 874 39.82
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Grade at School 8th grade or lower, predict 0 819 26.01
9th grade or higher, not in 17.28 0.439

school, or other, predict 1 787 39.90

GPA F, predict 0 10 60.00
-0.78 0.983

A, B, C, or D, predict 1 1585 32.49

Family Income <$14,000, predict 0 141 33.33
-0.43 0.646

> §$14,000, predict 1 1375 32.22

Parent’s Marital Single or married, predict 0 1300 31.23
Status Divorced/separate/other, 5.11 0.593

predict 1 280 38.93

Note: “ODA Model” indicates the cutpoint or decision rule by which ODA classified (non)delinquents.”® Total sample sizes
varied across attributes due to incomplete data. A sequentially-rejective Bonferroni adjustment procedure was not employed
for univariate analyses.’® The total number of respondents who answered the set of questions associated with conventional
involvement was 256, so the response rate for this set of items was only 15.94%. ESS values indicated in red were stable in
jackknife (“leave-one-out”) validity analysis, and are expected to show cross-sample generalizability.

However, contrary to previous theory
and research, attributes unrelated to delinquency
included conventional involvement, socializa-
tion, and perceived labeling by parents. More-
over, LOO analysis concluded that a significant
relationship between involvement with delin-
quent peers and delinquency was not cross-sam-
ple generalizable.

Classification Tree Analysis. Our pri-
mary interest was not to see simple relationships
between each attribute and delinquency, but to
see how multiple attributes combine to explain
predictive roots and profiles of juvenile delin-
quency and non-delinquency. Therefore, we
used ODA to construct a hierarchically optimal
CTA model. Following established procedures
for constructing optimal CTA models, 68 nodes
were initially identified; but after applying a se-
quentially-rejective Sidak Bonferroni-type mul-
tiple comparisons procedure, only five nodes
were retained. These five nodes were prior self-
reported delinquency measured by continuous
scales as the first node (p<0.001) and as the
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third node (p<0.001), exposure to peer alcohol
use during 1976 (p<0.001), exposure to peer
delinquency during 1976 (p<0.001), grade level
in school during 1976 (p<0.001), and attitudes
toward marijuana use during 1976 (p<0.001).
Except for grade level, all attributes were signif-
icant in the univariate analyses. Figure 1 shows
the final hierarchically optimal CTA model for
explaining juvenile delinquency. In the figure,
circles represent nodes, arrows indicate
branches, and rectangles are prediction end-
points (D=delinquency, ND=non-delinquency).
Numbers below each node indicate directional
Fisher’s exact p value for the node, and numbers
in parentheses within each node indicate ESS
for the node. Also, numbers next to each arrow
indicate the value of the cutpoint for the node.

The strongest predictor of delinquency
for the total sample was prior self-reported de-
linquency (ESS=36.86%): the first node of the
CTA model. The cutpoint for this attribute was
33.5 (1.94% on the absolute scale).



Optimal Data Analysis
2010, Vol. 1, Release 1 (September 17, 2010)

Copyright 2010 by Optimal Data Analysis, LLC

2155-0182/10/$3.00

<335

Prior Self-
Reported

Delinquency
(36.87%)

>33.5

-46
Exposure to .215x10 Exposure to
Peer Alcohol Peer
Use Delinquency
(20.87%) (29.75%)
existence <20.5 >20.5
absence
324x10° 495x10™°
Prior Self- Grade at Attitudes
Reported School toward
Delinquency (23.35%) Marijuana
(21.57%) Use
.000102 (2N anoz\
ND .000104 9th or
8thor  higher .000045
431/505 <305 >30.5 lower  grade, not
! negative ositive
grade in school, or & P
other
A v A A
ND D ND D ND D
156/195 70/186 106/160 59/102 41/101 99/118

Figure 1: The CTA model for predicting juvenile delinquency versus non-delinquency (N=1,367). Ellip-
ses represent nodes, arrows represent branches, and rectangles represent prediction endpoints. Numbers
under each node indicate the exact p value for each node. Numbers in parentheses within each circle in-
dicate effect strength. Numbers beside arrows indicate the cutpoint for classifying observations into cat-
egories (delinquency or non-delinquency) for each node. Fractions below each prediction endpoint indi-
cate the number of correct classifications at the endpoint (numerator) and the total number of observa-
tions classified as the endpoint (denominator). Negative attitudes toward marijuana use = Thinking that
marijuana use is “very wrong” or “wrong” for a youth or someone his or her age; Positive attitudes to-
ward marijuana use = Thinking that marijuana use is “a little bit wrong” or “not wrong at all” for a youth
or someone his or her age; D = delinquency; ND = non-delinquency.

135



Optimal Data Analysis
2010, Vol. 1, Release 1 (September 17, 2010)

Copyright 2010 by Optimal Data Analysis, LLC
2155-0182/10/$3.00

For youths who scored 33.5 or less on
the prior delinquency scale based on its fre-
quency rate, the second node was exposure to
peer alcohol use (ESS= 20.87%). If a respond-
ent had no friends who used alcohol, then that
respondent was predicted to be non-delinquent
with 85.35% accuracy. In other words, a few
prior experiences with delinquency and no
exposure to peer alcohol use jointly led to non-
delinquency. For youths who had a few prior
experiences of delinquency but who were
exposed to peer alcohol use, a third node
branched to either delinquency or non-de-
linquency. This third node was, again, prior
self-reported delinquency (ESS=21.57%). That
is, prior self-reported delinquency became the
strongest attribute again among youths who had
committed delinquent behavior less frequently
and were exposed to peer alcohol use, but not
among youths who fell into the other predictive
pathways. At this node the cutpoint was 30.5,
representing less than the 1% percentile on an
absolute scale. If youths scored 30.5 or lower
on the prior delinquency scale, then they were
predicted to be non-delinquent with 80% accu-
racy. Therefore, even if youths had friends who
had used alcohol, it was possible that the youths
were still non-delinquents when they had been
much less likely to perform delinquent behav-
iors two years earlier. In contrast, under the con-
ditions where youths were exposed to peer alco-
hol use, if their scores were above 30.5 but 33.5
or less on the prior delinquency scale, then they
were predicted to be delinquent with 37.63% ac-
curacy. This was the lowest classification per-
formance at any endpoint predicting delin-
quency. Overall predictive accuracy for youths
who had earlier engaged in delinquent acts less
often was 74.15% (657/886).

In comparison, for those who had earlier
engaged in delinquent behavior more often, a
different hierarchical pattern appeared. Among
youths who scored more than 33.5 on the prior
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delinquency scale, the strongest predictor in the
model was exposure to peer’s delinquency. The
cutpoint for this attribute was 20.5, which repre-
sents the 26™ percentile on an absolute scale. If
youths scored more than 20.5 on the scale of
exposure to peer delinquency, then they were
classified as being either delinquent or non-de-
linquent, depending on their attitudes toward
marijuana use. In contrast, among youths re-
porting more frequent prior delinquency and
less exposure to peer’s delinquency (score<
20.5), classification as delinquent or nondelin-
quent depended on their grade level in school.
Specifically, youths were predicted as non-de-
linquent when (a) they were more exposed to
peer delinquency and thought that marijuana use
was “very wrong” or “wrong” for them or some-
one their age (59.41% delinquency rate), or (b)
they were less exposed to peer’s delinquency
and were in the eighth grade or lower (33.75%
delinquency rate). In comparison, youths were
classified into delinquency when (c) they were
more exposed to peer delinquency and thought
that marijuana use was “a little bit wrong” or
“not wrong at all” (83.90% delinquency rate), or
(d) they were less exposed to peer’s delinquency
and were in ninth grade or higher, did not attend
at school, or a trade or business school (57.84%
delinquency rate). Overall predictive accuracy
for those who reported more frequent delinquent
behaviors earlier was 63.41% (305/481).

Table 2 summarizes the overall classifi-
cation performance of the CTA model, which
correctly classified 962 (70.37%) of the total
1,367 youths. The ESS for this model was
30.59%, indicating that the model attained al-
most one-third of the theoretically possible im-
provement in classification accuracy versus the
performance expected by chance: this is consid-
ered to reflect a moderate effect.’
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Table 2: Confusion Table for CTA DelinquencyModel

Predicted Class Status

Non-

Delinquent

Actual
Class
Status

Non-Delinquent 860

Delinquent 135

Negative
Predictive

Value =
86.4%

Additional Comments about Cutpoints.
Although the cutpoints for prior self-reported
delinquency were 33.5 and 30.5, depending on
the level of node, what do these values signify?
Scores less than 33.5 were located within 1.94%
on the absolute possible range, and the scores
less than or equal to 30.5 reflects 0.65% of the
absolute possible range on the prior delinquency
scale. Descriptive statistics showed that the
mean of prior delinquency (range=29-261) was
35.02 with SD=15.40. Overall, 65.2% of re-
spondents scored 33.5 or less, while 34.8%
scored more than 33.5. Conceptually, a respon-
dent who scored 29 (i.e., 1 point x 29 items) had
never committed delinquency in 1976, and a
respondent who had performed all types of de-
linquent behaviors once or twice in 1976 should
have scored 58 (i.e., 2 points x 29 items).
Therefore, respondents who scored 33.5 had
performed only a few types of illegal behaviors
once or twice in 1976. In addition, because the
score of 30 indicates that a respondent commit-
ted one kind of delinquent behavior once or
twice in 1976, scores less than or equal to 30.5
indicate that respondents were engaged in only
one delinquent behavior very few times. Thus,
scores below 33.5 on the prior delinquency in-
dex were much closer to the score of non-delin-
quents used to categorize the class variable, and
could be considered as reporting very few prior

Delinquent
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128 Specificity = 87.0%

70 Sensitivity = 34.1%

Positive
Predictive
Value =

35.4%

delinquent experiences.

What about exposure to peer delin-
quency? The cutpoint for exposure to peer de-
linquency was 20.5. Descriptive statistics re-
vealed that the mean of this attribute (range=10-
50) was 16.72 with SD=5.87. For exposure to
peer delinquency, 77.8% of respondents scored
20.5 or less, and 22.2% scored greater than 20.5.
Scores less than 20.5 fell within 26.25% on an
absolute scale. A score of 20 (i.e., 2 x 10 items)
would indicate that a respondent was exposed to
peers who committed all ten types of delinquent
behaviors. Therefore, a score of 20.5 or less
indicates that a respondent was exposed to rela-
tively few delinquent peers.

Discussion

Implications of the CTA Model of Delin-
quency. As hypothesized, this study yielded a
parsimonious model identifying social (expo-
sure to peer alcohol use, exposure to peer delin-
quency, and grade level in school) and personal
variables (prior delinquency and attitudes to-
ward marijuana use) that together predicted
American youths as either delinquent or non-
delinquent, supporting the critical influence of
these factors on young people’s anti-social be-
havior. The optimal CTA model achieved about
a third of the possible improvement in classifi-
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cation accuracy relative to chance, which repre-
sents a moderate effect size. The model identi-
fied three profiles of juvenile delinquency: (a)
lay delinquency, reflecting infrequent prior de-
linquency with exposure to peer alcohol use
(37.63% accuracy), (b) unexposed chronic de-
linquency, reflecting youth who had frequent
prior delinquency with less exposures to peer
delinquency, but being in the ninth grade or
higher (57.84% accuracy), and (c) exposed
chronic delinquency, reflecting youth who had
frequent prior delinquency with exposure to
peer delinquency and positive attitudes toward
marijuana use (83.90% accuracy). In contrast,
the model yielded four profiles of non-delin-
quency: (a) unexposed non-delinquency, reflect-
ing youth who have infrequent prior delin-
quency with no exposure to peer alcohol use
(85.35% accuracy), (b) exposed non-delin-
quency, reflecting youth who had extremely in-
frequent prior delinquency with exposure to
peer alcohol use (80.00% accuracy), (C) unex-
posed reformation, reflecting youth who had
frequent prior delinquency with less exposure to
peer delinquency, but who were in eighth grade
or lower (66.25% accuracy), and (d) exposed
reformation, reflecting youth who had frequent
prior delinquency with greater exposure to peer
delinquency, but who had negative attitudes
toward marijuana use (40.59% accuracy).

The CTA model provides additional in-
sights into the prospective predictors of delin-
quency. Prior delinquency was the strongest pre-
dictor of subsequent delinquency—a conclusion
that is consistent with previous reports that prior
general delinquency directly influences later de-
linquency and drug use.”* Our results extend
prior findings, by identifying combinations of
variables that exert a differential influence for
experienced delinquents versus other subgroups
of youth. For experienced delinquents, the fac-
tors important in maintaining delinquency ap-
pear to be exposure to peer delinquency, grade
level in school, and attitude toward marijuana
use. Youths who maintained their status as de-
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linquents were categorized as unexposed or ex-
posed chronic delinquents with 71.82% accu-
racy (Table 3). Previous studies showing the
effect of exposure to antisocial behavior on
criminal actions®® and the effect of peers on
the formation of delinquent values’*' support
the profile of exposed chronic delinquency.
Thus, with exposed chronic delinquency, prior
delinquent experiences and exposure to delin-
quent peers might lead youths to form positive
attitudes toward marijuana use, and these antiso-
cial attitudes might encourage them to commit
delinquent actions later. Note, however, that
there is also a predictive profile reflecting ex-
posed reformation, implying that not all youths
with frequent prior delinquency and more expo-
sure to delinquent peers automatically adopt
positive attitudes toward marijuana.

In contrast, for adolescents who have
infrequent prior delinquency, the variables pre-
dictive of changing non-delinquency into delin-
quency were exposure to peer alcohol use and
prior delinquency. However, the combination of
these factors predicted lay delinquency with
only 37.63% accuracy, indicating that other fac-
tors not measured in the survey also operate.

Table 3: Summary of Cross-Classification
by Year (N=1,367)

Year of 1976
Year of 1978 Non-Delinquency | Delinquency
Non-Delinquency 587/700 147/261
(83.86%) (56.32%)
Delinquency 70/186 158/220
(37.63%) (71.82%)

Note. The numerator of each fraction indicates the num-
ber of observations classified correctly. The denominator
of each fraction indicates the number of observations pre-
dicted as a given category by the CTA model. Percent-
ages reflect the proportion of correctly classified observa-
tions.
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Another important implication is that the
factors that maintain non-delinquency are differ-
ent from the factors that terminate delinquency
(Figure 1). The CTA model demonstrated that
unexposed and exposed non-delinquents main-
tained their status of non-delinquency with
83.86% accuracy, whereas unexposed and ex-
posed reformers became non-delinquents with
only 56.32% accuracy (see Table 3). Future re-
searchers should include measures of the varia-
bles composing these profiles, in order to en-
hance accuracy in predicting and understanding
the dynamics of juvenile delinquency.

The CTA model identified protective
factors more accurately than risk factors, and
classification accuracy for non-delinquency was
greater than for delinquency. This is probably
because the surveys did not assess some critical
risk factors. For instance, impulsivity33, atten-
tion deficit/hyperactivity disorder™, criminal
opportunity33'45, and historical contexts, such as
a change in the level of surplus value*® have all
been identified as important risk factors, but
were not directly assessed by the surveys. An-
other interesting implication concerns the cru-
cial roles of adolescent exposure to peer delin-
quency and substance use in relation to delin-
quency. Regardless of prior delinquency, youths
are sensitive to influence from peers perhaps
because they desire to maintain intimacy and to
avoid being rejected by peers. Also, alcohol use
seems to be a “gateway” to performing delin-
quent behaviors by youths with infrequent prior
delinquency, while marijuana use may be an ob-
stacle to stopping delinquent behaviors.

Some variables found to be predictive of
delinquency in previous research did not appear
in the final CTA model. These predictors were
socialization'****| social disorganization and
social strain'®**, involvement with delinquent
peers”*?’, any types of social bonds*****, and
any form of labeling.**?* Tt should be noted that
in the univariate analyses all of these predic-
tors—except for involvement with delinquent
peers, conventional involvement, socialization,
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and perceived labeling by parents—were signif-
icantly predictive of delinquency (Table 1). The
reason why these particular predictors failed to
enter the final CTA model was that these predic-
tors had smaller ESS than attributes selected for
entry in the model, had low generalizability
across samples, and/or had weaker effects when
combined with variables in higher nodes of the
hierarchical tree model. In contrast, grade in
school was not significant in the univariate anal-
ysis, yet it was a node in the CTA model. This
indicates that grade in school is significant
among only a certain group, that is, American
young people who had more prior delinquent
experiences and were more likely to be exposed
to peer delinquency, but not among general
American young population.

Limitations. Our results are not without
limitations. Although the strongest predictor of
delinquency was prior self-reported delin-
quency, this result subsequently raises a follow-
up question, “What factors, if any, predict prior
delinquent behavior?” In our model, the profile
of lay delinquency included not only those who
had no prior delinquent experience, but also
those who had very few prior delinquent experi-
ences. Future research should explore the addi-
tional profile of delinquent youth who have no
prior experiences of delinquency whatsoever.

Another limitation of the present re-
search is the time frame of the survey data we
analyzed. The National Youth Survey was con-
ducted in 1976 and 1978. Thus, our results
might reflect phenomena that are no longer gen-
eralizable to the present time period. Future re-
search should address this limitation by con-
structing CTA using more recent data.

In terms of methodological limitations,
our model reflects roughly 60% of the eligible
youths originally selected by the multistage
cluster sampling method. Although there is no
agreed-upon standard for what constitutes an
acceptable rate of inclusion, excluding 40% of
respondents raises the possibility of potential
selection and non-response biases. However, no
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particular group of the youth population appears
to be over- or under-represented in our sample,
compared to the original sample who agreed to
participate in the National Youth Survey.*!

Other methodological issues concern the
particular measures used in the National Youth
Survey. In particular, the self-report items used
to assess delinquency and other socially nega-
tive behaviors might not accurately reflect the
actual levels of these behaviors because of so-
cial desirability, memory limitations, and moti-
vation to recall. Moreover, the National Youth
Survey did not include some variables that we
wanted to examine as potential predictors of de-
linquency (e.g., impulsivity). Future research
needs to include measures of other unanalyzed
variables so that the classification accuracy of
the hierarchical tree model can be further im-
proved. Finally, although some theoretical com-
posite attributes showed acceptable values of
Cronbach’s o, other attributes, including expo-
sure to peer alcohol use and attitude toward ma-
rijuana use, were each measured by only a sin-
gle individual question and had unknown relia-
bility. Future research should measure attrib-
utes, especially exposure to peer alcohol use and
attitude toward marijuana use, using multiple
items, obtain acceptable Cronbach’s a for these
composite subscales, and then re-test them by
including them in an ODA model.

Finally, it should be noted that an alter-
native definition of delinquency might yield dif-
ferent findings concerning the prospective pre-
dictors of juvenile delinquency. Although we
contend that the classification of delinquency or
non-delinquency based on our definition pro-
duced representative samples of youths who en-
gage in these two forms of behavior, other theo-
rists or researchers might well adopt an alterna-
tive definition of these two constructs. Or, they
might suggest examining more specific delin-
quent actions (e.g., theft) independently rather
than a broader, comprehensive category of ju-
venile delinquency because the factors might
vary across different delinquent actions. Nev-

140

ertheless, while we should avoid over-general-
izing the factors found in our study to all delin-
quent actions, it is also informative to focus on
the large-scale pattern of delinquency. This
macro-level analysis is important because (1)
the society and citizens tend to be more inter-
ested in getting a general idea (e.g., how to pre-
vent delinquent crime in general) than a specific
idea (e.g., how to prevent each potential delin-
quent actions specifically), and (2) each specific
delinquent action is not exclusive or independ-
ent but accompanies another illegal action (e.g.,
robbery and assault could occur at the same
time). Thus, our findings provide an overview
of delinquent behavior, and the next goal should
be to focus on each specific delinquent action to
examine whether our model is applicable to it.

Another limitation concerning our defi-
nition of delinquency is the inevitable loss of
precision in analyzing delinquency as a dichot-
omy as opposed to a continuous rate of fre-
quency. In doing so, we have limited ourselves
to investigating variables that predict whether or
not youths exceed a threshold frequency that we
have defined a priori as representing juvenile
delinquency versus non-delinquency.  These
predictive variables may well differ from those
that explain variation in the absolute frequency
of delinquent behaviors.

Applications of the Present Study. The
findings suggest potentially effective strategies
for crime prevention. For example, shifting
positive attitudes toward marijuana use toward
negative attitudes may reduce delinquent behav-
ior among exposed but reformed delinquent
youths. Furthermore, our results suggest that an
effective approach to protect non-delinquent
youths from moving toward delinquency is to
keep them away from peers who use alcohol.
Future research should test these hypotheses.
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Automated CTA Software: Fundamental
Concepts and Control Commands

Robert C. Soltysik, M.S. and Paul R. Yarnold, Ph.D.

Optimal Data Analysis, LLC

Fundamental methodological concepts are reviewed, and auto-
mated CTA software commands are annotated.

A decade in the making, commercially-available
software which conducts automated hierarchi-
cally optimal classification tree analysis' (CTA)
is now being offered to organizations and indi-
viduals. This article reviews motivation under-
lying use of nonlinear models; shortcomings of
suboptimal nonlinear methods; CTA methods,
model interpretation and reporting; and use of
automated software. Software commands and
sample code used for solving (un)weighted clas-
sification problems are annotated.

“One Size Fits All” versus
“Different Strokes for Different Folks”

Examples of linear models broadly used
in applied research include models derived via
logistic regression, log-linear, and discriminant
analysis.>® Regardless of derivation, all linear
models share three important, usually unfulfilled
assumptions.

First, linear models assume attributes in
the model are important for every observation in
the sample. In contrast, with nonlinear models
different attribute sets can be used with different
partitions of the sample: one set of attributes is
used for classifying one partition of the sample;
another set of attributes is used for classifying a
different sample partition; and so forth.
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Second, linear models assume the model
attributes have identical direction of influence
(positively or negatively predictive) for every
observation. In contrast, with nonlinear models
an attribute may predict class category 1 for one
partition of the sample, versus category O for a
different sample partition.

Third, linear models assume attributes in
the model have the same coefficient value (or
decision weight) for all sample observations. In
contrast, in nonlinear models the coefficient for
an attribute may assume two different values for
two different sample partitions: for example, 0.2
and -1.8, respectively.

Traditional Nonlinear Methods

Nonlinear classification methods based
on general linear model (GLM) or maximum-
likelihood (ML) paradigms maximize variance
ratios, or the value of the likelihood function for
the sample, respectively. Examples of such sub-
optimal methods are chi-square automatic inter-
action detection, classification and regression
tree analysis, genetic algorithms and neural net-
works. A problem for GLM-based methods in-
volves satisfying the multivariate normally dis-
tributed (MND) assumption required for p to be
valid, and a problem for ML-based methods is
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that model coefficients are biased except in the
limit for enormous samples.>* A common issue
is that neither GLM nor ML methods explicitly
maximize model accuracy.!

Example of a CTA Model

The first CTA model published involved
exploratory research discriminating geriatric (at
least 65 years of age) versus nongeriatric adult
ambulatory medical patients on the basis of self-
reported well-being.* Forty geriatric and 85 non-
geriatric ambulatory medical patients completed a
survey assessing five functional status dimensions
(Basic and Intermediate Activities, Mental Health
[absence of depression], Social Activity, Quality of
Social Interaction), and including five single-item
measures assessing health satisfaction, physical
limitations, and quantity of social interaction. The
CTA model (Figure 1) was constructed manually
using ODA software.!

Intermediate
Activities

<89.6 >89.6

p<0.024

21.7%

Mental Geriatric

Health

N=69
<65 >65
p<0.005

64.5%
Number of Geriatric
Close

Friends

N=31

p<0.0001

0% 100%
Geriatric Geriatric
N=17 N=6

Figure 1: CTA Model Discriminating Geriatric
vs. Nongeriatric Ambulatory Medical Patients

On first glance a depiction of any classi-
fication tree model may appear similar to results

obtained by decision analysis (DA), because
both methods depict findings using tree-like rep-
resentations.* As seen, CTA models initiate with
a root node, from which two or more branches
emanate and lead to other nodes: branches indi-
cate pathways through the tree, and all branches
ultimately terminate in model endpoints. The
CTA algorithm determines the attribute subset
which predicts the outcome with maximum ac-
curacy, beginning with the attribute which best
discriminates the class variable (geriatric status)
with maximum accuracy for the total sample.
DA estimates valence and likelihood associated
with all possible decision-making strategies and
outcomes. In contrast, CTA identifies a specific
decision-making strategy which maximizes ac-
curacy in predicting a specific outcome.

Circles represent nodes in this schematic
illustration of the CTA model, arrows indicate
branches, and rectangles represent model end-
points. Numbers (or words, when attributes are
categorical) adjacent to arrows indicate the
value of the cutpoint (or category) for the node.
Numbers underneath nodes give the generalized
(per-comparison) Type | error rate for the node.
The number of observations classified into each
endpoint is indicated beneath the endpoint, and
the percentage of geriatric observations is given
inside the rectangle representing the endpoint.

Using CTA maodels to classify individual
observations is straightforward. Consider a hypo-
thetical person having an Intermediate Activities
score=85, a Mental Health score=64, and 7 close
friends. Starting with the first node, since the
person’s Intermediate Activities score is <89.6, the
left branch is appropriate. At the second node the
left branch is again appropriate because the per-
son’s Mental Health score is <65. Finally, at the
third node the right branch is appropriate since the
person has more than 5 close friends. The person
is classified into the corresponding model end-
point: as seen, all six observations classified into
this model endpoint were geriatric. Note that end-
points represent sample strata identified by the
CTA model. The probability of being geriatric for
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this endpoint is pgeriaric=1 for the sample (in light
of the small sample size at this endpoint, it may be
more meaningful, depending on the application, to
report Pgeriaic>6/7).  In this example, had the
patient instead reported 5 or fewer close friends,
then the left-hand endpoint would be appropriate,
with pgeriatric:O (i.e., pgeriatricfll 18)-

Some intuitive aspects of CTA models
are immediately obvious. For example, model
“coefficients” are cutpoints or category descrip-
tions expressed in their natural measurement
units. In addition, sample stratification unfolds
in a “flow” process which is easily visualized
across model attributes. The manner in which
CTA handles observations having missing data
is also intuitive: linear models drop observations
missing data on any attributes in the model, but
CTA only drops observations which are missing
data on attributes required in their classification.
In the present example, imagine an observation
having an Intermediate Activities score of 89.6
or greater, but missing data on number of close
friends and/or on Mental Health. Using a linear
model the observation would be dropped, but
using CTA the observation would be classified.

Staging Tables

Staging tables (see Table 1) represent an
alternative intuitive representation of CTA find-
ings, and are useful for assigning “severity” or
“propensity” scores (weights) to observations
based on the findings of the CTA model. The
rows of the staging table are simply model end-
points reorganized in increasing order of percent
of class 1 (geriatric) membership. Stage is an
ordinal index of geriatric propensity, and
Pgeriatric 1S the corresponding continuous index:
increasing values on either index indicates in-
creasing propensity. Compared to Stage 1 (with
Pgeriatric St at <1/18, or 0.056), Pgeriatric IS ap-
proximately 4-times higher in Stage 2, 12-times
higher in Stage 3, and 15-times higher in Stage
4 (With pgeriatric Set at >6/7, or 0.857).

To use the table to stage geriatric pro-
pensity for a given observation, simply evaluate

146

the fit between the observation’s data and each
stage descriptor. Begin at Stage 1, and work
sequentially through stages until identifying the
descriptor which is exactly true for the data of
the observation undergoing staging. Consider
the hypothetical person discussed earlier. Stage
1 does not fit because the person has more than
five close friends. Stage 2 does not fit because
the person’s Intermediate Activities score is
<89.6. Stage 3 does not fit because the person’s
Mental Health score is <65. The staging table
has only one degree of freedom, so through the
process of elimination, it is clear that Stage 4
must be appropriate. Because the person has an
Intermediate Activities score <89.6, a Mental
Health score <65, and >5 close friends, Stage 4
clearly fits the data of this hypothetical person.

Table 1: Staging Table for Predicting
Geriatric Status

Intermediate Mental Close
Stage Activities Health Friends N pgeriaric Odds

<89.6

1 <65 <5 17 0 <117
2 >896 - - 69 .217 1:4
3 <89.6 >65 - 31 645 21
4 <89.6 <65 >5 6 1 >61

Note: Increasing scores on Intermediate Activities indi-
cate increasing adaptability, and increasing scores
on Mental Health indicate decreasing depression.

Assessing Model Performance

Performance measures for CTA (and for
all ODA methods) are also intuitively appealing,
and are derived from a confusion table, as indi-
cated for the present example in Table 2. Rows
of the confusion table indicate the actual class
category of any given observation in the train-
ing sample (used for model development), and
columns indicate the class category predicted
for an observation by the CTA model. For pre-
dictions involving the class category status of
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individual observations in the training sample,
when the actual and predicted class categories
are identical (e.g., a geriatric person is predicted
to be geriatric) then the model is correct; other-
wise it is incorrect. Row and column marginal
totals (the sum of all table entries in the row or
column, respectively) are presented in the bor-
ders of the confusion table. For example, for
actual class=geriatric, the row marginal is 15+
26=41. For predicted class=geriatric, the col-
umn marginal is 11+26=37. Finally, the total
sample size which is classified by the model is
given in the lower right-hand corner of the table:
this total is equal to the sum of row marginals,
and also to the sum of column marginals.

Table 2: Confusion Table for the
Example CTA Model

Predicted Class

Actual Class Nongeriatric Geriatric

Nongeriatric 71 11 82

Geriatric 15 26 41
86 37 123

Assessing the performance of a CTA (or
any classification) model begins by computing
five standard epidemiological indices." The first
pair of indices assess the ability of the model to
accurately classify observations in the different
class categories. Sensitivity is the likelihood of
correctly classifying an observation from Class
1, and is defined as the number of correctly
classified Class 1 observations divided by the
total number of Class 1 observations: here, 26/
41=0.634. Specificity is the likelihood of cor-
rectly classifying an observation from Class 0,
and is defined as the number of correctly classi-
fied Class O observations divided by the total
number of Class 0 observations: 71/82=0.866.

The next set of indices address the accu-
racy of the model when it is used to make classi-
fications. Positive predictive value (PPV) is the
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likelihood that an observation predicted to be a
member of Class 1 is accurately classified (i.e.,
is in reality a member of Class 1): here, 26/37=
0.703. Negative predictive value (NPV) is the
likelihood that an observation predicted to be a
member of Class 0 is accurately classified: here,
71/86=0.826.

Finally, overall accuracy, or percentage
accuracy in classification (PAC), is 100% times
the number of correctly classified observations
divided by the total number of observations
classified by the model: 100% x (71+26)/123=
78.9%. In the literature, sensitivity, specificity,
PPV and NPV are typically multiplied by 100%
in order to report all five indices in a common,
familiar metric, and because the focus of CTA
(and all statistical models in the optimal data
analysis paradigm) is predictive accuracy rather
than probabilistic likelihood.'”

Summarizing a confusion table is a me-
thodic, straightforward process, as illustrated for
the present example: Using the CTA model, a
total of 30.1% [100% x (26+11)/123] of the
sample is predicted to be geriatric. These pre-
dictions are correct 70.3% [100% x PPV] of the
time, and correctly identify 63.4% [100% X
sensitivity] of all geriatric observations. Also,
82.6% [100% x NPV] of the model-based pre-
dictions that an observation is nongeriatric are
correct, and correctly classify 86.6% [100% X
specificity] of all the nongeriatric observations.
Overall, the model correctly classified 78.9%
[PAC] of the observations in the sample.

Foregoing indices are bounded by 0 and
1 (or, equivalently, between 0% and 100%), and
reference the absolute predictive capacity of a
classification model. The ultimate objective is
for all of these indices to reach their theoretical
upper limit of 100% correct prediction. How-
ever, in the likely event that a statistical model
fails to achieve perfect prediction, statistical cri-
teria are used to assess the performance of CTA
(and other) models, in terms of their predictive
capacity relative to chance.
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Effect Size for Sensitivity (ESS)

None of the five absolute performance
indices are normed relative to chance, or have
an associated exact p value.! Accordingly, the
performance of all models in the optimal data
analysis paradigm, including CTA, is summa-
rized using the effect strength for sensitivity
(ESS) statistic, a normed index ranging between
0 (representing the level of classification accu-
racy expected by chance) and 100 (representing
errorless classification).

The formula for computing ESS for
problems with class variables involving two cat-
egories (automated CTA software solves only
two-category problems: CTA for more than two
class categories has never been reported) is:

ESS=100% x (Mean PAC — 50)/50 (2),

where

Mean PAC=100% x (sensitivity + specificity)/2
(2).

For example, if a CTA model had sensitiv-
ity=0.85 and specificity=0.74, then mean PAC=
100% x [(0.85+0.74)/2]=79.5%, and ESS=100%
X [(79.5-50)/50]=59.0%.

Using ESS one may directly compare the
performance of different models, relative to
chance, regardless of structural features of the
analyses, such as sample size, number of class
categories, number of attributes and attribute
metric, sample skew, and so forth. The rule-of-
thumb which is used for evaluating ecological
significance of results achieved by classification
models is: ESS<25% (one-quarter of the im-
provement in classification accuracy theoreti-
cally possible to attain beyond the performance
achieved by chance) is a relatively weak effect;
25%<ESS<50% is a moderate effect; 50%<ESS
<75% a relatively strong effect; and ESS>75%
is a strong effect.’ Thus, in order to complete
the summary of the confusion table which was
presented earlier, append the following conclu-
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sion: “The CTA model yielded ESS=50.0%, a
relatively strong effect.”

It is noteworthy that linear models may
classify all observations in the sample into the
dominant class if the sample is highly skewed
(e.g., more than 75% of the sample falls into one
class category). In this case Mean PAC is 50%,
and ESS=0. For expository purposes, Table 3
illustrates how Mean PAC and ESS are related
if one class category is classified perfectly, and
Table 4 emphasizes that mean PAC=50 is what
is anticipated by chance.

Table 3: PAC in Each of Two Groups (PAC=
100% in One Group), Mean PAC, and ESS

Group A GroupB Mean PAC ESS

100 0 50 0

100 10 55 10
100 20 60 20
100 30 65 30
100 40 70 40
100 50 75 50
100 60 80 60
100 70 85 70
100 80 90 80
100 90 95 90
100 100 100 100

Table 4: Patterns of PAC in Each of Two
Groups that Yield ESS=0

Group A GroupB Mean PAC ESS

100 0 50 0
90 10 50 0
80 20 50 0
70 30 50 0
60 40 50 0
50 50 50 0

Ostrander et al.® note that, in contrast to
sensitivity and specificity, PPV and NPV are
influenced by base rate of class category c (e.g.,
0 or 1) in the population, and by the false posi-



Optimal Data Analysis
2010, Vol. 1, Release 1 (September 17, 2010)

Copyright 2010 by Optimal Data Analysis, LLC
2155-0182/10/$3.00

tive rate—the likelihood that the model will
classify an observation into class category c
when the observation is not a member of c. A
method is given for easily assessing the models
efficiency over different base rates (an efficient
model provides PAC for category ¢ which is
greater than the category c base rate).®

Model Interpretation

In addition to its greater accuracy versus
logistic regression analysis or Fisher’s discriminant
analysis, CTA also produced substantively richer
findings. In the present example the linear models
identified two patient clusters: relatively active,
depressed nongeriatric people; and relatively inac-
tive, non-depressed geriatric people.

Active
nongeriatric
adults

Inactive, happy
geriatric adults

Inactive, depressed,
socially isolated
young women

Inactive, depressed,
socially connected
geriatric adults

Figure 2: Pie-Chart Illustrating Distribution of
Total Sample in Four CTA-Based Strata

In contrast, the CTA model identified four
patient strata. Patients scoring >89.6 on Intermedi-
ate Activities were primarily (78.3%) relatively
active nongeriatric adults (56% of total sample).
Patients scoring at lower levels on Intermediate
Activities, and at high levels (>65) on Mental
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Health, were largely (64.5%) relatively inactive,
nondepressed geriatric adults (25% of sample).
All the patients scoring at lower levels on both
Intermediate Activities and Mental Health, and
having fewer than six close friends, were inactive,
depressed, socially isolated nongeriatric adults
(14% of total sample, primarily young depressed
women). Finally, all patients scoring at lower
levels on both Intermediate Activities and Mental
health, but having more than five close friends,
were inactive, depressed, socially-connected geria-
tric adults (5% of sample).

Illustrating the portion of the total sample
represented by CTA-identified strata, using a pie-
chart, can facilitate understanding and develop-
ment of policy implications of CTA-based find-
ings: for example, by indicating the percentage of
the sample that falls into each strata, the likeli-
hood of attributing undue attention to compariti-
vely rare strata is diminished (see Figure 2).

Table 5: AID Analysis for CTA Example

Percent of Sample Evaluated in

Attribute Part on the Basis of the Attribute
Intermediate

Activities 123/123 100.0%
Mental Health 54/123 43.9%
Number of

Close Friends 23/123 18.7%

It is also informative to evaluate the attrib-
utes loading in the CTA model in terms of their
importance in the prediction-making process.
Conceptually related to the R? statistic from re-
gression analysis, which indicates the percentage
of the variance in the class (independent) variable
which is explained by attributes (dependent
measures) in the model®, an Attribute Importance
in Discrimination (AID) analysis indicates the per-
centage of the sample of classified observations
which were influenced by the attribute (Table 5).
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Only the root attribute is involved in the
classification decisions for all observations in the
sample. Easily seen in Figure 1, Mental Health
was involved in classification decisions for all of
the observations except for those classified on the
right-hand side of the root attribute: 123-69=54
observations. Mental Health therefore influenced
classification decisions for 100% x 54/123, or
43.9% of the total sample. Also easily seen in Fig-
ure 1, the Number of Close Friends influenced
classification decisions for 100% x 23/123, or
18.7% of the total sample.

Validity Assessment in CTA

Limited by the daunting computational
burden associated with manual construction of
CTA models, experimental research addressing
validity issues in CTA has been infeasible in the
absence of automated software. Psychometric
properties of scores created using optimal data
analysis methods has been a major focus of the
paradigm since its inception®, and rigorous in-
vestigation in this area is underway.

Nevertheless, some preliminary research
in this area has been reported. For example, a
Bayesian method was developed for estimating
the efficiency of a CTA model versus chance for
any class variable base rate.® And, the first CTA
model published in the field of medicine used a
manual hold-out methodology to create a CTA
model which was optimal for two random split-
halfs of a single large sample.” This study used
CTA to create a severity-of-illness score for pre-
dicting in-hospital mortality from Pneumocystis
carinii pneumonia, which cross-generalized to
independent random samples with strong ESS.®

For all models created in the optimal
data analysis paradigm, the upper-bound of ex-
pected cross-generalizability of the findings to
an independent random sample is estimated via
jackknife (“leave-one-out”) analysis, whereby
each observation in the sample is classified by a
model created using a sample omitting the
observation’s data.” In the absence of automated
CTA software, only attributes with stable jack-
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knife classification performance (i.e., with ESS
that did not vary between training versus jack-
knife analyses) were used in manually-derived
CTA models. However, an estimate of Type |
error associated with the jackknife procedure
may be determined by computing the ESSj from
the confusion table generated by this procedure.
The proportion of ESS values greater than ESS;j
obtained from randomly shuffled classes in the
original Monte Carlo procedure estimates the
jackknife Type | error, and setting this propor-
tion to the desired value (e.g., 0.05) may be used
in a decision rule to admit these attributes into
the final model.

Obtaining CTA Models

The mechanics underlying construction
of CTA models was described previously.™"®
Recursively-derived CTA models chain together
series of models, derived by univariate optimal
discriminant analysis (UniODA), on monoton-
ically diminishing sample strata.' Because they
chain together UniODA models, CTA models
may be derived manually™® via ODA software’
which conducts UniODA (advantages of using
automated software are discussed ahead). Exact
statistical distribution theory and Monte Carlo
simulation methodology are available for testing
one- (confirmatory, a priori) and two-tailed (ex-
ploratory, post hoc) hypotheses.*

Researchers are encouraged to construct
at least one CTA model manually using ODA
software, in order to gain a deeper understand-
ing of the recursive mechanical nature of CTA.
Furthermore, ODA and CTA software use ident-
ical command syntax, so skill and knowledge
acquired by using ODA will generalize to oper-
ation of CTA.

Submitting a Program for Analysis

Automatic CTA software can be used to
analyze problems with two class categories, 500
attributes, and 65,535 observations (methods to
solve problems involving massive samples are
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undergoing alpha testing), and is available under
either commercial or individual license: custom
systems are also created for special-purpose ap-
plications. The software is available through the
ODA webpage.™* To run an analysis, registered
users login to the ODA webpage and upload the
associated command and data file. Analyses are
executed in the order they were received, and all
associated output is returned via eMail.

A quick word seems in order regarding
why Optimal Data Analysis, LLC, adopted a
“software as service” model for distributing ac-
cess to the automated CTA software. From the
perspective of users there are several advantages
of this model: (1) users needn’t tie-up their
(probably slower) computers, our fast computers
will do the work; (2) the most current version of
the software is always immediately available;
(3) one can work 24/7/365 from any computer,
anywhere; and (4) if the system crashes then
specialists will be scrambling to fix the problem
immediately—and any problems may well be
fixed before most users are even aware that an

issue had occurred. Another advantage to both
user and Optimal Data Analysis, LLC, is sav-
ings in money and time, because the software
doesn’t need to be adjusted to run in the context
of many different types of constantly changing
computers, operating systems and data-base pro-
grams. Users simply send text files to the CTA
system, and the CTA system returns a text file
output via eMail.

Interpreting Automated Software Output

The module which produces schematic
illustrations of CTA models is currently under
development, and investigation addressing op-
timal information display in this context is un-
derway in our laboratory.** The present soft-
ware reports CTA models using an intuitive
shorthand notation describing the node constitu-
ents of the CTA model. To facilitate clarity,
Figure 3 gives a schematic illustration of node
structure underlying all CTA models.
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Figure 3: CTA Node Structure

It is a simple matter to determine the
“identity number” of a node existing at a deeper
depth than is illustrated in this five-level-deep
tree (depth level 1 of the tree includes node 1;
level 2 includes nodes 2 and 3; level 3 includes
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nodes 4-7; level 4 includes nodes 8-15; level 5
includes nodes 16-31; and level 6 includes
nodes 32-63). From the perspective of node X
(for X>1), the identify number of the node ema-
nating from X’s left-hand side is 2X, and from
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X’s right-hand side is 2X+1. For example, from
node 47, node 94 (2x47) emanates to the left,
and node 95 (94+1) emanates to the right. From
node 94, node 188 emanates to the left, node
189 to the right, etcetera. Note that after the
root attribute (depth 2 and deeper), all even-
numbered nodes lie on the left-hand branch, and
odd-numbered nodes on the right-hand branch,
of the tree.

CTA software produces output employ-
ing node identity numbers to describe the CTA
model: an example of CTA software output is
presented in Figure 4 (hypothetical data). Re-
spectively, the automated CTA software output
lists: attribute name (D2, D3 and D4 loaded in
the hypothetical CTA model); node identity
number; tree depth level; sample size for the
analysis indicated; ESS for the attribute;
whether jackknife (leave-one-out, or LOO) va-
lidity analysis was stable (indicated) or unstable;

jackknife ESS; p for the jackknife ESS; attribute
metric (ORD=ordered, CAT=categorical); and
CTA model shorthand.

The root attribute (here, D2) is listed
first in the report. For each attribute the report
first indicates the cutpoint and outcome for the
left-hand branch emanating from the attribute,
and second for the right-hand branch. Branches
ending in model endpoints are marked by an as-
terisk. As seen, the left-hand branch emanating
from D2 has a cutpoint of <6.2 units: observa-
tions having D2 scores <6.2 units are predicted
to be a member of class 4, and this branch ter-
minates in a model endpoint representing a total
of 242 observations, of whom 165 (68.18%) are
correctly classified. The remaining 242-165=
77 observations having D2 scores <6.2 units
were members of class 5, and were misclassified
by this branch of the CTA model.

ATTRIBUTE NODE LEV OBS P

ESS

704 .000

292 .000

.039

LOO

48.44% STABLE

41.60% STABLE

28.99% STABLE 28.99%

ESSL LOOp TYP MODEL
48.44% .000 ORD <=6.2-->4,165/242,68.18%*
>6.2-->5,375/462,81.17%
41.60% .000 ORD <=4.5-->4,29/63,46.03%
>4.5-->5,206/229,89.96%*
.039 ORD <=1.9-->4,18/30,60.00%*
>1.9-->5,22/32,68.75%*

Figure 4: Sample CTA Software Output (Hypothetical Expository Data)

The right-hand branch emanating from
D2 has a cutpoint of >6.2 units: observations
having D2 scores >6.2 units are predicted to be
members of class 5, but this branch does not
terminate in a model endpoint. Rather, the
model includes attribute D3 at node 3.

As seen, the left-hand branch emanating
from D3 has a cutpoint of <4.5 units: observa-
tions having D3 scores <4.5 units are predicted
to be members of class 4, but this branch does
not terminate in a model endpoint.
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The right-hand branch from D3 has a
cutpoint of >4.5 units: observations with D3
scores >4.5 units are predicted to be members of
class 5, and this branch terminates in a model
endpoint representing a total of 229 observa-
tions, of whom 206 (89.96%) are correctly clas-
sified. The remaining 229-206=23 observa-
tions having D3 scores >4.5 units were mem-
bers of class 4, and were misclassified by this
branch of the CTA model.

Both branches emanating from D4 term-
inate in a model endpoint (this is always true for
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the last attribute listed in the output). The left-
hand branch has a cutpoint of <1.9 units: obser-
vations with D4 scores <1.9 units are predicted
to be members of class 4; this endpoint repre-
sents 30 observations of whom 18 (60.00%) are
correctly classified and 30-18=12 (40.00%) are
misclassified. And, the right-hand branch has a
cutpoint of >1.9 units: observations having D4
scores >1.9 units are predicted to be members of
class 5; this endpoint represents 32 observations
of whom 22 (68.75%) are correctly classified
and 32-22=10 (31.25%) are misclassified.

To construct an illustration of the final
CTA model, referring to Figure 3 select nodes 1,
3 and 6 (see Table 3, column 2): these are de-
picted by circles (Figure 1). Branches are then
depicted using arrows emanating from the left-
hand side of the root attribute (D2), the right-
hand side of D3, and both sides of D4, terminate
in model endpoints depicted using rectangles
(Figure 1). Add the Type | error rate beneath
each attribute, cutpoint values adjacent to ar-
rows, and text indicating the outcome for each
endpoint—and the CTA model is complete.

Automated CTA Command Syntax

Table 6 gives an alphabetical roster and
description of automated CTA software control
commands and keywords (an example of an
automated CTA program is provided ahead).

Table 6: Control Commands for
Automated CTA Software

ATTRIBUTE
Syntax ATTRIBUTE variable list ;
Alias ATTR

Remarks The ATTRIBUTE command lists
the attribute(s) to be used in the
analysis. The TO keyword may be
used to define multiple attributes in
the list. For example, the command
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ATTR Alto A4;

indicates that Al, A2, A3 and A4
will be treated as attributes. Further
exposition of the TO keyword is
found in the discussion for VARS.

CATEGORICAL

Syntax CATEGORICAL {ON | OFF};
CATEGORICAL variable list ;

Alias CAT

Remarks The CATEGORICAL command
specifies that categorical analysis
will be used, and is required when
the attribute to be analyzed is
categorical. Using the ON keyword
indicates that all variables in the
variable list are categorical. CAT
with no parameters is the same as
CAT ON. The TO keyword may be
used in the variable list (see the
discussion under VARS).

CLASS

Syntax CLASS variable list ;

Remarks The mandatory CLASS command
specifies the class variable to be
used in the analysis. A separate
analysis will be run for each class
variable named. The TO keyword
may be used in the variable list (see

discussion under VARS).
DIRECTION

Syntax DIRECTION {<|LT|>|GT|
OFF} value list ;

Aliases DIR, DIRECTIONAL

Remarks The DIRECTION command defines
the presence and nature of a direc-
tional (i.e., a priori, one-tailed, or
confirmatory) hypothesis. The
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parameter < or LT indicates that the
class values in the value list are
ordered in the “less than” direction.
The parameter > or GT indicates the
class values are ordered in the
“greater than” direction. The value
list must contain every value of the
class variable currently defined.

The default is OFF.

attribute Z. Commas in the exclude
string enable the user to exclude
multiple values of a variable using a
single command:

EXCLUDE C=2/4;

excludes all observations having a
value of 2 or 4 for attribute C.
Multiple EXCLUDE commands
may be entered, up to a maximum

ENUMERATE of 100 clauses. Observations which

satisfy any of the EXCLUDE
clauses will be excluded.

Syntax ENUMERATE {ROOT}
{MINOBS value} ;

Remarks The ENUMERATE command with FORCENODE

no options specifies that all combin-
ations of attributes in the top three
nodes will evaluated.
ENUMERATE ROOQOT specifies
that only the top node will have all
attributes evaluated.

ENUMERATE MINOBS value
allows only solution trees with at
least value observations in them.

Syntax FORCENODE node var ;

Remarks The FORCENODE command
forces CTA to insert the attribute
var at node node in the solution
tree. If the UniODA solution for
this attribute is not significant, or
this node is subsequently pruned, an
error message will be printed.

EXCLUDE GO
Syntax EXCLUDE variable {=|<>|<|>| Syntax GO :
<=|>=| OFF} value (,value2,...) ;
) Remarks The GO command begins execution
Aliases EX, EXCL of the currently defined analysis.
Remarks This command excludes observa- INCLUDE
tions having the indicated value of
variable. For example, Syntax INCLUDE variable {=|<>|<|>|
<=|>=| OFF} value (,value2,...) ;
EXCLUDE D=4 ;
) ) Aliases IN, INCL
drops all observations with the
value of 4 for attribute D. The Remarks The INCLUDE command functions

command
EXCLUDE B=2 7z>=113 ;

drops all observations with the
value of 2 for attribute B or values
greater than or equal to 113 for
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in the same manner as the
EXCLUDE command, except that
only those observations with the
indicated value for variable are
included. If multiple INCLUDE
statements exist, only those obser-
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LOO
Syntax

Remarks

MCARLO

Syntax

Alias

Remarks

vations will be kept which satisfy
all these INCLUDE statements.

LOO {pvalue | STABLE};

The LOO command indicates that
leave-one-out analysis will be
performed for every attribute in the
tree. LOO STABLE allows only
attributes with LOO ESS equal to
the ESS for that attribute. LOO
pvalue allows only those attributes
in the solution tree which have an
ESS that yields a p < pvalue.

MCARLO {ITERATIONS value |
CUTOFF pvalue | STOP confvalue

}
MC

The MCARLO command controls
Monte Carlo analysis for estimating
Type I error, or p. The keywords
specify stopping criteria; if any
criterion is met, then the analysis
stops. ITERATIONS (ITER)
specifies the maximum number of
Monte Carlo iterations. STOP xxx
indicates the confidence level (in
percent), which will stop processing
for the current attribute, if the
estimated Type | error rate
(specified with the CUTOFF
keyword) drops below this level.
For example, the command

MCARLO ITER 70000
CUTOFF .05 STOP 99.9;

indicates a Monte Carlo analysis
will be conducted, and will stop
when one of the following occurs:
(2) 70,000 iterations have been
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executed, (2) a confidence level of
less than 99.9% that p<.05 has been
obtained.

MAXLEVEL

Syntax

Remarks

MAXLEVEL value ;

The MAXLEVEL command
specifies the deepest level or depth
allowed in the solution tree.

MINDENOM

Syntax

Remarks

MISSING
Syntax

Alias

Remarks

MINDENOM value ;

The MINDENOM command
specifies that only attributes which
yield a denominator of value or
more will be allowed in the solution
tree.

MISSING {variable list | ALL}
(value) ;

MISS

The MISSING command tells ODA
to treat observations with value
(value) as missing for each variable
on the list. For example, the
command

MISSING X Y Z (-4) ;

indicates that observations with
attrbutes X, Y, or Z equal to -4 will
be dropped if they are present in a
CLASS, ATTRIBUTE, WEIGHT,
or GROUP variable. ALL specifies
that the indicated missing value
applies to all variables. The TO
keyword may be used in the attribu-
te list (see discussion under VARS).
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OPEN
Syntax OPEN {path\file name | DATA} ;

Remarks The OPEN command specifies the
data file to be processed by ODA.
This file must be in ASCII format.
DATA indicates that a DATA state-
ment, with inline data following,
appears in the command stream.

OUTPUT
Syntax OUTPUT path\file name
{APPEND} ;

Remarks The OUTPUT command specifies
the output file containing the results
of the ODA run. The default is
ODA.OUT. APPEND indicates
that the report is to be appended to
the end of an already existing output
file.

PRIORS
Syntax PRIORS {ON | OFF};

Remarks The PRIORS command indicates
whether the ODA criterion will be
weighted by the reciprocal of sam-
ple class membership. The default
is ON. PRIORS with no parameters
is the same as PRIORS ON.

PRUNE
Syntax PRUNE pvalue {NOPRIORS} ;

Remarks The PRUNE command indicates the
p-value with which to optimally
prune the classification tree. The
NOPRIORS keyword should be
used when PRIORS is turned OFF.

SKIPNODE
Syntax SKIPNODE node ;
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Remarks

TITLE
Syntax

Remarks

The SKIPNODE command
specifies that the node node will be
empty of any attribute in the
solution tree.

TITLE title;

The TITLE command specifies the
title to be printed in the report.
TITLE with no parameters erases
the currently defined title.

USEFISHER

Syntax

Remarks

VARS
Syntax

Remarks

USEFISHER value ;

The USEFISHER command
specifies that all probability
calculations for categorical variable
will be determined by Fisher’s exact
test, rather than by Monte Carlo.

VARS variable list ;

The VARS command specifies a list
of attribute names corresponding to
fields in the input data set. The TO
keyword may be used to define
multiple variables in the variable
list. For example, the command

VARS XY ZV1TO V4,

specifies that the input file contains,
in order, variables X, Y, Z, V1, V2,
V3, and V4, and that there is at least
one blank space separating all
adjacent data. Alternatively, the
data points may be separated by a
single comma (with no spaces).

The TO keyword may be used to
input a range of variables which
have the same name except for the
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integer at the end of the name: the
integers must be positive and
ascending, increasing one unit per
variable. Thus, VAR1 TO VAR10
is admissible (defining 10
variables). In contrast, VAR10 TO
VAR1, VARA TO VARJ,or ATO
X10, are not admissible.

The data for each observation
may all exist on a single line of the
data set, or may be placed on
multiple adjacent lines. It is not
recommended that a new observa-
tion is included on a line containing
data from the previous observation.

WEIGHT

Syntax WEIGHT {variable | OFF} ;

Alias RETURN

Remarks The optional WEIGHT command
specifies the weight variable for the
analysis. The data values for the
WEIGHT variable supply the
weight the corresponding

observation. The default is OFF.

Two Example Automated CTA Programs

Imagine an application in finance. In
light of the recent calamitous failure of home
mortgages, it is decided that a new credit-
screening methodology is needed. Toward this
objective a bank creates a dataset consisting of
records describing all mortgages granted in the
past three years (for exposition, imagine N=300
loans were made, of which, 10%, or 30 loans,
were in default). The class variable is whether
or not the loan went into default (label this class
variable “Loan”, and use dummy-codes 1=sol-
vent, O=default). The weight is the value of the
loan in dollars (label this variable “Value”). Fi-
nally, imagine data are available for twenty at-
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tributes (Varl-Var20). Of these, Varl-Varl0
are ordered, and the rest categorical.

Imagine that data and program files have
been saved, and the output file will be saved, in
the “c:cta” directory. As per the automated CTA
system job-naming convention, a common name
is used for data, program and output files: the
name of the data file is “loan.dat”; the name of
the program file is “loan.pgm”; and the name of
the output file is “loan.out.” The following code
defines data and output files, assigns class,
weight, and attribute variables, and defines the
categorical attributes:

open c:\cta\loan.out;

output c:\cta\loan.out;

vars loan value varl to var20;
class loan;

attr varl to var20;

cat varll to var20;

weight value;

It is decided a priori that, to increase the
likelihood of the model cross-generalizing when
applied to a validity sample, model endpoints
should represent at least 5% of the total sample
(5% of N=300 is N=15):

mindenom 15;

It is also decided a priori that to increase
the likelihood of the model cross-generalizing,
only variables stable in leave-one-out analysis
would be allowed as model nodes:

loo stable;

It is decided a priori to use the system
default (on) for weighting by prior odds intact,
as another means of increasing the likelihood of
the model cross-generalizing to an independent
random sample, and also to explicitly maximize
ESS (setting priors off explicitly maximizes
overall PAC). The conventional experiment-
wise Type | error rate (p<0.05) is selected for
pruning® to maximize ESS (experimentwise p<
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0.05 is used automatically during model growth
to control overfitting®):

prune .05;

Because there are relatively many cate-
gorical variables, it is decided to use Fisher’s
exact test to assess p for categorical variables®
and reduce the number of Monte Carlo simula-
tion experiments conducted:

usefisher;

Because the sample is modest in size, as
is the number of attributes, and in light of the
small number of failed loans in conjunction with
the minimum denominator specification, it is
decided that full enumeration of the first three
nodes is feasible and appropriate, using 25,000
Monte Carlo experiments to compute p for all
ordered attributes:

enumerate;
mecarlo iter 25000 cutoff .05 stop 99.9;
title loan default weighted CTA,;

go,

Imagine an application in space physics.
A phased array of 16 high-frequency antennas
located in Goose Bay (Labrador), with a total
transmitted power exceeding 6 kilowatts, was
used to target free electrons in the ionosphere.**
The class variable was labeled “return”: “good”
returns showed evidence of some type of
structure in the ionosphere, and “bad” returns
failed to provide evidence of structure (dummy-
coded as “1” vs. “0”, respectively). Received
signals were processed using an autocorrelation
function with two arguments per signal: time of
pulse and pulse number. Because there were 17
pulse numbers for the Goose Bay system, there
were thus 34 ordered attributes (“X1-X347).
There was no weight variable, and no categori-
cal attribute. The objective is to maximize over-
all PAC—the total number of accurately classi-
fied good and bad returns.
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Imagine that data and program files have
been saved, and the output file will be saved, in
the “c:cta” directory. As per the automated CTA
system job-naming convention, a common name
is used for data, program and output files: the
name of the data file is “radar.dat”; the name of
the program file is “radar.pgm”; and the name
of the output file is “radar.out.” The following
code defines data and output files, and assigns
class and attribute variables:

open c:\cta\radar.out;
output c:\cta\radar.out;
vars return x1 to x34;
class return;

attr x1 to x34;

It is decided a priori that, to maximize
overall PAC achieved, the endpoint minimum
denominator and model maximum depth would
be unconstrained, but rather explicitly optimized
by the program (no commands required).

Also, to maximize overall PAC it was
decided to let attributes load as nodes even if
unstable in LOO analysis, so long as their ESS
in LOO analysis exceeded the ESS achieved by
any other attribute:

loo 0.05;

It is decided a priori to set priors off in
order to explicitly maximize overall PAC:

priors off;

The default setting for optimal pruning is
priors on, so the prune command has to be ad-
justed to indicate that priors is set to off. Also,
to maximize overall PAC, a statistical marginal
loading will be allowed in the optimally-pruned
model:

prune .10 nopriors;

Because there are no categorical attrib-
utes, the usefisher command is omitted. Be-
cause the sample is moderate in size, as is the
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number of attributes, and the attributes are or-
dered with few ties, analysis will be resource
intensive. Also, 100,000 Monte Carlo experi-
ments will be used in order to provide adequate
statistical power for the small denominator end-
points that are anticipated:

mcarlo iter 200000 cutoff .05 stop 99.9;

Because UniODA analysis showed many
attributes are loo-unstable, the analysis is judged
to be too computationally intensive to attempt
full enumeration on the first pass through the
data via CTA (omitting the enumeration com-
mand results in an algorithmic analysis by de-
fault). Thus, after specifying enumeration of the
root variable only, and providing a title, the pro-
gram is ready to go:

enumerate root;
title RADAR maximum-PAC CTA;

go,

Advantages of Automated versus
Manually-Derived CTA

Perhaps the most striking advantage of
the automated software is that it is able to ac-
complish the example analyses just described,
whereas neither of those analyses are possible to
accomplish using manual derivation. Two spe-
cific advantages of the automated software are
integrated automated pruning procedures: (a)
sequentially-rejective Sidak “Bonferroni-type”
multiple comparisons adjustment® to prevent
model overfitting during the growth phase of the
analysis; and (b) optimal pruning to maximize
ESS at any specified experimentwise alpha level
after growth has ceased.’* And, those with ex-
perience conducting manual CTA using ODA*
software would likely be amazed to hear that in
recent speed trials (N=351, 34 continuous at-
tributes) the automated software was able to
solve enumerated CTA models averaging 0.7
CPU seconds per model, running 5,000 Monte
Carlo experiments on a 3 GHz Intel Pentium D
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microcomputer. An algorithmic CTA derived
manually for either type of CTA would typically
require one or more man-days.

Initial comparisons of automated versus
manual methods clearly reveal that the increased
depth of search afforded by the enumeration ca-
pabilities of the automated software typically
returns stronger, more efficient models.® The
enumerated models may also be more consistent
with original hypotheses than manually-derived
counterparts.® Preliminary investigations in our
laboratory suggest that the advantages of auto-
mated software become even more striking in
applications which feature numerous, scattered,
missing data. We are aware of several studies
which compare previously-completed manually-
derived CTA models vs. models derived using
automated software, either planned or in prog-
ress. Monte Carlo simulation studies comparing
the two methods are obviously warranted.

It is exciting to witness, whether as actor
or spectator, the beginning of a new area of in-
quiry involving a powerful and evolving new
methodology. Manually-derived CTA may be
likened to an early telescope, focused by mov-
ing the body much like a trombone slide. Initial
exploration using this early tool was fruitful and
informative, and motivated the development of
the automated system, which may be likened to
a modern telescope. The modern instrument
allows for pinpoint placement of the machine in
any particular area (forcenode), aspect control
including depth of field (maxlevel) and search
(mcarlo iter; enumerate), luminosity (minobs;
mindenom), fuzzy control (loo stable vs. .0x),
and a standardized measure of acuity (ESS). It
is likely that using these controls in a variety of
applications will lead to refinements in the con-
trols themselves, as well as in the methods of
their operations, and these developments in turn
may result in the creation of additional control
features. For these reasons we anticipate surpri-
sing findings and major advances in the under-
standing of absolute and comparative capabili-
ties of automated CTA—soon to come.
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How to Save the Binary Class Variable
and Predicted Probability of Group
Membership from Logistic Regression
Analysis to an ASCII Space-Delimited
File in SPSS 17 For Windows

Fred B. Bryant, Ph.D.

Loyola University, Chicago

This note explains the steps involved and provides the SPSS syntax
needed to run two-group logistic regression analysis using SPSS
17 for Windows, and output to an ASCII space-delimited data file
the binary class variable and predicted probability of group mem-
bership (i.e., “Y-hat”) from an SPSS logistic regression analysis.

1. Obtain an SPSS data set containing a binary
class variable (e.g., sex), along with categorical
(e.g., cityl, city2, city3, colorA, colorB, colorC)
and continuous (e.g., age) attributes. Muissing
data should be indicated with a value (e.g., -9)
in the SPSS data set.

2. Open the SPSS data set, and run the follow-
ing syntax file, which saves predicted probabil-
ity of group membership as a variable named
PRED_1 in the active SPSS data file.

LOGISTIC REGRESSION VARIABLES sex
/METHOD=ENTER age raceA raceH city2 city3
/CONTRAST (city3)=Indicator

JCONTRAST (city2)=Indicator

JCONTRAST (colorA)=Indicator

JCONTRAST (colorC)=Indicator

/SAVE=PRED
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/CLASSPLOT

/PRINT=GOODFIT

/CRITERIA=PIN(0.05) POUT(0.10) ITERATE(20)
CUT(0.5).

3. If desired, in Variable View, edit the SPSS
data file to rename PRE 1 as “Iryhat,” for
example, to reflect “logistic regression y-hat.”

4. From the drop-down SPSS Windows menu,
select Transform, Recode into Same Variable,
and change the value of “system missing”
(blank) to -9 (or value used) for the PRE_1
(Iryhat) variable. Then resave the SPSS data set.

5. Run the following SPSS syntax to write a
space-delimited ASCII data file which is named
“Iryhat.dat” and which contains a code for the
class variable (e.g., sex) and the predicted
probability of group membership (e.g., Iryhat):
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FORMATS sex (f4.0).

FORMATS Iryhat (f13.8).

write outfile="c:\Iryhat.dat' records=1
/1 sex Iryhat.

execute.

6. Locate the file “Iryhat.dat” in the root folder
for the c:\ drive, and move this file to the ODA
directory for analysis.
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Self-Monitoring And Review Tool, or SMART, is an interactive,
internet-based, self-monitoring and feedback system, which helps
people discover and monitor links between their own health-related
behaviors, management strategies, and symptom levels over time.
SMART involves longitudinal collection and optimal analysis of
an individual’s self-monitoring data, and delivery of personalized
feedback derived from the data. Forty women with fibromyalgia
(FM) enrolled in a three-month alpha test of the SMART system.
Utilization, satisfaction, and compliance were high across the test
period, and higher utilization was predictive of lower anxiety, and
improved physical functioning and self-efficacy.

FM is a chronic illness without medical cure and
prevalence estimated as high as twelve million
Americans—primarily women of child-bearing
age, although children, the elderly, and men are
also affected.! Predominant symptoms include
widespread musculoskeletal pain, multiple ten-
der points, fatigue, concentration and memory
problems, and gastrointestinal complaints.”™
For a sample of 594 FM patients in an HMO,
scores on a well-being measure were lower than
for patients having advanced cancer, chronic
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obstructive pulmonary disease, and rheumatoid
arthritis.” FM is believed to involve a central
pain processing dysfunction of the nociceptive
system, particularly the central nervous system,
and chronic inflammation.®” There is evidence
of elevated corticotropin-releasing hormone and
substance P in the cerebrospinal fluid of FM
patients.®

Many conventional and complementary
treatment and management options have been
tried, with mixed results across patients. The
prevailing approach involves a combination of
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pharmacological treatments for specific symp-
toms, and recommendations involving educa-
tion, lifestyle change, exercise, and self-help.” "
Meta-analysis of 49 treatment outcome studies
concluded that nonpharmacological approaches,
specifically cognitive, behavioral and exercise,
appear to be more efficacious in improving self-
report of FM symptoms and functional well-
being than pharmacological treatment alone.'
There is consensus that success in managing FM
depends heavily on the patient’s daily efforts in
self-management. FM patients who use adaptive
problem-focused coping strategies report lower
levels of pain and emotional distress, and higher
levels of perceived control over symptoms, ver-
sus patients who don’t use such strategies.”> A
patient’s decision to adopt a self-management
strategy is influenced by a sense of self-efficacy
about pain, a strong internal health locus of
control, and a belief that one is not necessarily
disabled or damaged by FM. In addition, posi-
tive self-management behaviors are related to
decreased guarding, increased exercise, seeking
support from others, activity pacing, and use of
coping self-statements.'!”

While habits and patterns of daily living
are directly compromised by FM, they also pre-
sent opportunities for beneficial impact. Those
reporting success in managing or recovering
from FM commonly report significant—some-
times radical-—changes in daily habits, roles,
interpersonal relationships, behavior patterns,
and life goals.'® Several self-management strat-
egies which have shown benefit in FM warrant
inclusion in an individualized self-management
approach. For example, pacing involves learn-
ing to regulate one’s activity levels and energy
expenditure throughout the day and the week,
and FM patients have a higher level of pre-mor-
bid “action proneness” in their lifestyles com-
pared to control samples, suggesting failure to
appropriately pace oneself may be both a pre-
disposing and perpetuating factor."” Studies of
mindfulness-based stress reduction and related
approaches report moderate to marked improve-
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ment in FM symptom levels.”**! Performance

of aerobic exercise in FM patients is also related
to improvement in functioning, depression, pain,
range of motion, and general FM impact.?

In light of the numerous types of self-
management options available, it is important
for patients to appraise the impacts of specific
approaches and avoid depleting resources on
unhelpful strategies. It is also important not to
abandon a potentially helpful approach without
a fair trial. Yet, the frustrations of carrying out
new behaviors without the benefit of systematic
tracking of use and effects, may cause the pa-
tient to reject a strategy prematurely.”® Self-
monitoring is common practice—and can be
life-saving in conditions such as diabetes and
hypertension, where methods can be concrete
(glucose testing, blood pressure) and the results
easily grasped. Self-monitoring is also used in
weight loss programs to promote awareness of
eating habits, but self-monitoring tools must be
user-friendly to enhance the likelihood of their
successful use.”* Many FM patients attempt to
monitor their illness with journals or diaries, but
problems with memory and concentration make
it difficult to track symptoms reliably or process
information in an organized or systematic way.
However, successful self-monitoring holds great
potential of illuminating dynamics of the illness.
For example, in a study of 63 FM patients who
participated in one week of daily pain, sleep
quality, and fatigue assessment, path analysis
revealed that poor sleep quality alone fully ac-
counted for the positive relationship between
pain and fatigue, thus substantiating the media-
tional role of sleep quality.”

This report describes the design and ini-
tial clinical evaluation of a proprietary, inter-ac-
tive, user-friendly, web-based, systematic ap-
proach to self-management of FM.

Design and Method

Subject Recruitment. The study was
conducted with cooperation of the MaineHealth
Learning Resource Center (MHLRC), the
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patient education program of the MaineHealth
Network consisting of ten non-profit medical
centers, hospitals and outpatient clinics serving
the ten counties of southern, central and western
Maine. The IRB was the Maine Medical Center
Research Institute. Primary publicity was a
mailing regarding the “Fibromyalgia Wellness
Project” to self-identified FM patients in the
MHLRC program mailing list. The mailing
guided prospective applicants to the study web-
site to read details of the project, download the
consent document, download a required Medical
Information Form, and complete a secure on-
line application.

The on-line application collected contact
information, demographics and date of FM di-
agnosis. Data were entered into the applicant’s
personal database on the project’s secure server,
and automatically forwarded to the PI via email.
Upon receipt the PI contacted the applicant for a
telephone interview to cover eligibility criteria:
(1) a diagnosis of primary FM (i.e., not second-
ary to lupus, rheumatoid arthritis, or other con-
dition) according the official American College
of Rheumatology criteria (documented on
Medical Info Form); (2) not under current treat-
ment for another serious medical condition; (3)
able to read and speak English and complete the
assessment forms; (4) physically able to attend
the introductory meeting; and (5) daily access to
the internet. Eligible applicants mailed or faxed
the Medical Information Form signed by their
physician attesting to criteria 1 and 2 above,
with the date of diagnosis. After receiving this
and the signed consent form, the subject was
assigned a user-name and password to access
the project web site to complete the first
Monthly Survey. Recruitment was terminated
once 40 subjects completed this process: using
statistical power analysis this sample size was
determined to be sufficient to detect a moderate
increase in longitudinal survey scores with one-
tail p<0.05 and 90% power.

Data Collection. All data collection was
conducted via the project website using SMART
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Log software, with data for a given subject
stored in the subject’s personal database. Each
subject completed a Monthly Survey five times,
on days 1, 30, 60, 90 and 120 of the study.
Compensation was $20 each time. Monthly
survey instruments used were the Fibromyalgia
Impact Questionnaire or FIQ (uses a one-week
recall period to obtain ratings of pain, physical
functioning, fatigue, depression, anxiety, stiff-
ness, morning tiredness, job difficulty, days of
paid work missed, number of good days in the
past week, and total score); the SF12*’ (uses a
four-week recall period to obtain ratings of role
limitations due to illness or emotional problems,
physical functioning, bodily pain, mental health,
vitality, social functioning, and general health
perceptions); Self-Efficacy for Chronic Disease
Scale*® or SECDS (uses a six-item scale rating
self-confidence in managing the challenges of
iliness); and the Health Locus of Control Scale®
(HLCS), Form C (condition-specific for FM and
obtaining ratings of perceived control in terms
of internality, chance externality, and powerful
others externality for doctors and other people).
The first two administrations of the Monthly
Survey were treated as baseline data, and the
last three treated as intervention phase data.

Data on utilization of SMART Log con-
sisted of weekly counts of submissions on the
project website. Ratings of satisfaction with the
program, and of the perceived relevance of the
program to the subject’s health, were recorded
by subjects at the end of each usage of SMART
Log using four-point Likert-type rating scales
anchored at the extremes by “not at all” and
“completely”.

The Intervention. After completing the
second baseline Monthly Survey each subject
attended a three-hour orientation meeting intro-
ducing SMART Log and supporting features on
the project website: five meetings each with 3-
12 subjects were conducted, one meeting per
subject. Subjects were instructed how to use the
SMART Log and requested to use it at least
three to four times per week. It was explained
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that the more they used it, the more powerful
would be their personal database in its ability to
provide meaningful feedback via the SMART
Profile. Subjects were compensated $2 each
time the used the system up to five times per
week, although they were free to use the system
for as many days as they wished. Compensation
for travel and time was $50.

One of the greatest challenges in any
behavioral intervention is compliance. We
chose the prescription of “at least three to four
times per week” to be a reasonable goal given
the illness burden and stress load commonly
experienced by people with FM. We did not
want compliance to be perceived as an added
burden (e.g., “required every day”), yet we
needed enough submissions to capture sufficient
data within the 13-week use period of the study
to perform the desired statistical analyses. As
per the instructions, a mean of 3.5 uses per week
was considered full compliance in this study.

Immediately after the orientation meet-
ing (day 31 of the project) the SMART Log
function was activated on the web site and came
available for subject use. SMART Log consists
of two sections. First, the Inputs Checklist cap-
tures 24-hour reporting of lifestyle behaviors
and self-management strategies and stressors in
five categories: sleep and rest; meals and
snacks; self-care; general activities; and “unique
items”—up to five user-defined inputs unique to
each individual. Second, the Symptom Rating
Scale captures user ratings of ten of the most
prominent FM symptoms over the past 24 hours.

After 30 days of using SMART Log
(day 60 of the project), a SMART Profile was
posted on a weekly basis on the subject’s private
database until the end of the project (day 120).
To accomplish this, each week, each subject’s
cumulative SMART Log data were analyzed
using exact single-subject statistical methods via
optimal data analysis (ODA): power analysis
simulating a moderate effect revealed univariate
optimal discriminant analysis (UniODA) was
appropriate for a sample of 22 to 47 days, and
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hierarchically optimal classification tree analy-
sis (CTA) was appropriate thereafter.’® Find-
ings for each subject were individually summa-
rized in a narrative (“Profile”) comprising
statements about statistically significant associ-
ations found between the subject’s Inputs
Checklist and ratings of specific symptoms.
After logging in a subject could click the
SMART Profile tab and access the latest Profile.
Over time, as more data accumulated for the
subject, more (and more detailed) statements
became possible. Subjects received a total of
ten weekly Profiles by the end of the project.

If a subject’s data did not yield at least
one significant association, then a general Pro-
file statement as follows was received:

“Your SMART Profile does not yet
show significant connections between your
inputs and symptom levels. Either you need
more submissions, or there’s not enough
variation in your data so far, or both.

More submissions: To date you have 15
SMART Log submissions. As you add
more you are more likely to accumulate
enough data to show connections in future
Profiles. More frequent use of SMART Log
may help get you there sooner. For exam-
ple, if you’ve been submitting only two or
three times per week, increase to four or
more.

More variation: You can also boost your
odds of finding connections by adding more
variation to your inputs. If you’re doing the
same things all the time (the same inputs),
your symptom levels are more likely to stay
the same. This is good reason to begin
changing inputs you think could possibly af-
fect your symptoms—Iike your bedtime,
eating schedule, meal sizes, work hours,
self-care practices, stressors, or other inputs.
Consider some changes you can try and
begin experimenting with them.”
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If the subject’s data yielded at least one sig-
nificant association, then a Profile in the fol-
lowing format was received:

“Your SMART Profile shows significant
connections between your inputs and symp-
tom levels. Keep in mind the more you use
SMART Log, the more likely you are to see
other connections in future Profiles. Also
remember that if you’re doing the same
things all the time (same inputs), your symp-
tom levels are more likely to stay the same.
This is good reason to try changing inputs
you think could possibly affect your symp-
toms—Ilike your bedtime, eating schedule,
meal sizes, self-care practices, work hours,
stressors or other inputs. Consider some
changes you can try and begin experiment-
ing with them.

Your Profile for this week: Your pain
level is least when you have lunch by 1:37
PM. Your concentration problems are least
when your afternoon nap is no longer than
25 minutes. Your stiffness is least when
work or school-related activity is longer than
2 hours 36 minutes AND morning exercise
is longer than 5 minutes. Your fatigue level
is least when domestic activity is no more
than mildly stressful. Your gastrointestinal
symptoms are least when your afternoon
snack is very light OR childcare stress is 3
or less.”

Results and Discussion

For this study usability criteria comprise
data on recruitment and retention, utilization
and compliance, and satisfaction.

Recruitment and Retention. A total of
40 women having an official diagnosis of FM
(ACR criteria) enrolled in the project. The
study was originally planned for adults 18 or
over, but one 16 year-old appealed for an excep-
tion, and with the permission of the NIAMS
program officer, the IRB and her parent, she
was enrolled in the study. A summary of demo-
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graphic features of the total recruited alpha test
sample are summarized in Table 1.

Table 1: Sample Demographic
Characteristics
Age | Mean 46.5 (SD 12.4)
Range 16-66
Sex | Female: 40
Male: 0
Ethnicity/ | White: 34
Race | African American: 3
Hispanic/Latino: 2
Native American: 1
Years FM | Mean 7.9 (SD 5.7)
Diagnosed | Range 0.8-27.3
Marital | Married: 27
Status | Not married: 13
Education | Some HS: 1
HS grad: 2
Some college: 17
BA: 9
Some grad school: 5
Grad degree: 6
Employment | Full time: 9
Part time: 11
Seeking: 1
Retired: 3
Disabled: 14
Student: 2

Utilization. Aggregate and individual
measures of utilization are considered presently:
utilization and compliance were high and stable
over the course of the use period.

Aggregate Utilization. Because subjects
were instructed to utilize the SMART Log at
least three to four times per week, perfect com-
pliance is operationalized as a mean of 3.5 times
per week. Considered as a whole, the sample of
39 patients completing the study submitted a
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mean of 4.05 (SD=1.61) SMART Log entries
per week over the 13-week study period. This
corresponds to a 95% confidence interval (95%
Cl) of 3.65 to 4.45 mean submissions per week,
or mean aggregate compliance between 104.2%
and 127.2% over the duration of the study.
Aggregate SMART Log utilization was
also examined weekly for the total sample.
Seen in Table 2, lowest aggregate mean weekly
utilization (indicated in red) occurred in the first
week of data collection: this was the only week
for which the upper bound of the 95% CI was
lower than 100% mean aggregate compliance.
Four of the six highest mean aggregate utiliza-
tion weeks (indicated in blue) occurred within
the first six weeks of data collection: for these
the lower bound of the 95% CI exceeded 100%
mean aggregate compliance. And, four of the
six intermediate mean aggregate utilization
weeks (indicated in black) occurred within the
final six weeks of data collection: for these the
95% CI overlapped 100% mean aggregate com-
pliance. The temporal trend was unreliable: the
correlation between study week and mean util-
ization was insignificant (r=-0.31, p<0.30), indi-
cating mean weekly aggregate utilization was
consistent over the data collection period. Ex-
amination of 95% CI overlap indicated that
lowest mean aggregate utilization occurred in
the first week of data collection, and that mean
aggregate utilization in weeks 2 and 4 were
greater than in weeks 8, 10, 11 and 12.
Individual Utilization was defined using
measures of relative quantity, and change over
the three-month use period. Utilization quantity
was defined via a mean-split procedure whereby
the mean number of SMART Log entries per
week for an individual is compared against the
aggregate mean number of SMART Log entries
per week: individuals having a mean which is
greater than the aggregate mean are considered
“higher utilizers” (N=20, 51% of sample), and
those having a mean lower than the aggregate
are considered “lower utilizers” (N=19, 49% of
sample). Absence of skew in weekly utilization
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data yielded nearly identical samples sizes using
this procedure.

Table 2: Weekly SMART Log
Mean Aggregate Utilization
Corresponding
Week Mean (SD) 95% Cl % Compliance
1 295(1.70) 254-336 72.6-96.0
2 5.00(193) 4.56-544 130.2-145.4
3 444(173) 4.02-4.86 114.8-138.8
4 500(2.70) 4.48-552 128.0-157.8
5 397(1.93) 353-4.41 100.8-126.0
6 4.70(2.41) 4.20-5.18 120.0-148.0
7 4.00(2.41) 351-4.49 100.2-128.2
8 394(254) 344-446 98.2-1274
9 426(3.29) 3.68-4.84 105.2-138.2
10 3.36(3.08) 2.80-3.92 80.0-112.0
11 3.21(2.88) 267-3.75 76.2-107.2
12 351(2.95) 296-4.06 84.6-116.0
13  4.26(4.18) 3.61-4.92 103.2-140.6
Note: For % compliance values, lowest values are
indicated in red, intermediate values in black, and
highest values in blue.

Change in utilization across time was
operationalized using lag-1 autocorrelation, or
ACF(1): for a single individual all pairs of
measurements recorded at times i and i-1 are
constructed, the data pairs are combined, and
the i and i-1 data are correlated.”’ The resultisa
Pearson correlation coefficient bounded by 1.0
and -1.0: a negative value of ACF(1) indicates
scores recorded recently are lower than scores
recorded previously, and thus the individual is
making fewer SMART Log entries (decreasing
utilization) as the study proceeds. A positive
value of ACF(1) indicates scores recorded
recently exceed scores recorded previously, and
thus the individual is making more SMART Log
submissions (increasing utilization) as the study
proceeds. Presently, 16 subjects (41% of sam-
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ple) had ACF(1)>0 and thus increasing SMART
Log utilization, and 23 (59% of sample) had
decreasing utilization. The small number of data
pairs available to compute ACF(1) had weak
statistical power to identify reliable ACF(1)
coefficients, yet two negative and three positive
statistically reliable (p<0.05) coefficients mater-
lalized. Quantity of utilization and change in
utilization over time were negatively correlated
(r=-0.52, p<0.0009), indicating moderate (r’=
0.27) regression to the mean.”!

Satisfaction. Using consistent method-
ology and obtaining results consistent with those
obtained for utilization, aggregate as well as in-
dividual satisfaction measures were considered
presently: mean ratings of perceived relevance
and overall satisfaction with the intervention
were scaled as “mostly satisfied” over the
course of the study; data were stable (the 95%
ClI for both variables overlapped across all use
weeks); and an aggregate decline in satisfaction
over time was attributable to outlying negative
ratings, as the majority of participants reported
increasing satisfaction over time.

Aggregate Satisfaction. After every use
of the SMART Log its relevance (i.e., “How
satisfied are you that today's SMART Log
addressed matters relevant to your well-being?”)
and satisfaction (“On the whole, how satisfying
has your use of this program been to date?”)
was rated by the patient. The sample of 39 pat-
ients recorded a mean relevance rating of 3.20
(SD=0.57, 95% CIl=2.96-3.44), and a mean
satisfaction rating of 3.16 (SD=0.64, 95% ClI=
2.90-3.41). Considered in relation to the rating
response scale used (1=not at all, 2=somewhat,
3=mostly, 4=completely), both the mean ratings
correspond to “mostly satisfied.” Examination
of weekly aggregate relevance and overall satis-
faction data indicated that for both measures the
95% CI for weekly aggregate means overlapped
across all weeks. Mean aggregate relevance (r=
-0.63, p<0.02) and satisfaction (r=-0.56, p<0.05)
declined over time, but analysis of individual

169

satisfaction shows the decline was attributable
to outlying ratings of a minority of patients.

Individual Satisfaction. Paralleling the
individual utilization measures, individual pro-
gram relevance and satisfaction ratings were
conceptualized in terms of both quantity and
change over time. Quantity was operational-
ized by a mean split procedure: mean relevance
and satisfaction scores for an individual were
compared against mean aggregate scores. Indi-
viduals having a mean relevance score greater
than the aggregate mean considered the SMART
Log relatively “more relevant” to their well-
being (N=14, 35.9% of sample), and individuals
having a mean lower than the aggregate mean
considered the SMART Log relatively “less
relevant” (N=25, 64.1% of sample). Similarly,
individuals having a mean satisfaction score
greater than the aggregate mean were relatively
“more satisfied” (N=16, 41.0% of sample), and
individuals having a mean lower than the aggre-
gate mean were “less satisfied” (N=23, 59.0%
of sample).

And, also paralleling treatment of utili-
zation data, analysis of temporal effects in indi-
vidual relevance and satisfaction measures was
operationalized by ACF(1) coefficients. Insuf-
ficient variance made computation of ACF(1)
impossible for the relevance data of 14 patients,
and for the satisfaction data of 16 patients. For
relevance, 20 patients (80% of sample) had
ACF(1)>0 and perceived increasing relevance,
and five patients (20% of sample) reported de-
creasing relevance. For satisfaction, 19 patients
(78.3% of sample) had ACF(1)>0 and reported
increasing satisfaction, and four patients (21.7%
of sample) reported decreasing satisfaction.
Negative trends across time were noted for ag-
gregate mean scores dominated by outlying rat-
ings made by a few dissatisfied patients, but the
majority of the sample had positive trends when
their data were examined individually: a type of
Simpson’s Paradox.> In spite of weak statisti-
cal power to test the reliability of the ACF(1)
coefficients, for relevance 12 ACF(1) coeffi-
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cients had p<0.05 (6 exceeded 0.92), and for
satisfaction 13 coefficients had p<0.05 (9 ex-
ceeded 0.89). Quantity and change over time
were unrelated for relevance (p<0.38) and satis-
faction (p<0.94) ratings.

Outcome Data. In the present study the
outcome data were obtained from instruments
administered in the Monthly Survey.

Utilization. First, UniODA and CTA¥
were used to identify relationships involving the
quantity of utilization. Higher utilization pre-
dicted greater reduction over the use period in
FIQ Anxiety scores (p<0.04), as 13/15 (86.7%)
patients reporting decreased Anxiety were
higher utilizers, and 6/11 (54.6%) patients with
increased Anxiety were low utilizers of SMART
Log. The effect was moderate (ESS=41.2%) and
stable in jackknife validity analysis.

Higher utilization also predicted greater
increase over the use period in SF12 Physical
Functioning (p<0.05): 5 of 10 (50.0%) patients
with increased Physical Functioning over the
use period were higher utilizers of the SMART
Log, while 12 of 13 (92.3%) patients reporting
decreased Physical Functioning over the use
period were lower utilizers. The effect was mod-
erate (ESS=42.3%) and jackknife-stable.

Higher utilization was marginally pre-
dictive of improvement over the use period in
Health Locus of Control (HLC) versus lower
utilization (p<0.09): 10 of 18 (55.6%) patients
reporting decreased Chance locus of control
over the use period were higher utilizers, while
14 of 18 (77.8%) patients reporting increased
Chance locus of control were lower utilizers.
The effect was moderate (ESS=33.3%) and
stable in jackknife analysis.

Higher utilization was also marginally
predictive of older age (p<0.09): 17 of 20
(77.8%) patients who were at least 43 years of
age were higher utilizers, and 10 of 19 (52.6%)
patients who were 42 years old or younger were
lower utilizers. The effect was moderate (ESS=
37.6%) and stable in jackknife analysis.
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Finally, CTA was used to compare high-
versus low-utilizers, and a two-attribute model
emerged. Five of six (83.3%) patients reporting
increased SF12 Physical Functioning over the
use period were higher utilizers, versus one of
six (16.7%) who were lower utilizers (p<0.05).
Five of six (83.3%) patients reporting reduced
Physical Functioning and decreased external
(Doctor) locus of control over the use period
(p<0.005) were higher utilizers, versus 7 of 7
(100%) lower utilizers who instead reported
increased external (Doctor) locus of control.
The effect was strong (ESS=77.8%) and stable
in jackknife validity analysis.

UniODA and CTA were next employed
to identify relationships involving change in
utilization over time, and only one statistically
marginal association emerged involving Internal
locus of control (p<0.07). Of patients having
positive ACF(1) coefficients (indicating increas-
ing utilization of the SMART Log over the use
period), 13 of 15 (86.7%) reported increased
Internal locus of control over time; of patients
having negative ACF(1) coefficients (indicating
decreasing use over time), 10 of 21 (47.6%) pat-
ients reported a decreased Internal locus of con-
trol over time. This effect was moderate (ESS=
34.3%), and stable in jackknife validity analysis.

In summary, higher utilization predicted
significantly greater improvement over the use
period in anxiety and physical functioning, and
marginally greater improvement over the use
period in internal health locus of control. The
strength of these associations was moderate, and
the findings are likely to cross-generalize to an
independent random patient sample. There was
also a significant positive association between
change in utilization and change in health locus
of control over the use period.

Satisfaction. Next, UniODA and CTA
were used to identify relationships involving the
quantity of satisfaction. Ratings of satisfaction
and relevance were nearly perfectly associated:
all 16 patients reporting higher satisfaction had
a mean relevance score greater than 3.12, and 22
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of 23 (95.6%) patients with lower satisfaction
had a mean relevance score of 3.12 or lower: p<
0.0001, ES=95.6%. Accordingly, only ratings
of satisfaction are considered further. The only
statistically significant association identified
involved change in Stiffness over time (p<0.04):
8/14 patients reporting increased satisfaction
reported decreased Stiffness over the use period,
and 14/17 (82.4%) patients reporting decreasing
satisfaction over the period reported increasing
Stiffness: this moderate effect (ESS = 39.5%)
was stable in jackknife validity analysis.

Profiles Delivered. As a direct measure
of the performance of the SMART system in
fulfilling the intended function of delivering
person-specific SMART Profile reports, we
assessed system velocity—the quantity of statis-
tically reliable feedback reports produced by the
SMART system for patients as a function of
time, over the use period. The first four weeks
of the 13-week SMART Log use period was
used to build the subject’s personal database.
At the end of the fourth week the SMART
Profile function was activated and subjects
began receiving weekly reports. As described
earlier, Profiles were of two types: if the anal-
ysis yielded no significant associations between
inputs and symptom levels, the patient received
a general SMART Profile statement explaining
how the Profile is produced and encouraging
further submissions and variation of inputs. If
the analysis yielded one or more significant
associations (“significant profile”) the patient
received a general SMART Profile statement
appended with the associations found.

As expected, the number of subjects
receiving significant profiles increased over
time as databases accumulated more SMART
Log data. As seen in Table 3, in the first week
of SMART Profile production 20% of subjects
had significant associations, and this percentage
increased until reaching asymptote at a mean of
88% over the final five weeks.

Qualitative Data. All 39 subjects who
completed the study provided qualitative data at
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follow-up via focus groups. Response content
received from participants was analyzed via
QSR-N6 software.”

Table 3: Weekly Number of
Statistically Significant
SMART Profiles

Number of Significant Percent

Profiles Divided by Significant

Week Number of Patients Profiles
1 8/40 20.0
2 16/40 40.0
3 28/40 70.0
4 30/39 76.9
5 31/39 79.5
6 34/39 87.2
7 34/39 87.2
8 35/39 89.7
9 35/39 89.7
10 34/39 87.2

Concerning overall impression of the
SMART Log instrument, 54% of responses
were unqualified positive, and an additional
41% were positive with qualifications. Issues
identified included time pressures due to family,
travel, work, tiredness, and some confusion as to
how to apply some SMART Profile statements
in one’s daily life. Overall, 95% of the respon-
ses expressed were favorable to the tool. A
modal comment was that the use of SMART
Log raised consciousness regarding day-to-day
activities and their effects on the individual
independently of the content of the Profiles.

Concerning overall impression of the
SMART Profile reports, 74% of responses were
coded as “useful.” Dissenting respondents
indicated they failed to submit SMART Log
entries often enough over the study period, and
thus didn’t receive as many significant SMART
Profile statements as they would have liked.
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Concerning relevance of the reports to
one’s health, 79% of responses reflected a posi-
tive evaluation. Components singled out as
especially relevant were eating patterns,
exercise, spirituality, meditation, social activity,
getting out, behavior awareness, use of routines,
and sleep habits.

All  subjects identified a “most
important” personal discovery achieved as a
consequence of using the SMART system.
Most frequently mentioned discoveries involved
consciousness-raising regarding the impact of
daily behavior choices (48%); the importance of
self-care activities (27%); the need for more
information on the disease and its effects, both
personally as well as on others (14%); the value
of socialization as a form of support (7%); and
the role of daily exercise in well-being (2%).

Finally, during follow-up focus group
discussions, obstacles or difficulties in using the
SMART system were framed in terms of life
getting in the way, time commitments, work, not
being much of a computer user, family commit-
ments, vacation, time of year, depression reduc-
ing motivation, and limited computer access.

Eighteen-Month Follow-Up. A total of
22 subjects in the Phase | study were located 18
months after the study terminated and asked to
complete a nine-item self-report survey, and 19
subjects returned responses that could be
analyzed. Subjects were asked to answer three
questions about each of three different time
periods—just before the Phase | project began,
right after the Phase | project terminated, and
now. The first question was: “about how many
hours per day were you able to be productive?”
The second question was: “about how many
hours per day did you want to be productive?”
The third and final question was: “on a scale
from one to ten (“not at all” to “completely”,
respectively), how satisfied were you with your
productivity?” Productivity was defined to
subjects as: “what you would consider being
productive in your life. This could include work,
school, homemaking, or taking care of others,
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whatever it means to be productive.” Table 4
gives the mean (and standard deviation) for
survey items.

Table 4: Mean Productivity Self-Ratings

18-Months

Survey Item Baseline | Study End | Post-Test

Hours ABLE 6.4(4.1) | 75(3.9) | 7.6(4.0)
to be productive

Hours WANT 10.5(3.4)| 10.4 (3.5) | 11.0 (3.0)
to be productive

SATISFACTION | 4.1 (2.3) | 6.2(2.5) | 5.7(2.7)
with productivity

As seen, patients reported a 17%

increase in the mean number hours per day they
were able to be productive by the end of the
study (p<0.008), and this gain was maintained
after the study terminated. Desired mean daily
productivity did not vary across rated time
periods (p>0.17). Mean satisfaction increased
51% by the end of the study (p<0.0004) and
diminished slightly but not reliably (p<0.55) to
an increase in mean satisfaction of 39%, 18
months after the study terminated (p<0.02).
Thus, exposure to the SMART Log interven-
tion significantly increased mean self-reported
productivity and satisfaction ratings, and these
gains were maintained in follow-up.

Consistent with the thesis of the discon-
firmation paradigm®, diminishing difference
between actual and desired hours of productivity
was significantly correlated with increasing sat-
isfaction for ratings made before the study
(p<0.02) and at 18-month follow-up (p<0.0005),
and marginally for ratings obtained when the
study ended (p<0.12).

Conclusion

For this four-month pilot study with 39
patients retention was very high and compliance
with use of the intervention—a significant




Optimal Data Analysis
2010, Vol. 1, Release 1 (September 17, 2010)

Copyright 2010 by Optimal Data Analysis, LLC
2155-0182/10/$3.00

challenge in most behavioral medicine research,
and especially with FM—was high and stable
across the study period. Retention, compliance,
and satisfaction ratings indicate that the
intervention has high usability.

Analyses revealed moderate to strong
clinical benefits predicted by the subject’s
frequency of utilization of the SMART system.
Specifically, higher utilization was associated
with significantly greater positive change over
the use period in anxiety, physical functioning
and health locus of control. These effects were
stable in jackknife validity analysis, indicating
they are likely to cross-generalize to indepen-
dent random patient samples. Discussed earlier,
impaired physical functioning and emotional
well-being are central aspects of the disease
burden of FM, and increased health locus of
control is essential to patients taking an active
role in self-management.

An important qualitative finding was
that subjects reported the systematic and regular
use of SMART Log raised their awareness of
the impacts of daily behaviors independently
from the feedback they received from SMART
Profile. Focus groups revealed instances where
subjects became aware of impacts and changed
behavior even though their SMART Profile had
not yet provided feedback about that issue.
Thus, one mechanism of benefit of using the
SMART system may be a heightened sense of
self-awareness that it engenders.  This is
important because subjects are not guaranteed
that a given SMART Profile will present signifi-
cant associations, as there may not always be
enough submissions, sufficient variability, or
actual underlying association within their sub-
mitted data to show reliable associations. It thus
appears that the success of the SMART Log
program does not derive exclusively from
contents of SMART Profile.

Preliminary findings reveal the SMART
system is a user-friendly, structured and system-
atic approach to self-management of a chronic
illness affecting 6 to 12 million Americans. The
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success of the alpha project motivated a beta test
using a substantially larger sample of FM pa-
tients, which is currently underway in our lab-
oratory.
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Junk Science, Test Validity, and the
Uniform Guidelines for Personnel
Selection Procedures: The Case

The purpose of this paper is to share our
insights from a recent federal court case, which
we refer to as Melendez, involving a claim of

of Melendez v. lllinois Bell

Fred B. Bryant, Ph.D. and Elaine K.B. Siegel

Loyola University Chicago Hager & Siegel, P.C.

This paper stems from a recent federal court case in which a stand-
ardized test of cognitive ability developed by AT&T, the Basic
Scholastic Aptitude Test (BSAT), was ruled invalid and discrimi-
natory for use in hiring Latinos. Within the context of the BSAT,
we discuss spurious statistical arguments advanced by the defense,
exploiting certain language in the current Uniform Guidelines for
evaluating the fairness and validity of personnel selection tests.
These issues include: (a) how to avoid capitalizing on chance; (b)
what constitutes “a measure” of job performance; (c) how to judge
the meaningfulness of group differences in performance measures;
and (d) how to combine data from different sex, race, or ethnic
subgroups when computing validity coefficients for the pooled,
total sample. Pursuant to the Uniform Guidelines’ standard for un-
fairness, when one ethnic group scores higher on an employment
test, the test is deemed “unfair” if this difference is not reflected in
a measure of job performance. Although studies validating selec-
tion instruments often survive the unfairness test, such data are
vulnerable to bias and manipulation, if appropriate statistical pro-
cedures are not used. We consider both the benefits (greater clarity
and precision) and the potential costs (loss of legal precedent) of
revising the Uniform Guidelines to address these issues. We fur-
ther discuss legal procedures to limit “junk science” in the court-
room, and the need to reevaluate validity generalization in light of
Simpson’s “false correlation” paradox.
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employment discrimination in personnel selec-
tion, Melendez v. Illinois Bell Telephone Com-
pany, No. 90 C 5020 (N.D. Ill. Sept. 16, 1994),
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aff’d, 79 F.3d 661 (7th Cir. 1996)." These in-
sights arise from certain defenses advanced by
the employer, in which dubious statistical proce-
dures were justified by language from current
federal guidelines for validating personnel se-
lection tests, the Uniform Guidelines for Em-
ployee Selection Procedures, promulgated joint-
ly by the United States Equal Employment Op-
portunity Commission and the United States De-
partments of Labor, Justice, and the Treasury
[43 Fed. Reg. 38,290 (August 25, 1978); EEOC,
29 CFR Part 1607]. We refer to these as the
Uniform Guidelines.

After providing some background to the
particular legal case involved, we describe the
original validation studies that formed the heart
of the litigation, and present research evidence
which was the main point of contention at trial.
After summarizing the evidence against the vali-
dity of the personnel selection test in question—
the Basic Scholastic Aptitude Test (BSAT)—we
highlight some apparent ambiguities in the Uni-
form Guidelines. Comparable ambiguities exist
in both the Standards for Educational and Psy-
chological Testing?and in the Society for Indus-
trial and Organizational Psychology’s Principles
for the Validation and Use of Personnel Selec-
tion Procedures.® Ironically, although the Uni-
form Guidelines are intended to promote equal-
ity of employment opportunity regardless of
race, religion, and gender, they do not expressly
prohibit the use of certain research practices that
produce spurious artifacts, and which actually
perpetuate discrimination in the workplace.

In this paper we share our observations
with professionals within the psychological
testing, statistical analysis, human resources and
legal communities; discuss the application of
Uniform Guidelines in maintaining consistency
vis-a-vis professional standards; and conclude
by recommending a reevaluation of the proce-
dure of validity generalization in light of Simp-
son’s “false correlation” paradox (i.e., paradox-
ical confounding).
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Historical Context

What was this trial all about? Plaintiff
Carmelo Melendez claimed he was denied equal
employment opportunity in applying for a job
with defendant Illinois Bell Telephone Com-
pany. Mr. Melendez was born and raised in
Puerto Rico, and moved to East Chicago in the
middle of his grade school years. Though he
spoke no English, Mr. Melendez was placed in a
monolingual English classroom. A straight-A
student in Puerto Rico, in the United States he
got F’s. By struggling hard, he learned English,
taught himself the skills he needed to advance,
and raised his grades until, by the time he gradu-
ated from high school, he was earning B’s.

It was then, however, that Mr. Melendez
first encountered an obstacle that he could not
overcome, and that he would confront through-
out his adult life: standardized ability tests. He
performed miserably on the SAT, and could not
attend college. He decided to apply for an
entry-level position in metallurgy at the local
steel mill. He failed the standardized entry
examination, however. Yet another standardi-
zed test kept him out of the military.

Mr. Melendez persevered, and eventu-
ally got his college degree. He also became a
certified x-ray technician, and he eventually
worked for the federal Civil Rights Commis-
sion. He went on to become the host of a Chica-
go-area television talkshow. Then, in 1988, he
applied for a job as Assistant Manager of Urban
Affairs for Illinois Bell.

The job description called for a person
who could interface with the local Latino com-
munity, to assess emerging urban trends for use
in marketing telecommunications services. The
successful applicant should be able to interact
with community leaders and residents, and to
communicate effectively in a bilingual setting,
orally and in writing.

Illinois Bell required all external appli-
cants for its first-level management jobs to sur-
mount three separate pass-fail hurdles. Appli-
cants had to have a college diploma, graduating
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in the top half of the class. Applicants had to
pass a structured, standardized interview, dem-
onstrating a sufficient level of leadership. Fin-
ally, applicants had to take the standardized
Basic Scholastic Aptitude Test (BSAT), scoring
at or above a raw pass-fail cutoff score of 196.
This cognitive ability test was the central focus
of the court case.

The BSAT is a standardized paper-and-
pencil test, purporting to assess verbal and quan-
titative ability, much like the SAT. It also incl-
udes questions designed to tap the ability to fol-
low directions, in which one must indicate an-
swers while listening to a tape-recording which
contains complex, conflicting instructions. Each
subsection of the test is timed, or “speeded,” and
the entire test takes about one hour.

Despite his college degree and his suc-
cess on the leadership interview, Mr. Melendez
failed the BSAT. He grew depressed and des-
pondent, and became estranged from his family
for more than a year. Not long after his reject-
tion by lllinois Bell, however, Melendez won a
position with the federal government. He has
performed successfully there ever since, and has
risen to a position of authority.

Based on his experience, Mr. Melendez
believed that the BSAT was unfair because it
was not job-related. He saw no connection be-
tween the skills required to do well on the job of
Assistant Urban Affairs Manager, and the skills
required to pass the BSAT. To right the wrong,
he filed suit against Illinois Bell for employment
discrimination.

Adverse Impact of the BSAT

Before turning to the evidence concern-
ing test validity, we first consider the BSAT’s
impact on applicants of different ethnicity (i.e.,
the BSAT pass-fail rates for different racial or
ethnic groups). Table 1 presents pass-fail rates
for whites, African-Americans and Latinos on
the BSAT separately for two time periods: 1979
and 1987-88. The 1979 statistics are for 591
managerial applicants, and are taken directly
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from the original AT&T validation report: in
1979, about 3 in 4 whites passed the test, versus
1in 5 African-Americans, and 1 in 2 Latinos.*

Table 1: Rates of Success and Failure on the
BSAT for Different Racial Groups

Racial Group
Black

White

Latino

Time Period P F P F P F

1979 n 265 79 42 151 25 29
% 77 23 22 78 47 53
1987-88 n 344 51 83 62 50 44
% 87 13 57 43 53 47
Between-Group Pairwise Comparisons
via Fisher’s Exact Test
W79 W87 B79 B87 L79
W87 000459
B79 .000001 .000001
B87 .000018 .000001 .000001
L79 .000010 .000001 .000827 .21
L87 .000014 .000001 .000001 .60 50

Note: Pairwise comparisons were performed using two-
tailed Fisher’s exact test computed using ODA software.’
Row and column headings indicate both ethnic class (W=
white, B=Black, L=Latino) and time period (79=1979,
87=1987-88). Tabled for each unique combination of row
and column is the p-value (six significant digits) for the
exact test comparing pass/fail rates of the corresponding
samples. P-values indicated in red are statistically signifi-
cant at experimentwise p<0.05 based on an appropriate
Bonferroni criterion (see discussion in paper: p<.05/1115,
or p<0.000046); p-values indicated in blue are statistically
significant at the generalized criterion (per-comparison p<
0.05); p-values indicated in black are not significant.’

The 1987-88 pass-fail statistics are from
Illinois Bell’s records, from a sample of 634
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applicants for first-level management positions.
During the 1987-88 period, most whites—nearly
9 in 10—passed the test, versus 6 in 10 African-
Americans and 5 in 10 Latinos.

To evaluate these pass-fail rates, there is
a guideline for judging the impact of an employ-
ment test on different ethnic groups. This rule-
of-thumb is known as the “four-fifths rule.”
According to this guideline, a test has an adver-
se impact on an ethnic group whose pass rate is
less than four-fifths the rate of the group with
the highest test pass-rate: “A selection rate for
any race, sex, or ethnic group which is less than
four-fifths (4/5) (or eighty percent) of the rate
for the group with the highest rate will generally
be regarded by the Federal enforcement agen-
cies as evidence of adverse impact, while a
greater than four-fifths rate will generally not be
regarded by Federal enforcement agencies as
evidence of adverse impact” (Uniform Guide-
lines, 81607.4.D). The Uniform Guidelines de-
fine “adverse impact” as: “A substantially dif-
ferent rate of selection in hiring, promotion, or
other employment decision which works to the
disadvantage of members of a race, sex, or eth-
nic group” (Uniform Guidelines, 81607.16.B).

In 1979, for example, whites had the
highest pass-rate on the BSAT, at 77% (see
Table 1). The BSAT, then, had an adverse im-
pact on any group in 1979 whose BSAT pass-
rate falls below four-fifths of 77% (or below
61.6%). The 1979 pass-rates for African-Amer-
icans (22%) and Latinos (47%) are clearly lower
than the four-fifths mark of 61.6%.

For the 1987-88 period, under the Uni-
form Guidelines’ four-fifths rule, the BSAT had
an adverse impact on any group whose pass-rate
falls below four-fifths of the white pass rate of
87% (or below 69.6%). Because pass rates for
African-Americans (57%) and Latinos (53%)
are below this four-fifths mark of 69.6%, the
BSAT had an adverse impact on both of these
groups during 1987-88, according to the Uni-
form Guidelines’ standard.
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This evidence of strong and consistent
adverse impact makes test validity even more
vital. Rejecting such a large number of minority
applicants might be defensible, if the test accu-
rately predicted important on-the-job perform-
ance. For example, imagine using a valid test of
visual acuity to select fighter-pilots; if minority
applicants have worse eyesight than majority
applicants, then so be it. It is an entirely differ-
ent matter, however, if the test has nothing to do
with on-the-job performance. If minorities do
not actually have worse eyesight, then the test
unfairly denies them equal employment oppor-
tunity. In the case of the BSAT, the evidence
for test validity is particularly critical, given the
unequivocal adverse impact on minorities. In
the words of the Uniform Guidelines: “Reliance
upon a selection procedure which is signifi-
cantly related to a criterion measure, but which
is based upon a study involving a large number
of subjects and has a low correlation coefficient
will be subject to close review if it has a large
adverse impact...” (Uniform Guidelines, §1607.
14(B)(6).

BSAT Validation Studies

Two validation studies of the BSAT
formed the heart of the litigation, and the trial
gravitated around certain research evidence
from these studies. In the late 1970s, AT&T in-
dustrial/organizational psychologists developed
the BSAT, using test components originally
written by the Educational Testing Service
(ETS), which also developed the SAT, LSAT,
GRE, and other cognitive ability tests. One of
the AT&T psychologists drafted the final re-
search report containing two validation studies,
which assessed the relationship between BSAT
scores and job performance. These studies pur-
ported to evaluate the BSAT’s predictive vali-
dity, i.e., its ability to predict subsequent on-the-
job performance. Illinois Bell relied on these
validation studies in using the BSAT to screen
its job applicants.
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The first of the two validation studies,
referred to as the Preliminary Study, focused on
entry-level managers already hired at 8 different
company locations throughout the country. This
Preliminary Study included 229 managers who
had earlier taken a large battery of standardized
tests, including the School and College Ability
Test (SCAT) and the predecessor of the BSAT,
the Bell System Qualification Test (BSQT).
One year after these applicants were hired their
job performance was evaluated by their super-
visors, who rated each applicant’s job perform-
ance using a set of 13 criterion measures,
developed through a job analysis of manage-
ment positions, including ratings of skills in
planning, decision making, oral and written co-
mmunications, leadership, resistance to stress,
interpersonal awareness, and a global rating of
overall job performance. The test developers
then selected a subset of verbal and math items
based on correlations with supervisor ratings,
and these items became the BSAT. Researchers
then examined the relationship between test
score and rating of overall job performance to
establish a pass-fail cut-score for the test, which
was implemented throughout AT&T companies.

The second validation study, referred to
as the Followup Study, focused on 286 job app-
licants who were applying for entry-level man-
agement positions in 11 different AT&T com-
pany locations. Applicants selected for partici-
pation were given the BSAT (using the pass-fail
cut-score determined in the Preliminary Study),
and then one year later, their supervisors were
asked to rate each employee on a set of 15 per-
formance criteria. As in the Preliminary Study,
researchers examined the correlation between
test scores and performance ratings, trying to
cross-validate the findings from the Preliminary
Study. Thus, both validation studies concern the
predictive validity of the test, that is, whether
the test accurately predicts job performance and
is therefore job-related.
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Validity Evidence for the BSAT

What evidence is there concerning the
predictive validity of the BSAT? The primary
validity evidence in the validation studies con-
sists of Pearson product-moment correlation
coefficients relating applicants’ test scores to
supervisors’ performance ratings.

Preliminary Study. Turning first to
Table 2, note that the Preliminary Study reports
no figures for Latinos. Instead, for African-
Americans and whites separately and for the
pooled data set, it reports correlations between
BSAT scores and each of the 13 performance
ratings. Note that the BSAT shows a statis-
tically significant correlation with ratings of
overall job performance for the total sample,
r(151)=0.38, p<0.00001. For whites, however,
only 4 of the 13 criterion measures show a sta-
tistically significant (p<0.05) relationship with
BSAT score. Indeed, BSAT scores had no sig-
nificant relationship with ratings of overall job
performance for whites. Averaging across all
correlations for whites (mean r=0.128, p<0.08),
the BSAT predicts about 2% of the variance in
whites’ performance ratings. This represents a
Hedges corrected effect-size of 0.26, equivalent
to an experimental effect in which the treatment
group scores about one-quarter of a standard de-
viation above the control group.

Also note that, for African-Americans, 7
of the 13 performance ratings (including overall
job performance) show a statistically significant
relationship with BSAT score.  Averaging
across all correlations (mean r=0.314, p<0.006),
the BSAT explains about 10% of the variance in
African-Americans’ performance ratings (Hed-
ges corrected g=0.65). Considered together, this
evidence from the Preliminary Study suggests
that the BSAT is largely invalid for use with
whites, but has marginal validity for use with
African-Americans. We return later to the first
column of Table 2, giving validity coefficients
for the total group.
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Table 2: Preliminary Study Correlations
Between BSAT Score and Job Performance
Ratings for Different Groups

Groups
Total White Black

Job Skills n=153 n=94 n=39
Organizing and
Planning 28" .09 34"
Decision Making 307 207 27
Decisiveness 39" 25 36
Oral Communi-
cations 23" .08 43"
Written Communi-
cations 28" 21" 26
Leadership 36 .02 54"
Interpersonal
Awareness 25" .09 30"
Behavior
Flexibility 207 .04 20
Fact Finding 38" 29 24
Resistance
to Stress 21" 11 18
Energy 15 .04 .08
Management
Potential 42" 11 42"
Overall Job X X
Performance .38 13 46

Note: Adapted from Tables 4 and 8 of the original valida-
tion report.* An asterisk (*) indicates p<0.05 at the gener-
alized (per-comparison) criterion.” N for the total sample
is greater than the sum of the ns for the white and black
groups because the Preliminary Study included 16 His-
panics and 4 “other minorities” whose data were pooled
in the analysis of the total sample. Discussed further
ahead in the paper, the “false correlation paradox” (para-
doxical confounding) is present when an index for pooled
samples lies outside the range of index values for indivi-
dual samples considered separately (indicated in red).
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Followup Study. Table 3 gives validity
coefficients for the Followup Study. Again the
BSAT shows a significant correlation with rat-
ings of overall job performance for total sample,
r(284)=0.21, p<0.001. For whites, 4 of 15 per-
formance ratings show a significant relationship
with BSAT score: averaging coefficients (mean
r=0.077, p>0.19), the BSAT predicts about 2%
of the variance in whites’ performance ratings
(corrected g=0.19). For African-Americans, 8
of 15 validity coefficients are significant: aver-
aging coefficients (mean r=0.215, p<0.01), the
BSAT predicts about 6% of the variance in Afri-
can-Americans’ performance ratings (corrected
g=0.44). BSAT score was significantly related
to ratings of overall job performance for both
whites and African-Americans, though these
effect sizes again were relatively small.

The fourth column in Table 3 reports the
only direct empirical evidence available con-
cerning the validity of the BSAT for use in
hiring Latinos. Only one of the 15 validity coef-
ficients was significantly different from zero for
Latinos (r=0.24, p<0.05, one-tailed) for Latinos.
The sole significant coefficient (for coordina-
tion) was reported as nonsignificant in the orig-
inal validation study. Essentially, this means
that the BSAT does no better than chance in
predicting how Latinos will perform on the job
(mean r=0.093, p>0.32, corrected g=0.21).

In relation to the present case, this is the
single most relevant piece of validity evidence
in the entire report. Plainly, these data do not
support the validity of using the BSAT to hire
Latinos.

Inflation of Apparent Validity Vis-a-Vis
Extensive Analysis: The “Trolling” Problem

It would be one matter if the coefficients
were the only analyses in the validation studies.
If this were the case, then there would be 49
tests of statistical hypotheses in the Preliminary
Study (Table 3) and 60 tests in the Followup
Study (Table 4), for a total of 109 tests.
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Table 3: Followup Study Correlations Between BSAT Score
and Job Performance Ratings for Different Groups

Total
Job Skills (n=286)

Organizing and Planning 0.17
Decision Making 0.18"
Oral Communications 017
Written Communications 0.28"
General Administration 0.11"
Supervision 0.01
Coordination 0.19°
Behavior Flexibility 0.10"
Fact Finding 0.25"
Problem Solving 0.22"
Resistance to Stress 0.05
Ability to Learn and Develop 0.16"
Tolerance of Ambiguity 0.12"
Management Potential 0.16"
Overall Job Performance 0.21"

Groups

White Black Latino

(n=147) (n=76) (n=57)
0.08 0.19 0.15
-0.12 0.21 -0.08
0.10 0.26" 0.01
0.18" 0.44" 0.10
0.09 0.22" 0.07
0.02 0.10 0.09
0.01 0.30° 0.24
0.03 0.20 0.08
0.10 0.33" 0.18
0.17" 0.25" 0.08
0.06 0.05 0.05
0.05 0.17 0.10
0.08 0.17 0.07
0.16" 0.08 0.12
0.14" 0.26" 0.14

Note: Adapted from Table 18 of the original validation report .* N for the total sample is greater than the sum of the ns for
the three subgroups because the Followup Study included six Asians whose data were pooled for total sample analysis. An
asterisk (*) indicates p<0.05 at the generalized (per-comparison) criterion. The coefficient indicated in red was reported as
being nonsignificant in the original validation report, but is actually statistically significant at the generalized criterion

(p<0.05, one-tailed).

Tallying across the entire validation
report, however, reveals that more than a thou-
sand statistical tests were performed—all using
the p<0.05 level of statistical significance. Of
those 1000 tests, 50 would be expected simply
by chance alone to be statistically significant at
per-comparison p< 0.05, although exactly which
effects are attributable to chance cannot be
known. The validity evidence is thus inflated,
as the excessive statistical testing adds a sub-
stantial number of chance correlations to the
true correlations. Accordingly, well-known pro-
cedures for controlling the experimentwise Type
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| error-rate should be used.” For example,
among the most commonly employed methods
for reducing the number of “false-positive”
results when conducting numerous statistical
tests is the so-called “Bonferroni adjustment, in
which an adjusted p-value is obtained by divid-
ing the desired alpha-level by the number of p-
values examined. For the BSAT validation
report, a Bonferroni-adjusted p-value would be
roughly .05/1100, or p<0.00005. This is the
cost for undertaking vast numbers of analyses
indiscriminately, when analyses can and should
be more clearly focused.>®
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Table 4: Followup Study Means and Standard Deviations for the 15 Job Performance Ratings,
and for BSAT Score for Whites (n=147) and Latinos (n=57)

Organizing and Planning
Decision Making

Oral Communications
Written Communications
General Administration
Supervision
Coordination

Behavior Flexibility
Fact Finding

Problem Solving
Resistance to Stress

Ability to Learn and Develop

Tolerance of Ambiguity
Management Potential
Overall Job Performance

Whites Latinos
Mean sd Mean sd
522 1.13 499 1.04
515 0.93 493 0.84
531 1.15 488 1.18
524 1.16 482 1.23
512 1.06 4.68  0.87
498 1.23 492 132
539 1.00 485 0.90
525 1.17 483 1.08
538 1.11 488 1.06
518 1.03 486 1.10
522 1.11 525 0.97
571 1.01 541 1.20
508 1.13 481 0.86
6.02 1.93 6.65 2.08
535 1.06 511 1.08

218.62 13.89 209.78 15.49

report.* Scores on the 7-point rating scales have been reversed
so that high scores reflect better ratings. Means indicated in red
differ from the mean for whites with p<0.05 by Tukey's Honest
Significant Difference multiple range test. These statistically
significant group differences were found when following up sig-
nificant F-values from initial one-way analyses of variance with
white, Latino, and African-American groups.

In the Melendez case, we took the “mid-
dle-ground” approach of adjusting the criterion
to p<0.05 in the validation studies. This reduces
spurious effects (Type | errors), without unduly
increasing false no-difference conclusions (Type
Il errors) due to low statistical power. Evalua-
ted at this criterion, there are no significant val-
idity coefficients in the Followup Study.
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Illinois Bell defended its inflationary sta-
tistical procedures with a statement in the Uni-
form Guidelines that one should usually use the
p<0.05 level in establishing statistical signifi-
cance: “...Generally, a selection procedure is
considered related to the criterion, for the pur-
poses of these guidelines, when the relationship
between performance on the procedure and per-
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formance on the criterion measure is statisti-
cally significant at the p<0.05 level of signifi-
cance” (Uniform Guidelines, §1607.14.B(5)).
The Uniform Guidelines nonetheless require the
use of “professionally acceptable statistical pro-
cedures” in computing validity coefficients
(Uniform Guidelines, §1607.14.B(5)), and also
caution users to avoid using procedures that
capitalize on chance: “Overstatement of validity
findings. Users should avoid reliance upon
techniques which tend to overestimate validity
findings as a result of capitalization on chance
unless an appropriate safeguard is taken. Reli-
ance upon a few selection procedures or criteria
of successful job performance when many selec-
tion procedures or criteria of performance have
been studied, or the use of optimal statistical
weights for selection procedures computed in
one sample, are techniques which tend to inflate
validity estimates as a result of chance. Use of a
large sample is one safeguard; cross-validation
another.” (Uniform Guidelines, §1607.14.B.(7).

Clearly, performing 1100 statistical tests
at the p<0.05 level is a procedure that capitali-
zes on chance. Under the Guidelines, an adjust-
ment to the alpha-level is in order, minimally
one such as using p<0.01. To reduce jury con-
fusion over these technical issues, the Uniform
Guidelines should include specific recommend-
dations (e.g., Bonferroni adjustments) for reduc-
ing Type | error when a large number of statisti-
cal tests have been conducted.

Filling the Validity Gap with Junk Science:
Reinventing Statistics

Through the above evidence, plaintiff
demonstrated that the BSAT had, at most,
negligible validity for white applicants, and no
validity for Latino applicants. And how did
lllinois Bell respond to plaintiff’s showing?
Illinois Bell’s expert witness, an organizational
psychologist, asserted that if the BSAT truly had
a nonsignificant (i.e., zero) statistical relation-
ship with job performance for Latinos, then half
of the validity coefficients for Latinos should

184

have been positive, and half negative. In other
words, if the true value of the correlation in the
population is zero, then there should be just as
many positive validity coefficients as negative.
He noted, however, that 14 of the 15 coeffi-
cients for Latinos in the Followup Study were
positive (if not statistically significant). He then
calculated the binomial probability of obtaining
14 positive coefficients and 1 negative, given a
0.50 probability for obtaining either sign (i.e.,
z=3.30, p<0.0005). From this scenario, he
deduced that, despite the complete lack of any
correlation in the AT&T validation study, the
BSAT was nonetheless valid for Latinos—and
at a highly significant p-value!

By pitting one expert’s statistical anal-
ysis against the other’s, this form of “junk
science” has great potential to confuse the jury.
To clarify the issue for the layperson, what is
needed is a logical, easy-to-follow explanation
of the difference between the two opposing
views of the same data. However, this is not
always easily developed.

In the Melendez case, we explained the
statistical issue in commonsense terms by using
an archery analogy. Testing the validity of the
BSAT is like an archery contest. An archer fires
15 arrows at a target; to determine his profi-
ciency, we count how many arrows hit the tar-
get. Using the BSAT to predict the 15 perform-
ance criteria for Latinos, we count how many
times it shows a statistically significant relation-
ship between test score and job performance.
Table 3 shows that for Latinos, all 15 arrows
missed the mark. By the rules of the game, the
archer does not score, and the BSAT is off tar-
get (and invalid).

By Illinois Bell’s logic, however, 14 of
the 15 arrows flew in the target’s general direc-
tion (i.e., 14 of the 15 validity coefficients were
positive) and only 1 arrow flew in the opposite
direction (i.e., there was only one negative vali-
dity coefficient), and so therefore the archer was
a success (and the BSAT is valid for Latinos
because only one of its validity coefficients was
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negative). This is fallacious. At issue is the
magnitude of the validity coefficients in the pos-
itive direction, not just whether the signs of
these coefficients are positive or negative. For
the BSAT, the magnitudes were insufficient to
establish a statistically significant relationship.
As the Seventh Circuit ruled on appeal, there
was “strong evidence of the BSAT’s inability to
predict job performance,” which supported the
trial court’s finding that “the BSAT’s discrimi-
natory impact was unjustified by Illinois Bell’s
legitimate business needs” (79 F.3d at 669).
That is, the BSAT explains too little variance in
performance ratings to be considered valid for
use in hiring Latinos. If the BSAT does not pro-
vide useful, job-related information, then its use
cannot be justified, given the strong evidence of
its adverse impact.

The Admissibility of “Junk Science”
in the Courtroom

Illinois Bell’s spurious defense, that its
test is “valid” because of its positive (though not
statistically significant) correlations with perfor-
mance ratings, exemplifies the dangers of “junk
science” in the courtroom. As the U.S. Supreme
Court has cautioned: “Expert evidence can be
both powerful and quite misleading because of
the difficulty in evaluating it.” (Daubert, 509
U.S. at 595 (quoting Weinstein, 1992)). Due to
defendant’s discovery abuse, Melendez was able
to bar, altogether, the testimony of the com-
pany’s expert witness. More typically, dubious
science is precluded through a ruling by the trial
court that the information is inadmissible under
the Federal Rules of Evidence.

Expert testimony is specifically govern-
ed by Federal Rule of Evidence 702, which es-
tablishes ground rules for admitting expert
testimony: “If scientific, technical, or other spe-
cialized knowledge will assist the trier of fact to
understand the evidence or to determine a fact in
issue, a witness qualified as an expert by know-
ledge, skill, experience, training, or education,
may testify thereto in the form of an opinion or
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otherwise” (Fed. R. Evid. 702). As interpreted
in the landmark Daubert decision, Rule 702
allows expert testimony when it is both relevant
and scientifically reliable. In Daubert the Court
appointed the trial judge as the “gatekeeper” of
expert testimony, asserting: “[t]his entails a
preliminary assessment of whether the reason-
ing or methodology underlying the testimony is
scientifically valid and of whether that reason-
ing or methodology properly can be applied to
the facts in issue.” (Daubert, 509 U.S. at 592-
593). The Court went on to explain: “The inqu-
iry envisioned by Rule 702 is, we emphasize, a
flexible one. Its overarching subject is the sci-
entific validity—and thus the evidentiary releva-
nce and reliability—of the principles that under-
lie a proposed submission. The focus, of course,
must be solely on principles and methodology,
not on the conclusions that they generate”
(Daubert, 509 U.S. at 594-595).

More recently, the U.S. Supreme Court
held unanimously that a trial court’s decision to
admit or exclude expert evidence should be
accorded great deference (Joiner, 118 S.Ct.
512). Noting that trial judges typically are not
scientists, Supreme Court Justice Stephen
Breyer encouraged judges to take the initiative
to clarify scientific issues (Joiner, 118 S.Ct.
512, 520-521 (Breyer, J., concurring)). They
may, for example, utilize their authority to ap-
point their own experts, or use pretrial hearings
to explore the issues. The Daubert Court ex-
plains that the goal is a middle ground, between
“a ‘free-for-all’ in which befuddled juries are
confounded by absurd and irrational pseudo-
scientific assertions”, and “a stifling and repre-
ssive scientific orthodoxy” (Daubert, 509 U.S.
at 595-596). The Court recalled the differences
between scientific inquiry and the law, emphasi-
zing that Federal Rules of Evidence are “design-
ed not for the exhaustive search for cosmic un-
derstanding but for the particularized resolution
of legal disputes” (Daubert, 509 U.S. at 597).
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The Concept of Test “Fairness”

Besides adverse impact and validity, an-
other critical concept in judging whether or not
a test in discriminatory is test ‘fairness.”
Although researchers have suggested numerous
definitional frameworks and statistical models
of test fairness’™?, two approaches are often
used in litigation to define “unfairness,” and to
determine whether a test is “unfair.”

Anne Cleary™ pioneered one of these
definitions at the Educational Testing Service.
According to Cleary’s model, a test is consid-
ered “unfair” when it predicts performance dif-
ferently for different ethnic groups. This differ-
ential prediction is detected in the form of statis-
tically significant differences between groups in
the slopes and in the intercepts of the regression
lines relating test scores to performance. Thus,
a test is considered “fair” when there are no sig-
nificant differences in errors of prediction be-
tween groups, using a common regression line.
Ironically, by a strict application of Cleary’s
definition, an invalid test could be deemed
“fair.” It would not be unfair, for example, to
use a coin-flip to hire job applicants, because
this selection procedure does not predict perfor-
mance better for one ethnic group than for an-
other. It is equally invalid for both groups.

Another definition of “unfairness” pro-
minent in the courts is that used in the Uniform
Guidelines, under which a test is “unfair” when:
“...members of one race, sex, or ethnic group
characteristically obtain lower scores on a selec-
tion procedure than members of another group,
and the differences in scores are not reflected in
differences in a measure of job performance...”
(Uniform Guidelines, §1607.14.B(8)(a)).

In practice, one determines whether a
test is “unfair” by comparing group means on
the test, then looking for comparable mean-dif-
ferences in group performance ratings. If one
group scores higher on the test, it must also do
better on the job. Stated differently, a test is
“unfair” if it denies job opportunities to a group
whose actual job performance is up to par.
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Applying the Uniform Guidelines’ defin-
ition of “unfairness” to the BSAT Followup
Study, Latinos had significantly lower BSAT
scores than whites, and passed the test at a signi-
ficantly lower rate (77% vs. 47% in 1979; 87%
vs. 53% in 1987-88; Table 1). In contrast, on 12
of the 15 performance criteria, Latino and white
performance ratings did not differ significantly
(Table 4). In other words, 80% of the perfor-
mance measures (including overall job perfor-
mance) failed to show lower scores for Latinos
than whites. Considered together, this evidence
shows that the BSAT is “unfair” to Latinos
within the meaning of the Uniform Guidelines.

Twisting the Uniform Guidelines
to Establish Test “Fairness”

In a spurious defense of the BSAT, Illi-
nois Bell purported to rely on the Uniform
Guidelines’ definition of test unfairness. At trial
the defense argued that the company adhered to
the letter of the Uniform Guidelines, and advan-
ced two lines of defense based on the Guide-
lines. Neither the law nor professional stand-
ards support these arguments.

What constitutes “a measure of job per-
formance”? On cross-examination, the defense
read to the jury the Uniform Guidelines’ defini-
tion of test unfairness in Section 14.B(8)(a), and
then asked:

Q: “Am I correct, Doctor, that this says that
the differences in scores are not reflected
in differences in a measure of job
performance? Do you see that, Doctor?”

A: “Yes, I do.”

Q: “And you have just testified that here
there are three measures of job
performance at which Whites score
statistically higher than Hispanics, is that
correct Doctor?”

A: “That’s correct.”
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Q: “So according to this definition which
you have been relying on, there is not
unfairness in this test, isn’t that right,
Doctor?”

The trial court struck this line of ques-
tioning. Illinois Bell’s interpretation of the Uni-
form Guidelines’ definition of “test unfairness”
lacks any scientific or legal basis. While the
term “measure” may signify either a single item,
or a set of items measuring a single latent con-
struct, this is no mere semantic quibble. What
constitutes a “measure,” in a given context,
must be determined through appropriate legal
and statistical analysis.

As a legal matter, Illinois Bell’s interpre-
tation of Section 14.B(8)(a) ignores its precise
language. Through the use of the phrase “dif-
ferences in a measure,” the Uniform Guidelines
plainly contemplate “a measure” as comprising
more than one item. This conclusion is reinfor-
ced by the language of the definition of “unfair-
ness” in the “Definitions” section of the Uni-
form Guidelines: “Unfairness of selection pro-
cedure. A condition in which members of one
race, sex, or ethnic group characteristically ob-
tain lower scores on a selection procedure than
members of another group, and the differences
are not reflected in differences in measures of
job performance. See section 14.B.(7)” (Uni-
form Guidelines, §1607.16.V) [emphasis add-
ed]. The two definitions of “unfairness” must
be read together, and thus do not support reli-
ance on an isolated difference in measurement
(“Definitions” section of the Uniform Guide-
lines mandates “[t]he following definitions shall
apply throughout these guidelines” (Uniform
Guidelines, 81607.16) [emphasis added]).

Illinois Bell’s argument, moreover,
would permit an employer to ignore the vast
weight of unfavorable evidence, so long as any
favorable evidence existed at all. Defendant’s
interpretation would render the unfairness stand-
ard meaningless. The term “measure” cannot be
applied arbitrarily, but requires a fact-sensitive
analysis.
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In the Melendez case, we reanalyzed the
correlations among the 15 performance ratings
using both exploratory and confirmatory factor
analysis.** We found that the 15 criteria are
most accurately represented as a single, global
measure of job performance. Statistically, the
15 ratings are sufficiently interrelated so that
they comprise not 15 independent measures, but
rather only one underlying measure. The separ-
ate performance ratings cannot properly be con-
sidered individually.

Factor analysis should be used routinely
in deciding whether to employ single items or
composite scales to measure job performance.
This would preclude test developers from treat-
ing sets of unidimensional criterion measures as
multiple single-item indicators, and then select-
ing and highlighting, as evidence of test “fair-
ness,” any criteria on which the majority group
has a higher mean. Confirmatory factor analy-
sis, not subjective preference, should answer the
question: “what is a measure?”

Factor analytic methodology adheres to
the Uniform Guidelines, which proscribe “...rel-
iance upon techniques which tend to overesti-
mate validity findings as a result of capitaliza-
tion on chance.... Reliance upon a few... criteria
of successful job performance when many...
criteria of performance have been studied...
tend[s] to inflate validity estimates as a result of
chance.” (Uniform Guidelines, §1607.14.B(7)).

By what criterion should one judge dif-
ferences in group means? On cross-examina-
tion, the defense inquired where the unfairness
standard in the Uniform Guidelines requires that
group differences be statistically significant.
The Uniform Guidelines do not authorize excur-
sions into chance associations, but the unfair-
ness standard does not explicitly require statis-
tical significance as a decision criterion. It
should be noted, however, that the “Documenta-
tion” requirements of the Uniform Guidelines
mandate the reporting of methods of data analy-
sis, as well as the magnitude, direction, and sta-
tistical significance of results. It expressly re-
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quires that “[s]tatements regarding the statistical
significance of results should be made (essen-
tial).” (Uniform Guidelines, §1607.15.B(8)).
This section of the Guidelines specifically refers
to measures of central tendency (e.g., means)
and studies of test fairness. Illinois Bell argued,
in essence, that professional statistical standards
may somehow be suspended in evaluating em-
ployment test data.

Abandoning professional standards is
scientifically and legally untenable. The Uni-
form Guidelines are themselves founded on the
standards of the psychological profession. The
Uniform Guidelines, §1607.1.C, states: “These
guidelines have been built upon court decisions,
the previously issued guidelines of the agencies,
and the practical experience of the agencies, as
well as the standards of the psychological pro-
fession.”

Test developers should always adhere to
professional standards for drawing inferences
from data. The Guidelines do not require re-
searchers to clear the memory of their calculator
between computations, but researchers typically
do so as a matter of course. Nor can employers
ignore the Guidelines’ prohibition against reli-
ance on chance (Uniform Guidelines, §1607.14.
B(7)). And yet, that is precisely the result if one
relies on apparent group differences that lack
statistical significance.

Ilusory “Fairness” and
Artifactual “Validity”

Under the Uniform Guidelines’ “unfair-
ness” standard, if one ethnic group scores higher
than another on an employment test, and this
difference is not reflected in a measure of job
performance, the test is deemed “unfair.” The
BSAT failed this standard. Despite great dispar-
ities in test scores, whites and Latinos perform-
ed on the job with substantially similar success.

Importantly, under the Uniform Guide-
lines, the mere fact that majorities outscore mi-
norities on an examination, while securing more
favorable performance evaluations, does not
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affirmatively establish that the test is “fair.” It
does not prove the positive, that the test is “fair”
and “job related,” but it does disprove one pos-
sible negative. The standard, that is, should not
be understood as establishing an affirmative de-
fense for employers. Evidence that a test is not
“unfair” merely forestalls the inference of dis-
crimination that arises in cases when the group
that excels on the test, garnering the greater
share of job opportunities, does not actually do
the job appreciably better. To prove or disprove
“fairness,” the parties may introduce other
evidence.

Ironically, the pattern of data contem-
plated by the Uniform Guidelines’ unfairness
standard may result in a serious distortion of the
validity evidence. If the data from different eth-
nic groups are simply (and improperly) combin-
ed in a pooled analysis, the distribution of the
data will typically create the illusion of a corre-
lation between test scores and performance rat-
ings. Scatterplotting the data, the group with
higher test scores and performance ratings will
tend to fall in the upper right quadrant of the
scatterplot. The group with lower test scores
and performance ratings will tend to fall in the
lower left quadrant of the scatterplot. This pat-
tern will create an apparent correlation between
test scores and performance ratings, despite the
lack of any true relationship, and it will inflate
obtained validity coefficients for the total sam-
ple. This problem is a variation of a phenom-
enon known as Simpson’s paradox.>*®

The following hypothetical example
demonstrates how the “false correlation” para-
dox can occur. Imagine that you are in the mid-
dle of a job interview. The interview is going
well, so you broach the topic of salary. “How
much would | be paid?” “Well,” replies the in-
terviewer, “take off your shoes, and let’s find
out.” Requesting an explanation, you are told
that the company has found that shoe size is a
valid predictor of a person’s worth. The com-
pany routinely measures the size of job appli-
cants’ feet, and then uses the results of that
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measurement to determine salary. Still skepti-
cal, you ask to see the validity evidence, and the

interviewer hands you a copy of a table from a
research document (see Table 5).

TABLE 5: Validating Shoe Size as a Predictor of Salary: Hypothetical Raw Data for Women and Men

Women Occupation
Ann secretary
Beatrice actress
Carol teacher
Diane librarian
Edna lab technician
Florence baby sitter
Gwen journalist
Harriet bank teller
Iris nurse
Jacqueline waitress
Mean :
Men Occupation
Al salesman
Bob airline pilot
Carl chef
Don chemist
Ed executive
Frank mechanic
Greg plumber
Harold electrician
lan detective
John architect
Mean

This table presents raw (hypothetical)
data for a sample of 10 men and 10 women, list-
ing their first name, occupation, shoe size, and
salary. Reported at the bottom of the data table
are the results of exact nonparametric statistical
analyses® comparing men’s and women’s mean
shoe-size (predictor) and salary (criterion). Wo-
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Shoe Size Annual Salary
3 $ 22,000
4 $ 14,000
4 $ 30,000
5 $ 20,000
5 $ 40,000
5 $ 10,000
6 $ 28,000
6 $ 18,000
7 $ 32,000
7 $ 16,000
5.2 $ 23,000
Shoe Size Annual Salary
8 $ 48,000
8 $ 62,000
9 $ 50,000
10 $ 55,000
10 $ 70,000
10 $ 40,000
11 $ 52,000
11 $ 59,000
12 $ 45,000
12 $ 65,000
10.1 $ 54,600
p<0.000001 p<0.000547

men have smaller feet than men, and have com-
parably smaller salaries. Therefore, by the Uni-
form Guidelines’ unfairness standard, it is not
“unfair” to men or to women to use shoe size to
determine salary. Validity coefficients relating
shoe size to salary, and scatterplots of shoe size
and salary, are presented in Figure 1.
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Figure 1: Correlating Shoe Size and Salary using Pooled Hypothetical Raw Data for Women and Men

Examination of validity coefficients for
men and women reveals there is no linear rela-
tionship between shoe size and salary for either
group: r=0.05 for men, r=0.07 for women, ps>
0.05. But, if men’s and women’s raw data are
pooled, the men’s data fall into the upper right-
hand quadrant of the scatterplot, and the
women’s data fall into the lower left-hand quad-
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rant (men score higher than women on predictor
and criterion measures). When the correlation
between shoe size and salary is computed for
the total group of 20 subjects, r=0.78, p<0.001)!
Based on this evidence and in accordance with
the Uniform Guidelines, it is concluded that it is
both fair and valid to use shoe size to determine
salary.
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This hypothetical scenario is no more
absurd than the BSAT validation work. In the
Preliminary Study, for example, African-Amer-
icans had lower BSAT scores than whites, and
they also had comparably lower performance
ratings (thus the test does not meet the definition
of unfairness, under the Uniform Guidelines’
definition).

Figure 2 displays scatterplots of the
group means on the BSAT and on overall job
performance from the two validity studies.
Clearly, these mean differences will inflate the
apparent linearity of the relationship between
BSAT and performance.

This inflation of correlations strikingly
appears in the table of validity coefficients from
the Preliminary Study (Table 2). Comparing the
correlations of white, African-American, and
total groups on the various performance meas-
ures, we find an anomalous pattern.

Consider the performance criterion of
Decision Making. Its validity coefficient is
r=0.20 for the group of 94 whites, and r=0.27
for the group of 39 African-Americans. For the
Total Group, however, the r=0.30 correlation is
higher than that for either subgroup. Similarly,
the validity coefficients for Written Communi-
cations are r=0.21 for whites, r=0.26 for Afri-
can-Americans, and r=0.28 for the Total Group;
for Resistance to Stress, r=0.11 for whites, r=
0.18 for African-Americans, and r=0.21 for the
Total Group; and for Energy, r=0.04 for whites,
r=0.08 for African-Americans, and r=0.15 for
the total group. Cases such as these, in which
the correlations for the pooled group actually
exceed the correlations found in each consti-
tuent subgroup, are a tell-tale sign of the “false
correlation paradox,” where in fact the “whole”
is deceptively greater than the sum (or weighted
average) of its parts.*®

This technical problem is particularly
critical because Illinois Bell rested its claim that
the test was valid largely based on one num-
ber—one validity coefficient: the correlation be-
tween BSAT score and the rating of overall job
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performance, for the Total Group in the Prelimi-
nary Study. That coefficient is r=0.38, signifi-
cant for the total sample of 153 subjects at p<
0.00001 (see Table 2).

A possible methodology for circumvent-
ing such paradoxical confounding (the technical
terminology for the “false-correlation problem”)
is to remove mean differences on the x- and y-
variables before combining the data: for exam-
ple, standardizing the x- and y-scores separately
for each group using a z-score transformation
maps the data into the same metric.'® How does
this work in the shoe size example? After trans-
forming subjects’ raw data to z-scores separately
within the male and female samples, and sub-
jecting these standardized data to correlation
analysis, yields results given in Figure 3. When
properly analyzed, the correlation between shoe-
size and salary is r=0.05 for men, r=0.07 for
women, and r=0.06 for the total group.

This cure for Simpson’s paradox (norm-
atively standardizing separately by sample) only
works if the true relationship between x and y is
consistent across the multiple samples.® For
example, if x and y are perfectly positively corr-
elated in sample A and perfectly negatively
correlated in sample B, normatively standard-
izing the data separately by sample and then
combining them will yield a correlation coeffic-
ient of zero. Thus, it is necessary to verify ho-
mogeneity of covariance between x and y across
samples before standardizing and pooling the
data.**'8

Fortunately, instances of reverse validity
rarely appear in the personnel selection litera-
ture.” Indeed, some proponents of validity gen-
eralization have even argued against the notion
of differential validity altogether, though the
BSAT data clearly show stronger evidence of
validity for African-Americans than for Latinos
or whites.’® Thus, when analyzing the total
sample, it should be routine practice before
pooling data to normatively standardize separa-
tely within groups (after first verifying between-
group equivalence of covariance matrices).
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Figure 2: Scatterplotting BSAT score and overall job performance for the Preliminary and Followup
Studies. Supervisors rated overall performance using a 9-point Likert-type scale in the Preliminary
Study (1,2=exceptionally high; 3,4=very high; 5,6=moderately high; 7,8=moderately low; 9=unsatis-
factory) and 7-point Likert-type scale in the Followup Study (1=exceptionable; 2=very high; 3=high;
4=average; 5=below average; 6=passable; 7=unacceptable). Scores on these rating scales have been
reversed for ease of presentation.
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Figure 3: Correlating shoe size and salary using hypothetical data normatively standardized sep-

arately for women and men

Yet, typically researchers simply pool
data across subgroups in total-sample analyses.
This practice inflates total sample validities
throughout the testing industry. Among the
most robust findings in the literature on cogni-
tive ability testing is that minorities score signi-
ficantly lower on cognitive ability tests than do
whites.  And in validation studies, minorities
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often receive significantly lower performance
ratings.”> Ironically, if test scores are lower for
minorities than for whites, to meet the Uniform
Guidelines’ unfairness standard, minority per-
formance ratings must also be lower. Although
it is not unfair within the meaning of the
Uniform Guidelines, this very situation will
typically make tests appear more valid than they
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really are, if data are simplistically pooled and
correlated. Test developers should avoid indis-
criminately pooling subgroup data, particularly
when these subgroups have different means on
the test and on the criterion.

The Uniform Guidelines provide a basis
for addressing the distortions arising from the
improper pooling of data. Section 1607.14.B
(4), entitled “Representativeness of the sample,”
relevantly provides: Where samples are combi-
ned or compared, attention should be given to
see that such samples are comparable in terms
of the actual job they perform, the length of time
on the job where time on the job is likely to
affect performance, and other relevant factors
likely to affect validity differences; or that these
factors are included in the design of the study
and their effects identified (emphasis added).

Hardly restricted to industrial/organiza-
tional psychology, this false-correlation problem
pervades the life sciences: indeed it has been
stated that the problem of paradoxical confound-
ing is the most significant and pervasive chal-
lenge to the validity of empirical quantitative
analysis in all areas of inquiry.”? The practice of
simply pooling data across subgroups inflates
correlation coefficients whenever one group has
higher mean scores than the other on both x and
y. For example, studies of naturalistic animal
behavior often pool data across intact groups to
examine relationships among social and behav-
ioral variables, without regard to possible mean
differences.”® Similarly, personality psycholo-
gists often pool the data of males and females,
examine the correlations among numerous
measures of, for example, anxiety, neuroticism,
and general maladjustment, and find a single,
stable pervasive trait that they label negative
affectivity.?’ Given that women tend to report
higher levels of negative experience in general
than do men®, pooling male and female data
without standardization will inflate the observed
intercorrelations for the total group, exaggerate-
ing structural unidimensionality.
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The problem of when and how to com-
bine the data of multiple groups remains largely
ignored in the social sciences.® Haphazardly
pooling data across different groups (or time
periods'®) can produce unexpected, counterintu-
itive relationships, which researchers inevitably
scramble to explain a posteriori. If one group
scores lower than the other on x but higher on 'y,
for example, then simply pooling the data across
groups can produce a negative correlation for
the total sample, even if the x-y relationship is
actually positive in each group (the group with
lower x scores and higher y scores will fall in
the upper-left quadrant of the scatterplot, where-
as the group with higher x scores and lower y
scores will fall in the lower-right quadrant,
yielding a false negative correlation). As a case
in point, when studying psychosocial adjustment
to head injury, researchers often combine the
data of patients who are aware of functional def-
icits with the data of patients who are unaware
of functional deficits. The correlation between
severity of injury and emotional distress is then
computed. An unexpected negative correlation
often emerges, with greater severity of injury
predictive of less distress.??® It seems likely
that the correlation between severity of injury
and distress is actually positive within both the
deficit-aware and deficit-unaware groups (i.e.,
greater severity linked to greater emotional dis-
tress), but that patients aware of their impair-
ment have less severe head trauma (lower x-
scores) and report higher levels of emotional
distress (higher y-scores) than do patients who
are unaware of their impairment, creating a false
negative correlation for the pooled sample.

At first blush, the procedure of standard-
izing data separately within groups before com-
puting pooled validity coefficients may seem
similar to so-called race norming.”® This latter
practice seeks to ameliorate a test’s adverse im-
pact in personnel selection, by expressing indiv-
idual test scores in terms of their standing rela-
tive to the mean of their particular racial group.
However, the two approaches have entirely
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different objectives. Race-norming uses stand-
ardization in deciding which job applicants to
hire. Standardizing raw data separately within
groups before computing pooled validity coeffi-
cients, on the other hand, is done simply to
avoid bias in estimating test validity, and is not
used to select job applicants. Whereas race
norming disaggregates data to avoid comparison
between groups when selecting applicants,
standardizing before computing pooled validity
coefficients allows data from different groups to
be meaningfully aggregated when evaluating
test validity if their covariance is homogeneous.

Implications for Validity Generalization

Besides highlighting ambiguities in the
Uniform Guidelines, the Melendez case also has
implications for meta-analytic research on vali-
dity generalization.’® This area of research en-
tails synthesizing validity coefficients from
studies attempting to validate personnel selec-
tion tests, in order to draw conclusions about the
relationship between cognitive ability and job
performance. Typically, these meta-analyses
have concluded that cognitive ability tests are
generally valid in the workplace across a full
range of different racial subgroups, different
jobs, different tests, and different settings.'
Although conclusions about validity generaliza-
tion have been criticized on a variety of statis-
tical and conceptual grounds®, the problem of
paradoxical counfounding has been overlooked.

Validity coefficients based on pooled
unstandardized data will be biased whenever the
data contain subsamples that reliably differ on
both the predictor and the criterion (e.g., racial
subgroups, gender, types of jobs, different sites
of data collection). Synthesizing validity coeffi-
cients will yield biased conclusions when the
coefficients share a common bias (e.g., whites
had higher test scores and higher performance
ratings than other racial subgroups, and the data
of racial subgroups were simply combined).
This suggests that previous meta-analyses of test
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validation studies using total sample correla-
tions have overestimated overall effect strength.

Although most statistical adjustments in
meta-analysis serve to increase the strength of
observed relationships by correcting for sources
of unreliability™, a comparable adjustment is
needed to remove the inflation in correlations
due to paradoxical confounding. If means and
standard deviations are available for racial sub-
groups from the primary studies, for example,
then group differences can be examined on the
predictor (x) and the criterion (y). When one
group scores higher than others on x or y, a bet-
ter estimate of the pooled correlation coefficient
is a weighted composite of the correlations for
the separate subgroups, using r-to-z method-
ology.”® Paradoxical confounding exists when-
ever the coefficient based on pooled data differs
from the weighted mean coefficient across sub-
groups.

In the name of validity generalization,
extravagant claims have been made for the effi-
cacy of cognitive ability tests as personnel sel-
ection devices. For example, it has been argued:
“[R]eliable measures of the standard aptitudes
(e.g., verbal, quantitative, and spatial abilities)
are valid predictors of... performance on the job
for all jobs in the occupational spectrum...
[T]hese findings can be generalized to all jobs in
the economy for which tests are used in selec-
tion... [T]here are no jobs or job families for
which reliable measures of cognitive ability do
not have validity”.3* Couching claims in cosmic
hyperbole, validity generalization is likened to
“the powerful telescopes used in astronomy,”
and it is suggested that the theory is as well-
established as the measurement of the speed of
light.**

Ironically, persistent disparities between
test scores and performance evaluations of maj-
ority and minority employees is also what one
would expect from a pervasive pattern of dis-
crimination. Consistent use of discriminatory
employment tests, coupled with racially-biased
supervisory evaluations, would produce com-
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parable statistical outcomes. For this result to
obtain, overt and conscious racial discrimination
need not exist. For example, unconscious, sub-
jective perceptions favoring majority employees
would tend to inflate the mean criterion measure
for this subgroup; similarly, the impact of broad
societal discrimination would tend to depress
the mean test performance of a minority group.
Where the data for such racial and ethnic groups
are pooled without correcting for differences in
means on predictor and criterion, the likely
result is a distribution yielding false positive
correlations. The resulting evidence of “valid-
ity”” would be illusory.

The implications for the theory of
validity generalization are clear. Meta-analysis
is based in a vast pool of results from combined
samples, drawn primarily from reported validity
studies of employment tests. A systematic bias
throughout this data base would correspond-
ingly bias the meta-analysis. Further empirical
research is needed to isolate and assess the sta-
tistical impact of artifactual validity arising from
paradoxical confounding.

Conclusion

The case of Melendez v. Illinois Bell
Telephone Company highlights ambiguities in
the Uniform Guidelines for validating personnel
selection tests. Although the Guidelines could
be revised to clarify these ambiguities, there is a
potential drawback to this approach: namely, the
possibility that hard-won legal precedents,
gained over the years in the courts, might be lost
if the Guidelines were substantially modified.*
There is an inevitable trade-off here between
more specificity in the Uniform Guidelines, and
less applicability of previous court rulings.

Although the judgment in the Melendez
case strengthens the legal means for removing
invalid, discriminatory tests from the workplace,
it does not immediately reduce the likelihood of
such tests being developed in the first place, as
might revisions in the Uniform Guidelines.
Ultimately, however, the demise of invalid dis-
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criminatory tests in the workplace may depend
more on their perceived liability costs for the
user than on the specificity of the guidelines for
test development.
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